![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resdisj | Structured version Visualization version GIF version |
Description: A double restriction to disjoint classes is the empty set. (Contributed by NM, 7-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
resdisj | ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐶 ↾ 𝐴) ↾ 𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseq2 6004 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐶 ↾ (𝐴 ∩ 𝐵)) = (𝐶 ↾ ∅)) | |
2 | resres 6022 | . 2 ⊢ ((𝐶 ↾ 𝐴) ↾ 𝐵) = (𝐶 ↾ (𝐴 ∩ 𝐵)) | |
3 | res0 6013 | . . 3 ⊢ (𝐶 ↾ ∅) = ∅ | |
4 | 3 | eqcomi 2749 | . 2 ⊢ ∅ = (𝐶 ↾ ∅) |
5 | 1, 2, 4 | 3eqtr4g 2805 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐶 ↾ 𝐴) ↾ 𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∩ cin 3975 ∅c0 4352 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5229 df-xp 5706 df-rel 5707 df-res 5712 |
This theorem is referenced by: fvsnun1 7216 |
Copyright terms: Public domain | W3C validator |