MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdompwdom Structured version   Visualization version   GIF version

Theorem wdompwdom 9470
Description: Weak dominance strengthens to usual dominance on the power sets. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
wdompwdom (𝑋* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌)

Proof of Theorem wdompwdom
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 relwdom 9458 . . . . . 6 Rel ≼*
21brrelex2i 5676 . . . . 5 (𝑋* 𝑌𝑌 ∈ V)
32pwexd 5318 . . . 4 (𝑋* 𝑌 → 𝒫 𝑌 ∈ V)
4 0ss 4351 . . . . 5 ∅ ⊆ 𝑌
54sspwi 4563 . . . 4 𝒫 ∅ ⊆ 𝒫 𝑌
6 ssdomg 8925 . . . 4 (𝒫 𝑌 ∈ V → (𝒫 ∅ ⊆ 𝒫 𝑌 → 𝒫 ∅ ≼ 𝒫 𝑌))
73, 5, 6mpisyl 21 . . 3 (𝑋* 𝑌 → 𝒫 ∅ ≼ 𝒫 𝑌)
8 pweq 4565 . . . 4 (𝑋 = ∅ → 𝒫 𝑋 = 𝒫 ∅)
98breq1d 5102 . . 3 (𝑋 = ∅ → (𝒫 𝑋 ≼ 𝒫 𝑌 ↔ 𝒫 ∅ ≼ 𝒫 𝑌))
107, 9imbitrrid 246 . 2 (𝑋 = ∅ → (𝑋* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌))
11 brwdomn0 9461 . . 3 (𝑋 ≠ ∅ → (𝑋* 𝑌 ↔ ∃𝑧 𝑧:𝑌onto𝑋))
12 vex 3440 . . . . 5 𝑧 ∈ V
13 fopwdom 9002 . . . . 5 ((𝑧 ∈ V ∧ 𝑧:𝑌onto𝑋) → 𝒫 𝑋 ≼ 𝒫 𝑌)
1412, 13mpan 690 . . . 4 (𝑧:𝑌onto𝑋 → 𝒫 𝑋 ≼ 𝒫 𝑌)
1514exlimiv 1930 . . 3 (∃𝑧 𝑧:𝑌onto𝑋 → 𝒫 𝑋 ≼ 𝒫 𝑌)
1611, 15biimtrdi 253 . 2 (𝑋 ≠ ∅ → (𝑋* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌))
1710, 16pm2.61ine 3008 1 (𝑋* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wex 1779  wcel 2109  wne 2925  Vcvv 3436  wss 3903  c0 4284  𝒫 cpw 4551   class class class wbr 5092  ontowfo 6480  cdom 8870  * cwdom 9456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-dom 8874  df-wdom 9457
This theorem is referenced by:  isfin32i  10259  hsmexlem1  10320  hsmexlem3  10322  gchhar  10573
  Copyright terms: Public domain W3C validator