![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wdompwdom | Structured version Visualization version GIF version |
Description: Weak dominance strengthens to usual dominance on the power sets. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
Ref | Expression |
---|---|
wdompwdom | ⊢ (𝑋 ≼* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relwdom 9563 | . . . . . 6 ⊢ Rel ≼* | |
2 | 1 | brrelex2i 5726 | . . . . 5 ⊢ (𝑋 ≼* 𝑌 → 𝑌 ∈ V) |
3 | 2 | pwexd 5370 | . . . 4 ⊢ (𝑋 ≼* 𝑌 → 𝒫 𝑌 ∈ V) |
4 | 0ss 4391 | . . . . 5 ⊢ ∅ ⊆ 𝑌 | |
5 | 4 | sspwi 4609 | . . . 4 ⊢ 𝒫 ∅ ⊆ 𝒫 𝑌 |
6 | ssdomg 8998 | . . . 4 ⊢ (𝒫 𝑌 ∈ V → (𝒫 ∅ ⊆ 𝒫 𝑌 → 𝒫 ∅ ≼ 𝒫 𝑌)) | |
7 | 3, 5, 6 | mpisyl 21 | . . 3 ⊢ (𝑋 ≼* 𝑌 → 𝒫 ∅ ≼ 𝒫 𝑌) |
8 | pweq 4611 | . . . 4 ⊢ (𝑋 = ∅ → 𝒫 𝑋 = 𝒫 ∅) | |
9 | 8 | breq1d 5151 | . . 3 ⊢ (𝑋 = ∅ → (𝒫 𝑋 ≼ 𝒫 𝑌 ↔ 𝒫 ∅ ≼ 𝒫 𝑌)) |
10 | 7, 9 | imbitrrid 245 | . 2 ⊢ (𝑋 = ∅ → (𝑋 ≼* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌)) |
11 | brwdomn0 9566 | . . 3 ⊢ (𝑋 ≠ ∅ → (𝑋 ≼* 𝑌 ↔ ∃𝑧 𝑧:𝑌–onto→𝑋)) | |
12 | vex 3472 | . . . . 5 ⊢ 𝑧 ∈ V | |
13 | fopwdom 9082 | . . . . 5 ⊢ ((𝑧 ∈ V ∧ 𝑧:𝑌–onto→𝑋) → 𝒫 𝑋 ≼ 𝒫 𝑌) | |
14 | 12, 13 | mpan 687 | . . . 4 ⊢ (𝑧:𝑌–onto→𝑋 → 𝒫 𝑋 ≼ 𝒫 𝑌) |
15 | 14 | exlimiv 1925 | . . 3 ⊢ (∃𝑧 𝑧:𝑌–onto→𝑋 → 𝒫 𝑋 ≼ 𝒫 𝑌) |
16 | 11, 15 | biimtrdi 252 | . 2 ⊢ (𝑋 ≠ ∅ → (𝑋 ≼* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌)) |
17 | 10, 16 | pm2.61ine 3019 | 1 ⊢ (𝑋 ≼* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ≠ wne 2934 Vcvv 3468 ⊆ wss 3943 ∅c0 4317 𝒫 cpw 4597 class class class wbr 5141 –onto→wfo 6535 ≼ cdom 8939 ≼* cwdom 9561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-dom 8943 df-wdom 9562 |
This theorem is referenced by: isfin32i 10362 hsmexlem1 10423 hsmexlem3 10425 gchhar 10676 |
Copyright terms: Public domain | W3C validator |