| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wdompwdom | Structured version Visualization version GIF version | ||
| Description: Weak dominance strengthens to usual dominance on the power sets. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
| Ref | Expression |
|---|---|
| wdompwdom | ⊢ (𝑋 ≼* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relwdom 9519 | . . . . . 6 ⊢ Rel ≼* | |
| 2 | 1 | brrelex2i 5695 | . . . . 5 ⊢ (𝑋 ≼* 𝑌 → 𝑌 ∈ V) |
| 3 | 2 | pwexd 5334 | . . . 4 ⊢ (𝑋 ≼* 𝑌 → 𝒫 𝑌 ∈ V) |
| 4 | 0ss 4363 | . . . . 5 ⊢ ∅ ⊆ 𝑌 | |
| 5 | 4 | sspwi 4575 | . . . 4 ⊢ 𝒫 ∅ ⊆ 𝒫 𝑌 |
| 6 | ssdomg 8971 | . . . 4 ⊢ (𝒫 𝑌 ∈ V → (𝒫 ∅ ⊆ 𝒫 𝑌 → 𝒫 ∅ ≼ 𝒫 𝑌)) | |
| 7 | 3, 5, 6 | mpisyl 21 | . . 3 ⊢ (𝑋 ≼* 𝑌 → 𝒫 ∅ ≼ 𝒫 𝑌) |
| 8 | pweq 4577 | . . . 4 ⊢ (𝑋 = ∅ → 𝒫 𝑋 = 𝒫 ∅) | |
| 9 | 8 | breq1d 5117 | . . 3 ⊢ (𝑋 = ∅ → (𝒫 𝑋 ≼ 𝒫 𝑌 ↔ 𝒫 ∅ ≼ 𝒫 𝑌)) |
| 10 | 7, 9 | imbitrrid 246 | . 2 ⊢ (𝑋 = ∅ → (𝑋 ≼* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌)) |
| 11 | brwdomn0 9522 | . . 3 ⊢ (𝑋 ≠ ∅ → (𝑋 ≼* 𝑌 ↔ ∃𝑧 𝑧:𝑌–onto→𝑋)) | |
| 12 | vex 3451 | . . . . 5 ⊢ 𝑧 ∈ V | |
| 13 | fopwdom 9049 | . . . . 5 ⊢ ((𝑧 ∈ V ∧ 𝑧:𝑌–onto→𝑋) → 𝒫 𝑋 ≼ 𝒫 𝑌) | |
| 14 | 12, 13 | mpan 690 | . . . 4 ⊢ (𝑧:𝑌–onto→𝑋 → 𝒫 𝑋 ≼ 𝒫 𝑌) |
| 15 | 14 | exlimiv 1930 | . . 3 ⊢ (∃𝑧 𝑧:𝑌–onto→𝑋 → 𝒫 𝑋 ≼ 𝒫 𝑌) |
| 16 | 11, 15 | biimtrdi 253 | . 2 ⊢ (𝑋 ≠ ∅ → (𝑋 ≼* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌)) |
| 17 | 10, 16 | pm2.61ine 3008 | 1 ⊢ (𝑋 ≼* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ⊆ wss 3914 ∅c0 4296 𝒫 cpw 4563 class class class wbr 5107 –onto→wfo 6509 ≼ cdom 8916 ≼* cwdom 9517 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-dom 8920 df-wdom 9518 |
| This theorem is referenced by: isfin32i 10318 hsmexlem1 10379 hsmexlem3 10381 gchhar 10632 |
| Copyright terms: Public domain | W3C validator |