Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wdompwdom | Structured version Visualization version GIF version |
Description: Weak dominance strengthens to usual dominance on the power sets. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
Ref | Expression |
---|---|
wdompwdom | ⊢ (𝑋 ≼* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relwdom 9286 | . . . . . 6 ⊢ Rel ≼* | |
2 | 1 | brrelex2i 5643 | . . . . 5 ⊢ (𝑋 ≼* 𝑌 → 𝑌 ∈ V) |
3 | 2 | pwexd 5305 | . . . 4 ⊢ (𝑋 ≼* 𝑌 → 𝒫 𝑌 ∈ V) |
4 | 0ss 4335 | . . . . 5 ⊢ ∅ ⊆ 𝑌 | |
5 | 4 | sspwi 4552 | . . . 4 ⊢ 𝒫 ∅ ⊆ 𝒫 𝑌 |
6 | ssdomg 8757 | . . . 4 ⊢ (𝒫 𝑌 ∈ V → (𝒫 ∅ ⊆ 𝒫 𝑌 → 𝒫 ∅ ≼ 𝒫 𝑌)) | |
7 | 3, 5, 6 | mpisyl 21 | . . 3 ⊢ (𝑋 ≼* 𝑌 → 𝒫 ∅ ≼ 𝒫 𝑌) |
8 | pweq 4554 | . . . 4 ⊢ (𝑋 = ∅ → 𝒫 𝑋 = 𝒫 ∅) | |
9 | 8 | breq1d 5088 | . . 3 ⊢ (𝑋 = ∅ → (𝒫 𝑋 ≼ 𝒫 𝑌 ↔ 𝒫 ∅ ≼ 𝒫 𝑌)) |
10 | 7, 9 | syl5ibr 245 | . 2 ⊢ (𝑋 = ∅ → (𝑋 ≼* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌)) |
11 | brwdomn0 9289 | . . 3 ⊢ (𝑋 ≠ ∅ → (𝑋 ≼* 𝑌 ↔ ∃𝑧 𝑧:𝑌–onto→𝑋)) | |
12 | vex 3434 | . . . . 5 ⊢ 𝑧 ∈ V | |
13 | fopwdom 8836 | . . . . 5 ⊢ ((𝑧 ∈ V ∧ 𝑧:𝑌–onto→𝑋) → 𝒫 𝑋 ≼ 𝒫 𝑌) | |
14 | 12, 13 | mpan 686 | . . . 4 ⊢ (𝑧:𝑌–onto→𝑋 → 𝒫 𝑋 ≼ 𝒫 𝑌) |
15 | 14 | exlimiv 1936 | . . 3 ⊢ (∃𝑧 𝑧:𝑌–onto→𝑋 → 𝒫 𝑋 ≼ 𝒫 𝑌) |
16 | 11, 15 | syl6bi 252 | . 2 ⊢ (𝑋 ≠ ∅ → (𝑋 ≼* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌)) |
17 | 10, 16 | pm2.61ine 3029 | 1 ⊢ (𝑋 ≼* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∃wex 1785 ∈ wcel 2109 ≠ wne 2944 Vcvv 3430 ⊆ wss 3891 ∅c0 4261 𝒫 cpw 4538 class class class wbr 5078 –onto→wfo 6428 ≼ cdom 8705 ≼* cwdom 9284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-dom 8709 df-wdom 9285 |
This theorem is referenced by: isfin32i 10105 hsmexlem1 10166 hsmexlem3 10168 gchhar 10419 |
Copyright terms: Public domain | W3C validator |