MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomfil Structured version   Visualization version   GIF version

Theorem wdomfil 9990
Description: Weak dominance agrees with normal for finite left sets. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
wdomfil (𝑋 ∈ Fin → (𝑋* 𝑌𝑋𝑌))

Proof of Theorem wdomfil
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 relwdom 9495 . . . . . . 7 Rel ≼*
21brrelex2i 5688 . . . . . 6 (𝑋* 𝑌𝑌 ∈ V)
3 0domg 9045 . . . . . 6 (𝑌 ∈ V → ∅ ≼ 𝑌)
42, 3syl 17 . . . . 5 (𝑋* 𝑌 → ∅ ≼ 𝑌)
5 breq1 5105 . . . . 5 (𝑋 = ∅ → (𝑋𝑌 ↔ ∅ ≼ 𝑌))
64, 5imbitrrid 246 . . . 4 (𝑋 = ∅ → (𝑋* 𝑌𝑋𝑌))
76adantl 481 . . 3 ((𝑋 ∈ Fin ∧ 𝑋 = ∅) → (𝑋* 𝑌𝑋𝑌))
8 brwdomn0 9498 . . . . 5 (𝑋 ≠ ∅ → (𝑋* 𝑌 ↔ ∃𝑥 𝑥:𝑌onto𝑋))
98adantl 481 . . . 4 ((𝑋 ∈ Fin ∧ 𝑋 ≠ ∅) → (𝑋* 𝑌 ↔ ∃𝑥 𝑥:𝑌onto𝑋))
10 vex 3448 . . . . . . . . . 10 𝑥 ∈ V
11 fof 6754 . . . . . . . . . 10 (𝑥:𝑌onto𝑋𝑥:𝑌𝑋)
12 dmfex 7861 . . . . . . . . . 10 ((𝑥 ∈ V ∧ 𝑥:𝑌𝑋) → 𝑌 ∈ V)
1310, 11, 12sylancr 587 . . . . . . . . 9 (𝑥:𝑌onto𝑋𝑌 ∈ V)
1413adantl 481 . . . . . . . 8 ((𝑋 ∈ Fin ∧ 𝑥:𝑌onto𝑋) → 𝑌 ∈ V)
15 simpl 482 . . . . . . . 8 ((𝑋 ∈ Fin ∧ 𝑥:𝑌onto𝑋) → 𝑋 ∈ Fin)
16 simpr 484 . . . . . . . 8 ((𝑋 ∈ Fin ∧ 𝑥:𝑌onto𝑋) → 𝑥:𝑌onto𝑋)
17 fodomfi2 9989 . . . . . . . 8 ((𝑌 ∈ V ∧ 𝑋 ∈ Fin ∧ 𝑥:𝑌onto𝑋) → 𝑋𝑌)
1814, 15, 16, 17syl3anc 1373 . . . . . . 7 ((𝑋 ∈ Fin ∧ 𝑥:𝑌onto𝑋) → 𝑋𝑌)
1918ex 412 . . . . . 6 (𝑋 ∈ Fin → (𝑥:𝑌onto𝑋𝑋𝑌))
2019adantr 480 . . . . 5 ((𝑋 ∈ Fin ∧ 𝑋 ≠ ∅) → (𝑥:𝑌onto𝑋𝑋𝑌))
2120exlimdv 1933 . . . 4 ((𝑋 ∈ Fin ∧ 𝑋 ≠ ∅) → (∃𝑥 𝑥:𝑌onto𝑋𝑋𝑌))
229, 21sylbid 240 . . 3 ((𝑋 ∈ Fin ∧ 𝑋 ≠ ∅) → (𝑋* 𝑌𝑋𝑌))
237, 22pm2.61dane 3012 . 2 (𝑋 ∈ Fin → (𝑋* 𝑌𝑋𝑌))
24 domwdom 9503 . 2 (𝑋𝑌𝑋* 𝑌)
2523, 24impbid1 225 1 (𝑋 ∈ Fin → (𝑋* 𝑌𝑋𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  Vcvv 3444  c0 4292   class class class wbr 5102  wf 6495  ontowfo 6497  cdom 8893  Fincfn 8895  * cwdom 9493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-wdom 9494  df-card 9868  df-acn 9871
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator