MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomfil Structured version   Visualization version   GIF version

Theorem wdomfil 10101
Description: Weak dominance agrees with normal for finite left sets. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
wdomfil (𝑋 ∈ Fin → (𝑋* 𝑌𝑋𝑌))

Proof of Theorem wdomfil
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 relwdom 9606 . . . . . . 7 Rel ≼*
21brrelex2i 5742 . . . . . 6 (𝑋* 𝑌𝑌 ∈ V)
3 0domg 9140 . . . . . 6 (𝑌 ∈ V → ∅ ≼ 𝑌)
42, 3syl 17 . . . . 5 (𝑋* 𝑌 → ∅ ≼ 𝑌)
5 breq1 5146 . . . . 5 (𝑋 = ∅ → (𝑋𝑌 ↔ ∅ ≼ 𝑌))
64, 5imbitrrid 246 . . . 4 (𝑋 = ∅ → (𝑋* 𝑌𝑋𝑌))
76adantl 481 . . 3 ((𝑋 ∈ Fin ∧ 𝑋 = ∅) → (𝑋* 𝑌𝑋𝑌))
8 brwdomn0 9609 . . . . 5 (𝑋 ≠ ∅ → (𝑋* 𝑌 ↔ ∃𝑥 𝑥:𝑌onto𝑋))
98adantl 481 . . . 4 ((𝑋 ∈ Fin ∧ 𝑋 ≠ ∅) → (𝑋* 𝑌 ↔ ∃𝑥 𝑥:𝑌onto𝑋))
10 vex 3484 . . . . . . . . . 10 𝑥 ∈ V
11 fof 6820 . . . . . . . . . 10 (𝑥:𝑌onto𝑋𝑥:𝑌𝑋)
12 dmfex 7927 . . . . . . . . . 10 ((𝑥 ∈ V ∧ 𝑥:𝑌𝑋) → 𝑌 ∈ V)
1310, 11, 12sylancr 587 . . . . . . . . 9 (𝑥:𝑌onto𝑋𝑌 ∈ V)
1413adantl 481 . . . . . . . 8 ((𝑋 ∈ Fin ∧ 𝑥:𝑌onto𝑋) → 𝑌 ∈ V)
15 simpl 482 . . . . . . . 8 ((𝑋 ∈ Fin ∧ 𝑥:𝑌onto𝑋) → 𝑋 ∈ Fin)
16 simpr 484 . . . . . . . 8 ((𝑋 ∈ Fin ∧ 𝑥:𝑌onto𝑋) → 𝑥:𝑌onto𝑋)
17 fodomfi2 10100 . . . . . . . 8 ((𝑌 ∈ V ∧ 𝑋 ∈ Fin ∧ 𝑥:𝑌onto𝑋) → 𝑋𝑌)
1814, 15, 16, 17syl3anc 1373 . . . . . . 7 ((𝑋 ∈ Fin ∧ 𝑥:𝑌onto𝑋) → 𝑋𝑌)
1918ex 412 . . . . . 6 (𝑋 ∈ Fin → (𝑥:𝑌onto𝑋𝑋𝑌))
2019adantr 480 . . . . 5 ((𝑋 ∈ Fin ∧ 𝑋 ≠ ∅) → (𝑥:𝑌onto𝑋𝑋𝑌))
2120exlimdv 1933 . . . 4 ((𝑋 ∈ Fin ∧ 𝑋 ≠ ∅) → (∃𝑥 𝑥:𝑌onto𝑋𝑋𝑌))
229, 21sylbid 240 . . 3 ((𝑋 ∈ Fin ∧ 𝑋 ≠ ∅) → (𝑋* 𝑌𝑋𝑌))
237, 22pm2.61dane 3029 . 2 (𝑋 ∈ Fin → (𝑋* 𝑌𝑋𝑌))
24 domwdom 9614 . 2 (𝑋𝑌𝑋* 𝑌)
2523, 24impbid1 225 1 (𝑋 ∈ Fin → (𝑋* 𝑌𝑋𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2940  Vcvv 3480  c0 4333   class class class wbr 5143  wf 6557  ontowfo 6559  cdom 8983  Fincfn 8985  * cwdom 9604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-wdom 9605  df-card 9979  df-acn 9982
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator