![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resres | Structured version Visualization version GIF version |
Description: The restriction of a restriction. (Contributed by NM, 27-Mar-2008.) |
Ref | Expression |
---|---|
resres | ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5694 | . 2 ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐵) ∩ (𝐶 × V)) | |
2 | df-res 5694 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
3 | 2 | ineq1i 4210 | . 2 ⊢ ((𝐴 ↾ 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐵 × V)) ∩ (𝐶 × V)) |
4 | xpindir 5841 | . . . 4 ⊢ ((𝐵 ∩ 𝐶) × V) = ((𝐵 × V) ∩ (𝐶 × V)) | |
5 | 4 | ineq2i 4211 | . . 3 ⊢ (𝐴 ∩ ((𝐵 ∩ 𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (𝐶 × V))) |
6 | df-res 5694 | . . 3 ⊢ (𝐴 ↾ (𝐵 ∩ 𝐶)) = (𝐴 ∩ ((𝐵 ∩ 𝐶) × V)) | |
7 | inass 4222 | . . 3 ⊢ ((𝐴 ∩ (𝐵 × V)) ∩ (𝐶 × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (𝐶 × V))) | |
8 | 5, 6, 7 | 3eqtr4ri 2767 | . 2 ⊢ ((𝐴 ∩ (𝐵 × V)) ∩ (𝐶 × V)) = (𝐴 ↾ (𝐵 ∩ 𝐶)) |
9 | 1, 3, 8 | 3eqtri 2760 | 1 ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 Vcvv 3473 ∩ cin 3948 × cxp 5680 ↾ cres 5684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-opab 5215 df-xp 5688 df-rel 5689 df-res 5694 |
This theorem is referenced by: rescom 6012 resabs1 6016 resima2 6025 resmpt3 6047 resdisj 6178 rescnvcnv 6213 fresin 6771 resdif 6865 curry1 8115 curry2 8118 frrlem4 8301 wfrlem4OLD 8339 pmresg 8895 gruima 10833 rlimres 15542 lo1res 15543 rlimresb 15549 lo1eq 15552 rlimeq 15553 fsets 17145 setsid 17184 sscres 17813 gsumzres 19871 txkgen 23576 tsmsres 24068 ressxms 24454 ressms 24455 dvres 25860 dvres3a 25863 cpnres 25887 dvmptres3 25908 rlimcnp2 26918 df1stres 32504 df2ndres 32505 indf1ofs 33678 dfrcl2 43135 relexpaddss 43179 limsupresuz 45120 liminfresuz 45201 fouriersw 45648 fouriercn 45649 |
Copyright terms: Public domain | W3C validator |