MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvsnun1 Structured version   Visualization version   GIF version

Theorem fvsnun1 7180
Description: The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 7181. (Contributed by NM, 23-Sep-2007.) Put in deduction form. (Revised by BJ, 25-Feb-2023.)
Hypotheses
Ref Expression
fvsnun.1 (𝜑𝐴𝑉)
fvsnun.2 (𝜑𝐵𝑊)
fvsnun.3 𝐺 = ({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴})))
Assertion
Ref Expression
fvsnun1 (𝜑 → (𝐺𝐴) = 𝐵)

Proof of Theorem fvsnun1
StepHypRef Expression
1 fvsnun.3 . . . . 5 𝐺 = ({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴})))
21reseq1i 5978 . . . 4 (𝐺 ↾ {𝐴}) = (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴})
3 resundir 5997 . . . . 5 (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴}) = (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴}))
4 disjdifr 4473 . . . . . . . 8 ((𝐶 ∖ {𝐴}) ∩ {𝐴}) = ∅
5 resdisj 6169 . . . . . . . 8 (((𝐶 ∖ {𝐴}) ∩ {𝐴}) = ∅ → ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴}) = ∅)
64, 5ax-mp 5 . . . . . . 7 ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴}) = ∅
76uneq2i 4161 . . . . . 6 (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴})) = (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ∅)
8 un0 4391 . . . . . 6 (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ∅) = ({⟨𝐴, 𝐵⟩} ↾ {𝐴})
97, 8eqtri 2761 . . . . 5 (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴})) = ({⟨𝐴, 𝐵⟩} ↾ {𝐴})
103, 9eqtri 2761 . . . 4 (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴}) = ({⟨𝐴, 𝐵⟩} ↾ {𝐴})
112, 10eqtri 2761 . . 3 (𝐺 ↾ {𝐴}) = ({⟨𝐴, 𝐵⟩} ↾ {𝐴})
1211fveq1i 6893 . 2 ((𝐺 ↾ {𝐴})‘𝐴) = (({⟨𝐴, 𝐵⟩} ↾ {𝐴})‘𝐴)
13 fvsnun.1 . . . 4 (𝜑𝐴𝑉)
14 snidg 4663 . . . 4 (𝐴𝑉𝐴 ∈ {𝐴})
1513, 14syl 17 . . 3 (𝜑𝐴 ∈ {𝐴})
1615fvresd 6912 . 2 (𝜑 → ((𝐺 ↾ {𝐴})‘𝐴) = (𝐺𝐴))
1715fvresd 6912 . . 3 (𝜑 → (({⟨𝐴, 𝐵⟩} ↾ {𝐴})‘𝐴) = ({⟨𝐴, 𝐵⟩}‘𝐴))
18 fvsnun.2 . . . 4 (𝜑𝐵𝑊)
19 fvsng 7178 . . . 4 ((𝐴𝑉𝐵𝑊) → ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵)
2013, 18, 19syl2anc 585 . . 3 (𝜑 → ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵)
2117, 20eqtrd 2773 . 2 (𝜑 → (({⟨𝐴, 𝐵⟩} ↾ {𝐴})‘𝐴) = 𝐵)
2212, 16, 213eqtr3a 2797 1 (𝜑 → (𝐺𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  cdif 3946  cun 3947  cin 3948  c0 4323  {csn 4629  cop 4635  cres 5679  cfv 6544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-res 5689  df-iota 6496  df-fun 6546  df-fv 6552
This theorem is referenced by:  fac0  14236  ruclem4  16177  satfv1lem  34353
  Copyright terms: Public domain W3C validator