| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resres | Structured version Visualization version GIF version | ||
| Description: The restriction of a restriction. (Contributed by NM, 27-Mar-2008.) |
| Ref | Expression |
|---|---|
| resres | ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5633 | . 2 ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐵) ∩ (𝐶 × V)) | |
| 2 | df-res 5633 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 3 | 2 | ineq1i 4165 | . 2 ⊢ ((𝐴 ↾ 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐵 × V)) ∩ (𝐶 × V)) |
| 4 | xpindir 5780 | . . . 4 ⊢ ((𝐵 ∩ 𝐶) × V) = ((𝐵 × V) ∩ (𝐶 × V)) | |
| 5 | 4 | ineq2i 4166 | . . 3 ⊢ (𝐴 ∩ ((𝐵 ∩ 𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (𝐶 × V))) |
| 6 | df-res 5633 | . . 3 ⊢ (𝐴 ↾ (𝐵 ∩ 𝐶)) = (𝐴 ∩ ((𝐵 ∩ 𝐶) × V)) | |
| 7 | inass 4177 | . . 3 ⊢ ((𝐴 ∩ (𝐵 × V)) ∩ (𝐶 × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (𝐶 × V))) | |
| 8 | 5, 6, 7 | 3eqtr4ri 2767 | . 2 ⊢ ((𝐴 ∩ (𝐵 × V)) ∩ (𝐶 × V)) = (𝐴 ↾ (𝐵 ∩ 𝐶)) |
| 9 | 1, 3, 8 | 3eqtri 2760 | 1 ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3437 ∩ cin 3897 × cxp 5619 ↾ cres 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-opab 5158 df-xp 5627 df-rel 5628 df-res 5633 |
| This theorem is referenced by: rescom 5958 resabs1 5962 resima2 5972 resmpt3 5994 resdisj 6124 rescnvcnv 6159 fresin 6700 resdif 6792 curry1 8043 curry2 8046 frrlem4 8228 pmresg 8804 gruima 10704 rlimres 15472 lo1res 15473 rlimresb 15479 lo1eq 15482 rlimeq 15483 fsets 17087 setsid 17125 sscres 17738 gsumzres 19829 txkgen 23587 tsmsres 24079 ressxms 24460 ressms 24461 dvres 25859 dvres3a 25862 cpnres 25886 dvmptres3 25907 rlimcnp2 26923 df1stres 32709 df2ndres 32710 indf1ofs 32876 dfrcl2 43831 relexpaddss 43875 limsupresuz 45863 liminfresuz 45944 fouriersw 46391 fouriercn 46392 tposresg 49039 tposres3 49042 |
| Copyright terms: Public domain | W3C validator |