MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resres Structured version   Visualization version   GIF version

Theorem resres 5966
Description: The restriction of a restriction. (Contributed by NM, 27-Mar-2008.)
Assertion
Ref Expression
resres ((𝐴𝐵) ↾ 𝐶) = (𝐴 ↾ (𝐵𝐶))

Proof of Theorem resres
StepHypRef Expression
1 df-res 5653 . 2 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐵) ∩ (𝐶 × V))
2 df-res 5653 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
32ineq1i 4182 . 2 ((𝐴𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐵 × V)) ∩ (𝐶 × V))
4 xpindir 5801 . . . 4 ((𝐵𝐶) × V) = ((𝐵 × V) ∩ (𝐶 × V))
54ineq2i 4183 . . 3 (𝐴 ∩ ((𝐵𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (𝐶 × V)))
6 df-res 5653 . . 3 (𝐴 ↾ (𝐵𝐶)) = (𝐴 ∩ ((𝐵𝐶) × V))
7 inass 4194 . . 3 ((𝐴 ∩ (𝐵 × V)) ∩ (𝐶 × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (𝐶 × V)))
85, 6, 73eqtr4ri 2764 . 2 ((𝐴 ∩ (𝐵 × V)) ∩ (𝐶 × V)) = (𝐴 ↾ (𝐵𝐶))
91, 3, 83eqtri 2757 1 ((𝐴𝐵) ↾ 𝐶) = (𝐴 ↾ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3450  cin 3916   × cxp 5639  cres 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-opab 5173  df-xp 5647  df-rel 5648  df-res 5653
This theorem is referenced by:  rescom  5976  resabs1  5980  resima2  5990  resmpt3  6012  resdisj  6145  rescnvcnv  6180  fresin  6732  resdif  6824  curry1  8086  curry2  8089  frrlem4  8271  pmresg  8846  gruima  10762  rlimres  15531  lo1res  15532  rlimresb  15538  lo1eq  15541  rlimeq  15542  fsets  17146  setsid  17184  sscres  17792  gsumzres  19846  txkgen  23546  tsmsres  24038  ressxms  24420  ressms  24421  dvres  25819  dvres3a  25822  cpnres  25846  dvmptres3  25867  rlimcnp2  26883  df1stres  32634  df2ndres  32635  indf1ofs  32796  dfrcl2  43670  relexpaddss  43714  limsupresuz  45708  liminfresuz  45789  fouriersw  46236  fouriercn  46237  tposresg  48870  tposres3  48873
  Copyright terms: Public domain W3C validator