![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wdompwdom | Structured version Visualization version GIF version |
Description: Weak dominance strengthens to usual dominance on the power sets. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
Ref | Expression |
---|---|
wdompwdom | ⊢ (𝑋 ≼* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relwdom 9561 | . . . . . 6 ⊢ Rel ≼* | |
2 | 1 | brrelex2i 5734 | . . . . 5 ⊢ (𝑋 ≼* 𝑌 → 𝑌 ∈ V) |
3 | 2 | pwexd 5378 | . . . 4 ⊢ (𝑋 ≼* 𝑌 → 𝒫 𝑌 ∈ V) |
4 | 0ss 4397 | . . . . 5 ⊢ ∅ ⊆ 𝑌 | |
5 | 4 | sspwi 4615 | . . . 4 ⊢ 𝒫 ∅ ⊆ 𝒫 𝑌 |
6 | ssdomg 8996 | . . . 4 ⊢ (𝒫 𝑌 ∈ V → (𝒫 ∅ ⊆ 𝒫 𝑌 → 𝒫 ∅ ≼ 𝒫 𝑌)) | |
7 | 3, 5, 6 | mpisyl 21 | . . 3 ⊢ (𝑋 ≼* 𝑌 → 𝒫 ∅ ≼ 𝒫 𝑌) |
8 | pweq 4617 | . . . 4 ⊢ (𝑋 = ∅ → 𝒫 𝑋 = 𝒫 ∅) | |
9 | 8 | breq1d 5159 | . . 3 ⊢ (𝑋 = ∅ → (𝒫 𝑋 ≼ 𝒫 𝑌 ↔ 𝒫 ∅ ≼ 𝒫 𝑌)) |
10 | 7, 9 | imbitrrid 245 | . 2 ⊢ (𝑋 = ∅ → (𝑋 ≼* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌)) |
11 | brwdomn0 9564 | . . 3 ⊢ (𝑋 ≠ ∅ → (𝑋 ≼* 𝑌 ↔ ∃𝑧 𝑧:𝑌–onto→𝑋)) | |
12 | vex 3479 | . . . . 5 ⊢ 𝑧 ∈ V | |
13 | fopwdom 9080 | . . . . 5 ⊢ ((𝑧 ∈ V ∧ 𝑧:𝑌–onto→𝑋) → 𝒫 𝑋 ≼ 𝒫 𝑌) | |
14 | 12, 13 | mpan 689 | . . . 4 ⊢ (𝑧:𝑌–onto→𝑋 → 𝒫 𝑋 ≼ 𝒫 𝑌) |
15 | 14 | exlimiv 1934 | . . 3 ⊢ (∃𝑧 𝑧:𝑌–onto→𝑋 → 𝒫 𝑋 ≼ 𝒫 𝑌) |
16 | 11, 15 | syl6bi 253 | . 2 ⊢ (𝑋 ≠ ∅ → (𝑋 ≼* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌)) |
17 | 10, 16 | pm2.61ine 3026 | 1 ⊢ (𝑋 ≼* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ≠ wne 2941 Vcvv 3475 ⊆ wss 3949 ∅c0 4323 𝒫 cpw 4603 class class class wbr 5149 –onto→wfo 6542 ≼ cdom 8937 ≼* cwdom 9559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-dom 8941 df-wdom 9560 |
This theorem is referenced by: isfin32i 10360 hsmexlem1 10421 hsmexlem3 10423 gchhar 10674 |
Copyright terms: Public domain | W3C validator |