MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resres Structured version   Visualization version   GIF version

Theorem resres 6010
Description: The restriction of a restriction. (Contributed by NM, 27-Mar-2008.)
Assertion
Ref Expression
resres ((𝐴𝐵) ↾ 𝐶) = (𝐴 ↾ (𝐵𝐶))

Proof of Theorem resres
StepHypRef Expression
1 df-res 5697 . 2 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐵) ∩ (𝐶 × V))
2 df-res 5697 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
32ineq1i 4216 . 2 ((𝐴𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐵 × V)) ∩ (𝐶 × V))
4 xpindir 5845 . . . 4 ((𝐵𝐶) × V) = ((𝐵 × V) ∩ (𝐶 × V))
54ineq2i 4217 . . 3 (𝐴 ∩ ((𝐵𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (𝐶 × V)))
6 df-res 5697 . . 3 (𝐴 ↾ (𝐵𝐶)) = (𝐴 ∩ ((𝐵𝐶) × V))
7 inass 4228 . . 3 ((𝐴 ∩ (𝐵 × V)) ∩ (𝐶 × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (𝐶 × V)))
85, 6, 73eqtr4ri 2776 . 2 ((𝐴 ∩ (𝐵 × V)) ∩ (𝐶 × V)) = (𝐴 ↾ (𝐵𝐶))
91, 3, 83eqtri 2769 1 ((𝐴𝐵) ↾ 𝐶) = (𝐴 ↾ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3480  cin 3950   × cxp 5683  cres 5687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-opab 5206  df-xp 5691  df-rel 5692  df-res 5697
This theorem is referenced by:  rescom  6020  resabs1  6024  resima2  6034  resmpt3  6056  resdisj  6189  rescnvcnv  6224  fresin  6777  resdif  6869  curry1  8129  curry2  8132  frrlem4  8314  wfrlem4OLD  8352  pmresg  8910  gruima  10842  rlimres  15594  lo1res  15595  rlimresb  15601  lo1eq  15604  rlimeq  15605  fsets  17206  setsid  17244  sscres  17867  gsumzres  19927  txkgen  23660  tsmsres  24152  ressxms  24538  ressms  24539  dvres  25946  dvres3a  25949  cpnres  25973  dvmptres3  25994  rlimcnp2  27009  df1stres  32713  df2ndres  32714  indf1ofs  32851  dfrcl2  43687  relexpaddss  43731  limsupresuz  45718  liminfresuz  45799  fouriersw  46246  fouriercn  46247  tposresg  48778  tposres3  48781
  Copyright terms: Public domain W3C validator