| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resres | Structured version Visualization version GIF version | ||
| Description: The restriction of a restriction. (Contributed by NM, 27-Mar-2008.) |
| Ref | Expression |
|---|---|
| resres | ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5635 | . 2 ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐵) ∩ (𝐶 × V)) | |
| 2 | df-res 5635 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 3 | 2 | ineq1i 4169 | . 2 ⊢ ((𝐴 ↾ 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐵 × V)) ∩ (𝐶 × V)) |
| 4 | xpindir 5781 | . . . 4 ⊢ ((𝐵 ∩ 𝐶) × V) = ((𝐵 × V) ∩ (𝐶 × V)) | |
| 5 | 4 | ineq2i 4170 | . . 3 ⊢ (𝐴 ∩ ((𝐵 ∩ 𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (𝐶 × V))) |
| 6 | df-res 5635 | . . 3 ⊢ (𝐴 ↾ (𝐵 ∩ 𝐶)) = (𝐴 ∩ ((𝐵 ∩ 𝐶) × V)) | |
| 7 | inass 4181 | . . 3 ⊢ ((𝐴 ∩ (𝐵 × V)) ∩ (𝐶 × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (𝐶 × V))) | |
| 8 | 5, 6, 7 | 3eqtr4ri 2763 | . 2 ⊢ ((𝐴 ∩ (𝐵 × V)) ∩ (𝐶 × V)) = (𝐴 ↾ (𝐵 ∩ 𝐶)) |
| 9 | 1, 3, 8 | 3eqtri 2756 | 1 ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3438 ∩ cin 3904 × cxp 5621 ↾ cres 5625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-opab 5158 df-xp 5629 df-rel 5630 df-res 5635 |
| This theorem is referenced by: rescom 5957 resabs1 5961 resima2 5971 resmpt3 5993 resdisj 6122 rescnvcnv 6157 fresin 6697 resdif 6789 curry1 8044 curry2 8047 frrlem4 8229 pmresg 8804 gruima 10715 rlimres 15484 lo1res 15485 rlimresb 15491 lo1eq 15494 rlimeq 15495 fsets 17099 setsid 17137 sscres 17749 gsumzres 19807 txkgen 23556 tsmsres 24048 ressxms 24430 ressms 24431 dvres 25829 dvres3a 25832 cpnres 25856 dvmptres3 25877 rlimcnp2 26893 df1stres 32665 df2ndres 32666 indf1ofs 32828 dfrcl2 43667 relexpaddss 43711 limsupresuz 45704 liminfresuz 45785 fouriersw 46232 fouriercn 46233 tposresg 48882 tposres3 48885 |
| Copyright terms: Public domain | W3C validator |