| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resres | Structured version Visualization version GIF version | ||
| Description: The restriction of a restriction. (Contributed by NM, 27-Mar-2008.) |
| Ref | Expression |
|---|---|
| resres | ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5643 | . 2 ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐵) ∩ (𝐶 × V)) | |
| 2 | df-res 5643 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 3 | 2 | ineq1i 4175 | . 2 ⊢ ((𝐴 ↾ 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐵 × V)) ∩ (𝐶 × V)) |
| 4 | xpindir 5788 | . . . 4 ⊢ ((𝐵 ∩ 𝐶) × V) = ((𝐵 × V) ∩ (𝐶 × V)) | |
| 5 | 4 | ineq2i 4176 | . . 3 ⊢ (𝐴 ∩ ((𝐵 ∩ 𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (𝐶 × V))) |
| 6 | df-res 5643 | . . 3 ⊢ (𝐴 ↾ (𝐵 ∩ 𝐶)) = (𝐴 ∩ ((𝐵 ∩ 𝐶) × V)) | |
| 7 | inass 4187 | . . 3 ⊢ ((𝐴 ∩ (𝐵 × V)) ∩ (𝐶 × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (𝐶 × V))) | |
| 8 | 5, 6, 7 | 3eqtr4ri 2763 | . 2 ⊢ ((𝐴 ∩ (𝐵 × V)) ∩ (𝐶 × V)) = (𝐴 ↾ (𝐵 ∩ 𝐶)) |
| 9 | 1, 3, 8 | 3eqtri 2756 | 1 ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3444 ∩ cin 3910 × cxp 5629 ↾ cres 5633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-opab 5165 df-xp 5637 df-rel 5638 df-res 5643 |
| This theorem is referenced by: rescom 5962 resabs1 5966 resima2 5976 resmpt3 5998 resdisj 6130 rescnvcnv 6165 fresin 6711 resdif 6803 curry1 8060 curry2 8063 frrlem4 8245 pmresg 8820 gruima 10731 rlimres 15500 lo1res 15501 rlimresb 15507 lo1eq 15510 rlimeq 15511 fsets 17115 setsid 17153 sscres 17761 gsumzres 19815 txkgen 23515 tsmsres 24007 ressxms 24389 ressms 24390 dvres 25788 dvres3a 25791 cpnres 25815 dvmptres3 25836 rlimcnp2 26852 df1stres 32600 df2ndres 32601 indf1ofs 32762 dfrcl2 43636 relexpaddss 43680 limsupresuz 45674 liminfresuz 45755 fouriersw 46202 fouriercn 46203 tposresg 48839 tposres3 48842 |
| Copyright terms: Public domain | W3C validator |