MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvsnun1 Structured version   Visualization version   GIF version

Theorem fvsnun1 6936
Description: The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 6937. (Contributed by NM, 23-Sep-2007.) Put in deduction form. (Revised by BJ, 25-Feb-2023.)
Hypotheses
Ref Expression
fvsnun.1 (𝜑𝐴𝑉)
fvsnun.2 (𝜑𝐵𝑊)
fvsnun.3 𝐺 = ({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴})))
Assertion
Ref Expression
fvsnun1 (𝜑 → (𝐺𝐴) = 𝐵)

Proof of Theorem fvsnun1
StepHypRef Expression
1 fvsnun.3 . . . . 5 𝐺 = ({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴})))
21reseq1i 5842 . . . 4 (𝐺 ↾ {𝐴}) = (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴})
3 resundir 5861 . . . . 5 (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴}) = (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴}))
4 incom 4175 . . . . . . . . 9 ((𝐶 ∖ {𝐴}) ∩ {𝐴}) = ({𝐴} ∩ (𝐶 ∖ {𝐴}))
5 disjdif 4417 . . . . . . . . 9 ({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅
64, 5eqtri 2841 . . . . . . . 8 ((𝐶 ∖ {𝐴}) ∩ {𝐴}) = ∅
7 resdisj 6019 . . . . . . . 8 (((𝐶 ∖ {𝐴}) ∩ {𝐴}) = ∅ → ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴}) = ∅)
86, 7ax-mp 5 . . . . . . 7 ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴}) = ∅
98uneq2i 4133 . . . . . 6 (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴})) = (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ∅)
10 un0 4341 . . . . . 6 (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ∅) = ({⟨𝐴, 𝐵⟩} ↾ {𝐴})
119, 10eqtri 2841 . . . . 5 (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴})) = ({⟨𝐴, 𝐵⟩} ↾ {𝐴})
123, 11eqtri 2841 . . . 4 (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴}) = ({⟨𝐴, 𝐵⟩} ↾ {𝐴})
132, 12eqtri 2841 . . 3 (𝐺 ↾ {𝐴}) = ({⟨𝐴, 𝐵⟩} ↾ {𝐴})
1413fveq1i 6664 . 2 ((𝐺 ↾ {𝐴})‘𝐴) = (({⟨𝐴, 𝐵⟩} ↾ {𝐴})‘𝐴)
15 fvsnun.1 . . . 4 (𝜑𝐴𝑉)
16 snidg 4589 . . . 4 (𝐴𝑉𝐴 ∈ {𝐴})
1715, 16syl 17 . . 3 (𝜑𝐴 ∈ {𝐴})
1817fvresd 6683 . 2 (𝜑 → ((𝐺 ↾ {𝐴})‘𝐴) = (𝐺𝐴))
1917fvresd 6683 . . 3 (𝜑 → (({⟨𝐴, 𝐵⟩} ↾ {𝐴})‘𝐴) = ({⟨𝐴, 𝐵⟩}‘𝐴))
20 fvsnun.2 . . . 4 (𝜑𝐵𝑊)
21 fvsng 6934 . . . 4 ((𝐴𝑉𝐵𝑊) → ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵)
2215, 20, 21syl2anc 584 . . 3 (𝜑 → ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵)
2319, 22eqtrd 2853 . 2 (𝜑 → (({⟨𝐴, 𝐵⟩} ↾ {𝐴})‘𝐴) = 𝐵)
2414, 18, 233eqtr3a 2877 1 (𝜑 → (𝐺𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1528  wcel 2105  cdif 3930  cun 3931  cin 3932  c0 4288  {csn 4557  cop 4563  cres 5550  cfv 6348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-res 5560  df-iota 6307  df-fun 6350  df-fv 6356
This theorem is referenced by:  fac0  13624  ruclem4  15575  satfv1lem  32506
  Copyright terms: Public domain W3C validator