Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvsnun1 | Structured version Visualization version GIF version |
Description: The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 7052. (Contributed by NM, 23-Sep-2007.) Put in deduction form. (Revised by BJ, 25-Feb-2023.) |
Ref | Expression |
---|---|
fvsnun.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
fvsnun.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
fvsnun.3 | ⊢ 𝐺 = ({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) |
Ref | Expression |
---|---|
fvsnun1 | ⊢ (𝜑 → (𝐺‘𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvsnun.3 | . . . . 5 ⊢ 𝐺 = ({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) | |
2 | 1 | reseq1i 5886 | . . . 4 ⊢ (𝐺 ↾ {𝐴}) = (({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴}) |
3 | resundir 5905 | . . . . 5 ⊢ (({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴}) = (({〈𝐴, 𝐵〉} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴})) | |
4 | disjdifr 4412 | . . . . . . . 8 ⊢ ((𝐶 ∖ {𝐴}) ∩ {𝐴}) = ∅ | |
5 | resdisj 6071 | . . . . . . . 8 ⊢ (((𝐶 ∖ {𝐴}) ∩ {𝐴}) = ∅ → ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴}) = ∅) | |
6 | 4, 5 | ax-mp 5 | . . . . . . 7 ⊢ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴}) = ∅ |
7 | 6 | uneq2i 4099 | . . . . . 6 ⊢ (({〈𝐴, 𝐵〉} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴})) = (({〈𝐴, 𝐵〉} ↾ {𝐴}) ∪ ∅) |
8 | un0 4330 | . . . . . 6 ⊢ (({〈𝐴, 𝐵〉} ↾ {𝐴}) ∪ ∅) = ({〈𝐴, 𝐵〉} ↾ {𝐴}) | |
9 | 7, 8 | eqtri 2768 | . . . . 5 ⊢ (({〈𝐴, 𝐵〉} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴})) = ({〈𝐴, 𝐵〉} ↾ {𝐴}) |
10 | 3, 9 | eqtri 2768 | . . . 4 ⊢ (({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴}) = ({〈𝐴, 𝐵〉} ↾ {𝐴}) |
11 | 2, 10 | eqtri 2768 | . . 3 ⊢ (𝐺 ↾ {𝐴}) = ({〈𝐴, 𝐵〉} ↾ {𝐴}) |
12 | 11 | fveq1i 6772 | . 2 ⊢ ((𝐺 ↾ {𝐴})‘𝐴) = (({〈𝐴, 𝐵〉} ↾ {𝐴})‘𝐴) |
13 | fvsnun.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
14 | snidg 4601 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ∈ {𝐴}) |
16 | 15 | fvresd 6791 | . 2 ⊢ (𝜑 → ((𝐺 ↾ {𝐴})‘𝐴) = (𝐺‘𝐴)) |
17 | 15 | fvresd 6791 | . . 3 ⊢ (𝜑 → (({〈𝐴, 𝐵〉} ↾ {𝐴})‘𝐴) = ({〈𝐴, 𝐵〉}‘𝐴)) |
18 | fvsnun.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
19 | fvsng 7049 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) | |
20 | 13, 18, 19 | syl2anc 584 | . . 3 ⊢ (𝜑 → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) |
21 | 17, 20 | eqtrd 2780 | . 2 ⊢ (𝜑 → (({〈𝐴, 𝐵〉} ↾ {𝐴})‘𝐴) = 𝐵) |
22 | 12, 16, 21 | 3eqtr3a 2804 | 1 ⊢ (𝜑 → (𝐺‘𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ∖ cdif 3889 ∪ cun 3890 ∩ cin 3891 ∅c0 4262 {csn 4567 〈cop 4573 ↾ cres 5592 ‘cfv 6432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-res 5602 df-iota 6390 df-fun 6434 df-fv 6440 |
This theorem is referenced by: fac0 14001 ruclem4 15954 satfv1lem 33333 |
Copyright terms: Public domain | W3C validator |