MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdompwdom Structured version   Visualization version   GIF version

Theorem wdompwdom 9298
Description: Weak dominance strengthens to usual dominance on the power sets. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
wdompwdom (𝑋* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌)

Proof of Theorem wdompwdom
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 relwdom 9286 . . . . . 6 Rel ≼*
21brrelex2i 5643 . . . . 5 (𝑋* 𝑌𝑌 ∈ V)
32pwexd 5305 . . . 4 (𝑋* 𝑌 → 𝒫 𝑌 ∈ V)
4 0ss 4335 . . . . 5 ∅ ⊆ 𝑌
54sspwi 4552 . . . 4 𝒫 ∅ ⊆ 𝒫 𝑌
6 ssdomg 8757 . . . 4 (𝒫 𝑌 ∈ V → (𝒫 ∅ ⊆ 𝒫 𝑌 → 𝒫 ∅ ≼ 𝒫 𝑌))
73, 5, 6mpisyl 21 . . 3 (𝑋* 𝑌 → 𝒫 ∅ ≼ 𝒫 𝑌)
8 pweq 4554 . . . 4 (𝑋 = ∅ → 𝒫 𝑋 = 𝒫 ∅)
98breq1d 5088 . . 3 (𝑋 = ∅ → (𝒫 𝑋 ≼ 𝒫 𝑌 ↔ 𝒫 ∅ ≼ 𝒫 𝑌))
107, 9syl5ibr 245 . 2 (𝑋 = ∅ → (𝑋* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌))
11 brwdomn0 9289 . . 3 (𝑋 ≠ ∅ → (𝑋* 𝑌 ↔ ∃𝑧 𝑧:𝑌onto𝑋))
12 vex 3434 . . . . 5 𝑧 ∈ V
13 fopwdom 8836 . . . . 5 ((𝑧 ∈ V ∧ 𝑧:𝑌onto𝑋) → 𝒫 𝑋 ≼ 𝒫 𝑌)
1412, 13mpan 686 . . . 4 (𝑧:𝑌onto𝑋 → 𝒫 𝑋 ≼ 𝒫 𝑌)
1514exlimiv 1936 . . 3 (∃𝑧 𝑧:𝑌onto𝑋 → 𝒫 𝑋 ≼ 𝒫 𝑌)
1611, 15syl6bi 252 . 2 (𝑋 ≠ ∅ → (𝑋* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌))
1710, 16pm2.61ine 3029 1 (𝑋* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wex 1785  wcel 2109  wne 2944  Vcvv 3430  wss 3891  c0 4261  𝒫 cpw 4538   class class class wbr 5078  ontowfo 6428  cdom 8705  * cwdom 9284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-dom 8709  df-wdom 9285
This theorem is referenced by:  isfin32i  10105  hsmexlem1  10166  hsmexlem3  10168  gchhar  10419
  Copyright terms: Public domain W3C validator