| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wdompwdom | Structured version Visualization version GIF version | ||
| Description: Weak dominance strengthens to usual dominance on the power sets. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
| Ref | Expression |
|---|---|
| wdompwdom | ⊢ (𝑋 ≼* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relwdom 9589 | . . . . . 6 ⊢ Rel ≼* | |
| 2 | 1 | brrelex2i 5724 | . . . . 5 ⊢ (𝑋 ≼* 𝑌 → 𝑌 ∈ V) |
| 3 | 2 | pwexd 5361 | . . . 4 ⊢ (𝑋 ≼* 𝑌 → 𝒫 𝑌 ∈ V) |
| 4 | 0ss 4382 | . . . . 5 ⊢ ∅ ⊆ 𝑌 | |
| 5 | 4 | sspwi 4594 | . . . 4 ⊢ 𝒫 ∅ ⊆ 𝒫 𝑌 |
| 6 | ssdomg 9023 | . . . 4 ⊢ (𝒫 𝑌 ∈ V → (𝒫 ∅ ⊆ 𝒫 𝑌 → 𝒫 ∅ ≼ 𝒫 𝑌)) | |
| 7 | 3, 5, 6 | mpisyl 21 | . . 3 ⊢ (𝑋 ≼* 𝑌 → 𝒫 ∅ ≼ 𝒫 𝑌) |
| 8 | pweq 4596 | . . . 4 ⊢ (𝑋 = ∅ → 𝒫 𝑋 = 𝒫 ∅) | |
| 9 | 8 | breq1d 5135 | . . 3 ⊢ (𝑋 = ∅ → (𝒫 𝑋 ≼ 𝒫 𝑌 ↔ 𝒫 ∅ ≼ 𝒫 𝑌)) |
| 10 | 7, 9 | imbitrrid 246 | . 2 ⊢ (𝑋 = ∅ → (𝑋 ≼* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌)) |
| 11 | brwdomn0 9592 | . . 3 ⊢ (𝑋 ≠ ∅ → (𝑋 ≼* 𝑌 ↔ ∃𝑧 𝑧:𝑌–onto→𝑋)) | |
| 12 | vex 3468 | . . . . 5 ⊢ 𝑧 ∈ V | |
| 13 | fopwdom 9103 | . . . . 5 ⊢ ((𝑧 ∈ V ∧ 𝑧:𝑌–onto→𝑋) → 𝒫 𝑋 ≼ 𝒫 𝑌) | |
| 14 | 12, 13 | mpan 690 | . . . 4 ⊢ (𝑧:𝑌–onto→𝑋 → 𝒫 𝑋 ≼ 𝒫 𝑌) |
| 15 | 14 | exlimiv 1929 | . . 3 ⊢ (∃𝑧 𝑧:𝑌–onto→𝑋 → 𝒫 𝑋 ≼ 𝒫 𝑌) |
| 16 | 11, 15 | biimtrdi 253 | . 2 ⊢ (𝑋 ≠ ∅ → (𝑋 ≼* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌)) |
| 17 | 10, 16 | pm2.61ine 3014 | 1 ⊢ (𝑋 ≼* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ≠ wne 2931 Vcvv 3464 ⊆ wss 3933 ∅c0 4315 𝒫 cpw 4582 class class class wbr 5125 –onto→wfo 6540 ≼ cdom 8966 ≼* cwdom 9587 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-dom 8970 df-wdom 9588 |
| This theorem is referenced by: isfin32i 10388 hsmexlem1 10449 hsmexlem3 10451 gchhar 10702 |
| Copyright terms: Public domain | W3C validator |