MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomfil Structured version   Visualization version   GIF version

Theorem wdomfil 10073
Description: Weak dominance agrees with normal for finite left sets. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
wdomfil (𝑋 ∈ Fin → (𝑋* 𝑌𝑋𝑌))

Proof of Theorem wdomfil
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 relwdom 9578 . . . . . . 7 Rel ≼*
21brrelex2i 5711 . . . . . 6 (𝑋* 𝑌𝑌 ∈ V)
3 0domg 9112 . . . . . 6 (𝑌 ∈ V → ∅ ≼ 𝑌)
42, 3syl 17 . . . . 5 (𝑋* 𝑌 → ∅ ≼ 𝑌)
5 breq1 5122 . . . . 5 (𝑋 = ∅ → (𝑋𝑌 ↔ ∅ ≼ 𝑌))
64, 5imbitrrid 246 . . . 4 (𝑋 = ∅ → (𝑋* 𝑌𝑋𝑌))
76adantl 481 . . 3 ((𝑋 ∈ Fin ∧ 𝑋 = ∅) → (𝑋* 𝑌𝑋𝑌))
8 brwdomn0 9581 . . . . 5 (𝑋 ≠ ∅ → (𝑋* 𝑌 ↔ ∃𝑥 𝑥:𝑌onto𝑋))
98adantl 481 . . . 4 ((𝑋 ∈ Fin ∧ 𝑋 ≠ ∅) → (𝑋* 𝑌 ↔ ∃𝑥 𝑥:𝑌onto𝑋))
10 vex 3463 . . . . . . . . . 10 𝑥 ∈ V
11 fof 6789 . . . . . . . . . 10 (𝑥:𝑌onto𝑋𝑥:𝑌𝑋)
12 dmfex 7899 . . . . . . . . . 10 ((𝑥 ∈ V ∧ 𝑥:𝑌𝑋) → 𝑌 ∈ V)
1310, 11, 12sylancr 587 . . . . . . . . 9 (𝑥:𝑌onto𝑋𝑌 ∈ V)
1413adantl 481 . . . . . . . 8 ((𝑋 ∈ Fin ∧ 𝑥:𝑌onto𝑋) → 𝑌 ∈ V)
15 simpl 482 . . . . . . . 8 ((𝑋 ∈ Fin ∧ 𝑥:𝑌onto𝑋) → 𝑋 ∈ Fin)
16 simpr 484 . . . . . . . 8 ((𝑋 ∈ Fin ∧ 𝑥:𝑌onto𝑋) → 𝑥:𝑌onto𝑋)
17 fodomfi2 10072 . . . . . . . 8 ((𝑌 ∈ V ∧ 𝑋 ∈ Fin ∧ 𝑥:𝑌onto𝑋) → 𝑋𝑌)
1814, 15, 16, 17syl3anc 1373 . . . . . . 7 ((𝑋 ∈ Fin ∧ 𝑥:𝑌onto𝑋) → 𝑋𝑌)
1918ex 412 . . . . . 6 (𝑋 ∈ Fin → (𝑥:𝑌onto𝑋𝑋𝑌))
2019adantr 480 . . . . 5 ((𝑋 ∈ Fin ∧ 𝑋 ≠ ∅) → (𝑥:𝑌onto𝑋𝑋𝑌))
2120exlimdv 1933 . . . 4 ((𝑋 ∈ Fin ∧ 𝑋 ≠ ∅) → (∃𝑥 𝑥:𝑌onto𝑋𝑋𝑌))
229, 21sylbid 240 . . 3 ((𝑋 ∈ Fin ∧ 𝑋 ≠ ∅) → (𝑋* 𝑌𝑋𝑌))
237, 22pm2.61dane 3019 . 2 (𝑋 ∈ Fin → (𝑋* 𝑌𝑋𝑌))
24 domwdom 9586 . 2 (𝑋𝑌𝑋* 𝑌)
2523, 24impbid1 225 1 (𝑋 ∈ Fin → (𝑋* 𝑌𝑋𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2932  Vcvv 3459  c0 4308   class class class wbr 5119  wf 6526  ontowfo 6528  cdom 8955  Fincfn 8957  * cwdom 9576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-1o 8478  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-wdom 9577  df-card 9951  df-acn 9954
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator