Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wdomfil | Structured version Visualization version GIF version |
Description: Weak dominance agrees with normal for finite left sets. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
Ref | Expression |
---|---|
wdomfil | ⊢ (𝑋 ∈ Fin → (𝑋 ≼* 𝑌 ↔ 𝑋 ≼ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relwdom 9325 | . . . . . . 7 ⊢ Rel ≼* | |
2 | 1 | brrelex2i 5644 | . . . . . 6 ⊢ (𝑋 ≼* 𝑌 → 𝑌 ∈ V) |
3 | 0domg 8887 | . . . . . 6 ⊢ (𝑌 ∈ V → ∅ ≼ 𝑌) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝑋 ≼* 𝑌 → ∅ ≼ 𝑌) |
5 | breq1 5077 | . . . . 5 ⊢ (𝑋 = ∅ → (𝑋 ≼ 𝑌 ↔ ∅ ≼ 𝑌)) | |
6 | 4, 5 | syl5ibr 245 | . . . 4 ⊢ (𝑋 = ∅ → (𝑋 ≼* 𝑌 → 𝑋 ≼ 𝑌)) |
7 | 6 | adantl 482 | . . 3 ⊢ ((𝑋 ∈ Fin ∧ 𝑋 = ∅) → (𝑋 ≼* 𝑌 → 𝑋 ≼ 𝑌)) |
8 | brwdomn0 9328 | . . . . 5 ⊢ (𝑋 ≠ ∅ → (𝑋 ≼* 𝑌 ↔ ∃𝑥 𝑥:𝑌–onto→𝑋)) | |
9 | 8 | adantl 482 | . . . 4 ⊢ ((𝑋 ∈ Fin ∧ 𝑋 ≠ ∅) → (𝑋 ≼* 𝑌 ↔ ∃𝑥 𝑥:𝑌–onto→𝑋)) |
10 | vex 3436 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
11 | fof 6688 | . . . . . . . . . 10 ⊢ (𝑥:𝑌–onto→𝑋 → 𝑥:𝑌⟶𝑋) | |
12 | dmfex 7754 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ V ∧ 𝑥:𝑌⟶𝑋) → 𝑌 ∈ V) | |
13 | 10, 11, 12 | sylancr 587 | . . . . . . . . 9 ⊢ (𝑥:𝑌–onto→𝑋 → 𝑌 ∈ V) |
14 | 13 | adantl 482 | . . . . . . . 8 ⊢ ((𝑋 ∈ Fin ∧ 𝑥:𝑌–onto→𝑋) → 𝑌 ∈ V) |
15 | simpl 483 | . . . . . . . 8 ⊢ ((𝑋 ∈ Fin ∧ 𝑥:𝑌–onto→𝑋) → 𝑋 ∈ Fin) | |
16 | simpr 485 | . . . . . . . 8 ⊢ ((𝑋 ∈ Fin ∧ 𝑥:𝑌–onto→𝑋) → 𝑥:𝑌–onto→𝑋) | |
17 | fodomfi2 9816 | . . . . . . . 8 ⊢ ((𝑌 ∈ V ∧ 𝑋 ∈ Fin ∧ 𝑥:𝑌–onto→𝑋) → 𝑋 ≼ 𝑌) | |
18 | 14, 15, 16, 17 | syl3anc 1370 | . . . . . . 7 ⊢ ((𝑋 ∈ Fin ∧ 𝑥:𝑌–onto→𝑋) → 𝑋 ≼ 𝑌) |
19 | 18 | ex 413 | . . . . . 6 ⊢ (𝑋 ∈ Fin → (𝑥:𝑌–onto→𝑋 → 𝑋 ≼ 𝑌)) |
20 | 19 | adantr 481 | . . . . 5 ⊢ ((𝑋 ∈ Fin ∧ 𝑋 ≠ ∅) → (𝑥:𝑌–onto→𝑋 → 𝑋 ≼ 𝑌)) |
21 | 20 | exlimdv 1936 | . . . 4 ⊢ ((𝑋 ∈ Fin ∧ 𝑋 ≠ ∅) → (∃𝑥 𝑥:𝑌–onto→𝑋 → 𝑋 ≼ 𝑌)) |
22 | 9, 21 | sylbid 239 | . . 3 ⊢ ((𝑋 ∈ Fin ∧ 𝑋 ≠ ∅) → (𝑋 ≼* 𝑌 → 𝑋 ≼ 𝑌)) |
23 | 7, 22 | pm2.61dane 3032 | . 2 ⊢ (𝑋 ∈ Fin → (𝑋 ≼* 𝑌 → 𝑋 ≼ 𝑌)) |
24 | domwdom 9333 | . 2 ⊢ (𝑋 ≼ 𝑌 → 𝑋 ≼* 𝑌) | |
25 | 23, 24 | impbid1 224 | 1 ⊢ (𝑋 ∈ Fin → (𝑋 ≼* 𝑌 ↔ 𝑋 ≼ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 ∅c0 4256 class class class wbr 5074 ⟶wf 6429 –onto→wfo 6431 ≼ cdom 8731 Fincfn 8733 ≼* cwdom 9323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-wdom 9324 df-card 9697 df-acn 9700 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |