MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomfil Structured version   Visualization version   GIF version

Theorem wdomfil 9748
Description: Weak dominance agrees with normal for finite left sets. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
wdomfil (𝑋 ∈ Fin → (𝑋* 𝑌𝑋𝑌))

Proof of Theorem wdomfil
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 relwdom 9255 . . . . . . 7 Rel ≼*
21brrelex2i 5635 . . . . . 6 (𝑋* 𝑌𝑌 ∈ V)
3 0domg 8840 . . . . . 6 (𝑌 ∈ V → ∅ ≼ 𝑌)
42, 3syl 17 . . . . 5 (𝑋* 𝑌 → ∅ ≼ 𝑌)
5 breq1 5073 . . . . 5 (𝑋 = ∅ → (𝑋𝑌 ↔ ∅ ≼ 𝑌))
64, 5syl5ibr 245 . . . 4 (𝑋 = ∅ → (𝑋* 𝑌𝑋𝑌))
76adantl 481 . . 3 ((𝑋 ∈ Fin ∧ 𝑋 = ∅) → (𝑋* 𝑌𝑋𝑌))
8 brwdomn0 9258 . . . . 5 (𝑋 ≠ ∅ → (𝑋* 𝑌 ↔ ∃𝑥 𝑥:𝑌onto𝑋))
98adantl 481 . . . 4 ((𝑋 ∈ Fin ∧ 𝑋 ≠ ∅) → (𝑋* 𝑌 ↔ ∃𝑥 𝑥:𝑌onto𝑋))
10 vex 3426 . . . . . . . . . 10 𝑥 ∈ V
11 fof 6672 . . . . . . . . . 10 (𝑥:𝑌onto𝑋𝑥:𝑌𝑋)
12 dmfex 7728 . . . . . . . . . 10 ((𝑥 ∈ V ∧ 𝑥:𝑌𝑋) → 𝑌 ∈ V)
1310, 11, 12sylancr 586 . . . . . . . . 9 (𝑥:𝑌onto𝑋𝑌 ∈ V)
1413adantl 481 . . . . . . . 8 ((𝑋 ∈ Fin ∧ 𝑥:𝑌onto𝑋) → 𝑌 ∈ V)
15 simpl 482 . . . . . . . 8 ((𝑋 ∈ Fin ∧ 𝑥:𝑌onto𝑋) → 𝑋 ∈ Fin)
16 simpr 484 . . . . . . . 8 ((𝑋 ∈ Fin ∧ 𝑥:𝑌onto𝑋) → 𝑥:𝑌onto𝑋)
17 fodomfi2 9747 . . . . . . . 8 ((𝑌 ∈ V ∧ 𝑋 ∈ Fin ∧ 𝑥:𝑌onto𝑋) → 𝑋𝑌)
1814, 15, 16, 17syl3anc 1369 . . . . . . 7 ((𝑋 ∈ Fin ∧ 𝑥:𝑌onto𝑋) → 𝑋𝑌)
1918ex 412 . . . . . 6 (𝑋 ∈ Fin → (𝑥:𝑌onto𝑋𝑋𝑌))
2019adantr 480 . . . . 5 ((𝑋 ∈ Fin ∧ 𝑋 ≠ ∅) → (𝑥:𝑌onto𝑋𝑋𝑌))
2120exlimdv 1937 . . . 4 ((𝑋 ∈ Fin ∧ 𝑋 ≠ ∅) → (∃𝑥 𝑥:𝑌onto𝑋𝑋𝑌))
229, 21sylbid 239 . . 3 ((𝑋 ∈ Fin ∧ 𝑋 ≠ ∅) → (𝑋* 𝑌𝑋𝑌))
237, 22pm2.61dane 3031 . 2 (𝑋 ∈ Fin → (𝑋* 𝑌𝑋𝑌))
24 domwdom 9263 . 2 (𝑋𝑌𝑋* 𝑌)
2523, 24impbid1 224 1 (𝑋 ∈ Fin → (𝑋* 𝑌𝑋𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wne 2942  Vcvv 3422  c0 4253   class class class wbr 5070  wf 6414  ontowfo 6416  cdom 8689  Fincfn 8691  * cwdom 9253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-wdom 9254  df-card 9628  df-acn 9631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator