MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resres Structured version   Visualization version   GIF version

Theorem resres 6013
Description: The restriction of a restriction. (Contributed by NM, 27-Mar-2008.)
Assertion
Ref Expression
resres ((𝐴𝐵) ↾ 𝐶) = (𝐴 ↾ (𝐵𝐶))

Proof of Theorem resres
StepHypRef Expression
1 df-res 5701 . 2 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐵) ∩ (𝐶 × V))
2 df-res 5701 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
32ineq1i 4224 . 2 ((𝐴𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐵 × V)) ∩ (𝐶 × V))
4 xpindir 5848 . . . 4 ((𝐵𝐶) × V) = ((𝐵 × V) ∩ (𝐶 × V))
54ineq2i 4225 . . 3 (𝐴 ∩ ((𝐵𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (𝐶 × V)))
6 df-res 5701 . . 3 (𝐴 ↾ (𝐵𝐶)) = (𝐴 ∩ ((𝐵𝐶) × V))
7 inass 4236 . . 3 ((𝐴 ∩ (𝐵 × V)) ∩ (𝐶 × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (𝐶 × V)))
85, 6, 73eqtr4ri 2774 . 2 ((𝐴 ∩ (𝐵 × V)) ∩ (𝐶 × V)) = (𝐴 ↾ (𝐵𝐶))
91, 3, 83eqtri 2767 1 ((𝐴𝐵) ↾ 𝐶) = (𝐴 ↾ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  Vcvv 3478  cin 3962   × cxp 5687  cres 5691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-opab 5211  df-xp 5695  df-rel 5696  df-res 5701
This theorem is referenced by:  rescom  6023  resabs1  6027  resima2  6036  resmpt3  6058  resdisj  6191  rescnvcnv  6226  fresin  6778  resdif  6870  curry1  8128  curry2  8131  frrlem4  8313  wfrlem4OLD  8351  pmresg  8909  gruima  10840  rlimres  15591  lo1res  15592  rlimresb  15598  lo1eq  15601  rlimeq  15602  fsets  17203  setsid  17242  sscres  17871  gsumzres  19942  txkgen  23676  tsmsres  24168  ressxms  24554  ressms  24555  dvres  25961  dvres3a  25964  cpnres  25988  dvmptres3  26009  rlimcnp2  27024  df1stres  32719  df2ndres  32720  indf1ofs  34007  dfrcl2  43664  relexpaddss  43708  limsupresuz  45659  liminfresuz  45740  fouriersw  46187  fouriercn  46188
  Copyright terms: Public domain W3C validator