MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvsnun1 Structured version   Visualization version   GIF version

Theorem fvsnun1 7036
Description: The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 7037. (Contributed by NM, 23-Sep-2007.) Put in deduction form. (Revised by BJ, 25-Feb-2023.)
Hypotheses
Ref Expression
fvsnun.1 (𝜑𝐴𝑉)
fvsnun.2 (𝜑𝐵𝑊)
fvsnun.3 𝐺 = ({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴})))
Assertion
Ref Expression
fvsnun1 (𝜑 → (𝐺𝐴) = 𝐵)

Proof of Theorem fvsnun1
StepHypRef Expression
1 fvsnun.3 . . . . 5 𝐺 = ({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴})))
21reseq1i 5876 . . . 4 (𝐺 ↾ {𝐴}) = (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴})
3 resundir 5895 . . . . 5 (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴}) = (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴}))
4 disjdifr 4403 . . . . . . . 8 ((𝐶 ∖ {𝐴}) ∩ {𝐴}) = ∅
5 resdisj 6061 . . . . . . . 8 (((𝐶 ∖ {𝐴}) ∩ {𝐴}) = ∅ → ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴}) = ∅)
64, 5ax-mp 5 . . . . . . 7 ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴}) = ∅
76uneq2i 4090 . . . . . 6 (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴})) = (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ∅)
8 un0 4321 . . . . . 6 (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ∅) = ({⟨𝐴, 𝐵⟩} ↾ {𝐴})
97, 8eqtri 2766 . . . . 5 (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴})) = ({⟨𝐴, 𝐵⟩} ↾ {𝐴})
103, 9eqtri 2766 . . . 4 (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴}) = ({⟨𝐴, 𝐵⟩} ↾ {𝐴})
112, 10eqtri 2766 . . 3 (𝐺 ↾ {𝐴}) = ({⟨𝐴, 𝐵⟩} ↾ {𝐴})
1211fveq1i 6757 . 2 ((𝐺 ↾ {𝐴})‘𝐴) = (({⟨𝐴, 𝐵⟩} ↾ {𝐴})‘𝐴)
13 fvsnun.1 . . . 4 (𝜑𝐴𝑉)
14 snidg 4592 . . . 4 (𝐴𝑉𝐴 ∈ {𝐴})
1513, 14syl 17 . . 3 (𝜑𝐴 ∈ {𝐴})
1615fvresd 6776 . 2 (𝜑 → ((𝐺 ↾ {𝐴})‘𝐴) = (𝐺𝐴))
1715fvresd 6776 . . 3 (𝜑 → (({⟨𝐴, 𝐵⟩} ↾ {𝐴})‘𝐴) = ({⟨𝐴, 𝐵⟩}‘𝐴))
18 fvsnun.2 . . . 4 (𝜑𝐵𝑊)
19 fvsng 7034 . . . 4 ((𝐴𝑉𝐵𝑊) → ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵)
2013, 18, 19syl2anc 583 . . 3 (𝜑 → ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵)
2117, 20eqtrd 2778 . 2 (𝜑 → (({⟨𝐴, 𝐵⟩} ↾ {𝐴})‘𝐴) = 𝐵)
2212, 16, 213eqtr3a 2803 1 (𝜑 → (𝐺𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cdif 3880  cun 3881  cin 3882  c0 4253  {csn 4558  cop 4564  cres 5582  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-res 5592  df-iota 6376  df-fun 6420  df-fv 6426
This theorem is referenced by:  fac0  13918  ruclem4  15871  satfv1lem  33224
  Copyright terms: Public domain W3C validator