MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomfil Structured version   Visualization version   GIF version

Theorem wdomfil 9817
Description: Weak dominance agrees with normal for finite left sets. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
wdomfil (𝑋 ∈ Fin → (𝑋* 𝑌𝑋𝑌))

Proof of Theorem wdomfil
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 relwdom 9325 . . . . . . 7 Rel ≼*
21brrelex2i 5644 . . . . . 6 (𝑋* 𝑌𝑌 ∈ V)
3 0domg 8887 . . . . . 6 (𝑌 ∈ V → ∅ ≼ 𝑌)
42, 3syl 17 . . . . 5 (𝑋* 𝑌 → ∅ ≼ 𝑌)
5 breq1 5077 . . . . 5 (𝑋 = ∅ → (𝑋𝑌 ↔ ∅ ≼ 𝑌))
64, 5syl5ibr 245 . . . 4 (𝑋 = ∅ → (𝑋* 𝑌𝑋𝑌))
76adantl 482 . . 3 ((𝑋 ∈ Fin ∧ 𝑋 = ∅) → (𝑋* 𝑌𝑋𝑌))
8 brwdomn0 9328 . . . . 5 (𝑋 ≠ ∅ → (𝑋* 𝑌 ↔ ∃𝑥 𝑥:𝑌onto𝑋))
98adantl 482 . . . 4 ((𝑋 ∈ Fin ∧ 𝑋 ≠ ∅) → (𝑋* 𝑌 ↔ ∃𝑥 𝑥:𝑌onto𝑋))
10 vex 3436 . . . . . . . . . 10 𝑥 ∈ V
11 fof 6688 . . . . . . . . . 10 (𝑥:𝑌onto𝑋𝑥:𝑌𝑋)
12 dmfex 7754 . . . . . . . . . 10 ((𝑥 ∈ V ∧ 𝑥:𝑌𝑋) → 𝑌 ∈ V)
1310, 11, 12sylancr 587 . . . . . . . . 9 (𝑥:𝑌onto𝑋𝑌 ∈ V)
1413adantl 482 . . . . . . . 8 ((𝑋 ∈ Fin ∧ 𝑥:𝑌onto𝑋) → 𝑌 ∈ V)
15 simpl 483 . . . . . . . 8 ((𝑋 ∈ Fin ∧ 𝑥:𝑌onto𝑋) → 𝑋 ∈ Fin)
16 simpr 485 . . . . . . . 8 ((𝑋 ∈ Fin ∧ 𝑥:𝑌onto𝑋) → 𝑥:𝑌onto𝑋)
17 fodomfi2 9816 . . . . . . . 8 ((𝑌 ∈ V ∧ 𝑋 ∈ Fin ∧ 𝑥:𝑌onto𝑋) → 𝑋𝑌)
1814, 15, 16, 17syl3anc 1370 . . . . . . 7 ((𝑋 ∈ Fin ∧ 𝑥:𝑌onto𝑋) → 𝑋𝑌)
1918ex 413 . . . . . 6 (𝑋 ∈ Fin → (𝑥:𝑌onto𝑋𝑋𝑌))
2019adantr 481 . . . . 5 ((𝑋 ∈ Fin ∧ 𝑋 ≠ ∅) → (𝑥:𝑌onto𝑋𝑋𝑌))
2120exlimdv 1936 . . . 4 ((𝑋 ∈ Fin ∧ 𝑋 ≠ ∅) → (∃𝑥 𝑥:𝑌onto𝑋𝑋𝑌))
229, 21sylbid 239 . . 3 ((𝑋 ∈ Fin ∧ 𝑋 ≠ ∅) → (𝑋* 𝑌𝑋𝑌))
237, 22pm2.61dane 3032 . 2 (𝑋 ∈ Fin → (𝑋* 𝑌𝑋𝑌))
24 domwdom 9333 . 2 (𝑋𝑌𝑋* 𝑌)
2523, 24impbid1 224 1 (𝑋 ∈ Fin → (𝑋* 𝑌𝑋𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wne 2943  Vcvv 3432  c0 4256   class class class wbr 5074  wf 6429  ontowfo 6431  cdom 8731  Fincfn 8733  * cwdom 9323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-wdom 9324  df-card 9697  df-acn 9700
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator