| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wdomfil | Structured version Visualization version GIF version | ||
| Description: Weak dominance agrees with normal for finite left sets. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
| Ref | Expression |
|---|---|
| wdomfil | ⊢ (𝑋 ∈ Fin → (𝑋 ≼* 𝑌 ↔ 𝑋 ≼ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relwdom 9452 | . . . . . . 7 ⊢ Rel ≼* | |
| 2 | 1 | brrelex2i 5671 | . . . . . 6 ⊢ (𝑋 ≼* 𝑌 → 𝑌 ∈ V) |
| 3 | 0domg 9017 | . . . . . 6 ⊢ (𝑌 ∈ V → ∅ ≼ 𝑌) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝑋 ≼* 𝑌 → ∅ ≼ 𝑌) |
| 5 | breq1 5092 | . . . . 5 ⊢ (𝑋 = ∅ → (𝑋 ≼ 𝑌 ↔ ∅ ≼ 𝑌)) | |
| 6 | 4, 5 | imbitrrid 246 | . . . 4 ⊢ (𝑋 = ∅ → (𝑋 ≼* 𝑌 → 𝑋 ≼ 𝑌)) |
| 7 | 6 | adantl 481 | . . 3 ⊢ ((𝑋 ∈ Fin ∧ 𝑋 = ∅) → (𝑋 ≼* 𝑌 → 𝑋 ≼ 𝑌)) |
| 8 | brwdomn0 9455 | . . . . 5 ⊢ (𝑋 ≠ ∅ → (𝑋 ≼* 𝑌 ↔ ∃𝑥 𝑥:𝑌–onto→𝑋)) | |
| 9 | 8 | adantl 481 | . . . 4 ⊢ ((𝑋 ∈ Fin ∧ 𝑋 ≠ ∅) → (𝑋 ≼* 𝑌 ↔ ∃𝑥 𝑥:𝑌–onto→𝑋)) |
| 10 | vex 3440 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
| 11 | fof 6735 | . . . . . . . . . 10 ⊢ (𝑥:𝑌–onto→𝑋 → 𝑥:𝑌⟶𝑋) | |
| 12 | dmfex 7835 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ V ∧ 𝑥:𝑌⟶𝑋) → 𝑌 ∈ V) | |
| 13 | 10, 11, 12 | sylancr 587 | . . . . . . . . 9 ⊢ (𝑥:𝑌–onto→𝑋 → 𝑌 ∈ V) |
| 14 | 13 | adantl 481 | . . . . . . . 8 ⊢ ((𝑋 ∈ Fin ∧ 𝑥:𝑌–onto→𝑋) → 𝑌 ∈ V) |
| 15 | simpl 482 | . . . . . . . 8 ⊢ ((𝑋 ∈ Fin ∧ 𝑥:𝑌–onto→𝑋) → 𝑋 ∈ Fin) | |
| 16 | simpr 484 | . . . . . . . 8 ⊢ ((𝑋 ∈ Fin ∧ 𝑥:𝑌–onto→𝑋) → 𝑥:𝑌–onto→𝑋) | |
| 17 | fodomfi2 9951 | . . . . . . . 8 ⊢ ((𝑌 ∈ V ∧ 𝑋 ∈ Fin ∧ 𝑥:𝑌–onto→𝑋) → 𝑋 ≼ 𝑌) | |
| 18 | 14, 15, 16, 17 | syl3anc 1373 | . . . . . . 7 ⊢ ((𝑋 ∈ Fin ∧ 𝑥:𝑌–onto→𝑋) → 𝑋 ≼ 𝑌) |
| 19 | 18 | ex 412 | . . . . . 6 ⊢ (𝑋 ∈ Fin → (𝑥:𝑌–onto→𝑋 → 𝑋 ≼ 𝑌)) |
| 20 | 19 | adantr 480 | . . . . 5 ⊢ ((𝑋 ∈ Fin ∧ 𝑋 ≠ ∅) → (𝑥:𝑌–onto→𝑋 → 𝑋 ≼ 𝑌)) |
| 21 | 20 | exlimdv 1934 | . . . 4 ⊢ ((𝑋 ∈ Fin ∧ 𝑋 ≠ ∅) → (∃𝑥 𝑥:𝑌–onto→𝑋 → 𝑋 ≼ 𝑌)) |
| 22 | 9, 21 | sylbid 240 | . . 3 ⊢ ((𝑋 ∈ Fin ∧ 𝑋 ≠ ∅) → (𝑋 ≼* 𝑌 → 𝑋 ≼ 𝑌)) |
| 23 | 7, 22 | pm2.61dane 3015 | . 2 ⊢ (𝑋 ∈ Fin → (𝑋 ≼* 𝑌 → 𝑋 ≼ 𝑌)) |
| 24 | domwdom 9460 | . 2 ⊢ (𝑋 ≼ 𝑌 → 𝑋 ≼* 𝑌) | |
| 25 | 23, 24 | impbid1 225 | 1 ⊢ (𝑋 ∈ Fin → (𝑋 ≼* 𝑌 ↔ 𝑋 ≼ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∅c0 4280 class class class wbr 5089 ⟶wf 6477 –onto→wfo 6479 ≼ cdom 8867 Fincfn 8869 ≼* cwdom 9450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-wdom 9451 df-card 9832 df-acn 9835 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |