MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resres Structured version   Visualization version   GIF version

Theorem resres 5659
Description: The restriction of a restriction. (Contributed by NM, 27-Mar-2008.)
Assertion
Ref Expression
resres ((𝐴𝐵) ↾ 𝐶) = (𝐴 ↾ (𝐵𝐶))

Proof of Theorem resres
StepHypRef Expression
1 df-res 5367 . 2 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐵) ∩ (𝐶 × V))
2 df-res 5367 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
32ineq1i 4033 . 2 ((𝐴𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐵 × V)) ∩ (𝐶 × V))
4 xpindir 5502 . . . 4 ((𝐵𝐶) × V) = ((𝐵 × V) ∩ (𝐶 × V))
54ineq2i 4034 . . 3 (𝐴 ∩ ((𝐵𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (𝐶 × V)))
6 df-res 5367 . . 3 (𝐴 ↾ (𝐵𝐶)) = (𝐴 ∩ ((𝐵𝐶) × V))
7 inass 4044 . . 3 ((𝐴 ∩ (𝐵 × V)) ∩ (𝐶 × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (𝐶 × V)))
85, 6, 73eqtr4ri 2813 . 2 ((𝐴 ∩ (𝐵 × V)) ∩ (𝐶 × V)) = (𝐴 ↾ (𝐵𝐶))
91, 3, 83eqtri 2806 1 ((𝐴𝐵) ↾ 𝐶) = (𝐴 ↾ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1601  Vcvv 3398  cin 3791   × cxp 5353  cres 5357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-opab 4949  df-xp 5361  df-rel 5362  df-res 5367
This theorem is referenced by:  rescom  5672  resabs1  5676  resima2  5681  resmpt3  5700  resdisj  5817  rescnvcnv  5851  fresin  6323  resdif  6411  curry1  7550  curry2  7553  wfrlem4  7700  wfrlem4OLD  7701  pmresg  8168  gruima  9959  rlimres  14697  lo1res  14698  rlimresb  14704  lo1eq  14707  rlimeq  14708  fsets  16288  setsid  16310  sscres  16868  gsumzres  18696  txkgen  21864  tsmsres  22355  ressxms  22738  ressms  22739  dvres  24112  dvres3a  24115  cpnres  24137  dvmptres3  24156  rlimcnp2  25145  df1stres  30047  df2ndres  30048  indf1ofs  30686  frrlem4  32372  dfrcl2  38927  relexpaddss  38971  limsupresuz  40847  liminfresuz  40928  fouriersw  41379  fouriercn  41380
  Copyright terms: Public domain W3C validator