MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdisj Structured version   Visualization version   GIF version

Theorem resdisj 6142
Description: A double restriction to disjoint classes is the empty set. (Contributed by NM, 7-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
resdisj ((𝐴𝐵) = ∅ → ((𝐶𝐴) ↾ 𝐵) = ∅)

Proof of Theorem resdisj
StepHypRef Expression
1 reseq2 5945 . 2 ((𝐴𝐵) = ∅ → (𝐶 ↾ (𝐴𝐵)) = (𝐶 ↾ ∅))
2 resres 5963 . 2 ((𝐶𝐴) ↾ 𝐵) = (𝐶 ↾ (𝐴𝐵))
3 res0 5954 . . 3 (𝐶 ↾ ∅) = ∅
43eqcomi 2738 . 2 ∅ = (𝐶 ↾ ∅)
51, 2, 43eqtr4g 2789 1 ((𝐴𝐵) = ∅ → ((𝐶𝐴) ↾ 𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cin 3913  c0 4296  cres 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-opab 5170  df-xp 5644  df-rel 5645  df-res 5650
This theorem is referenced by:  fvsnun1  7156
  Copyright terms: Public domain W3C validator