Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvsnun1 | Structured version Visualization version GIF version |
Description: The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 7037. (Contributed by NM, 23-Sep-2007.) Put in deduction form. (Revised by BJ, 25-Feb-2023.) |
Ref | Expression |
---|---|
fvsnun.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
fvsnun.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
fvsnun.3 | ⊢ 𝐺 = ({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) |
Ref | Expression |
---|---|
fvsnun1 | ⊢ (𝜑 → (𝐺‘𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvsnun.3 | . . . . 5 ⊢ 𝐺 = ({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) | |
2 | 1 | reseq1i 5876 | . . . 4 ⊢ (𝐺 ↾ {𝐴}) = (({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴}) |
3 | resundir 5895 | . . . . 5 ⊢ (({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴}) = (({〈𝐴, 𝐵〉} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴})) | |
4 | disjdifr 4403 | . . . . . . . 8 ⊢ ((𝐶 ∖ {𝐴}) ∩ {𝐴}) = ∅ | |
5 | resdisj 6061 | . . . . . . . 8 ⊢ (((𝐶 ∖ {𝐴}) ∩ {𝐴}) = ∅ → ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴}) = ∅) | |
6 | 4, 5 | ax-mp 5 | . . . . . . 7 ⊢ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴}) = ∅ |
7 | 6 | uneq2i 4090 | . . . . . 6 ⊢ (({〈𝐴, 𝐵〉} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴})) = (({〈𝐴, 𝐵〉} ↾ {𝐴}) ∪ ∅) |
8 | un0 4321 | . . . . . 6 ⊢ (({〈𝐴, 𝐵〉} ↾ {𝐴}) ∪ ∅) = ({〈𝐴, 𝐵〉} ↾ {𝐴}) | |
9 | 7, 8 | eqtri 2766 | . . . . 5 ⊢ (({〈𝐴, 𝐵〉} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴})) = ({〈𝐴, 𝐵〉} ↾ {𝐴}) |
10 | 3, 9 | eqtri 2766 | . . . 4 ⊢ (({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴}) = ({〈𝐴, 𝐵〉} ↾ {𝐴}) |
11 | 2, 10 | eqtri 2766 | . . 3 ⊢ (𝐺 ↾ {𝐴}) = ({〈𝐴, 𝐵〉} ↾ {𝐴}) |
12 | 11 | fveq1i 6757 | . 2 ⊢ ((𝐺 ↾ {𝐴})‘𝐴) = (({〈𝐴, 𝐵〉} ↾ {𝐴})‘𝐴) |
13 | fvsnun.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
14 | snidg 4592 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ∈ {𝐴}) |
16 | 15 | fvresd 6776 | . 2 ⊢ (𝜑 → ((𝐺 ↾ {𝐴})‘𝐴) = (𝐺‘𝐴)) |
17 | 15 | fvresd 6776 | . . 3 ⊢ (𝜑 → (({〈𝐴, 𝐵〉} ↾ {𝐴})‘𝐴) = ({〈𝐴, 𝐵〉}‘𝐴)) |
18 | fvsnun.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
19 | fvsng 7034 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) | |
20 | 13, 18, 19 | syl2anc 583 | . . 3 ⊢ (𝜑 → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) |
21 | 17, 20 | eqtrd 2778 | . 2 ⊢ (𝜑 → (({〈𝐴, 𝐵〉} ↾ {𝐴})‘𝐴) = 𝐵) |
22 | 12, 16, 21 | 3eqtr3a 2803 | 1 ⊢ (𝜑 → (𝐺‘𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ∪ cun 3881 ∩ cin 3882 ∅c0 4253 {csn 4558 〈cop 4564 ↾ cres 5582 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-res 5592 df-iota 6376 df-fun 6420 df-fv 6426 |
This theorem is referenced by: fac0 13918 ruclem4 15871 satfv1lem 33224 |
Copyright terms: Public domain | W3C validator |