| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvsnun1 | Structured version Visualization version GIF version | ||
| Description: The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 7157. (Contributed by NM, 23-Sep-2007.) Put in deduction form. (Revised by BJ, 25-Feb-2023.) |
| Ref | Expression |
|---|---|
| fvsnun.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| fvsnun.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| fvsnun.3 | ⊢ 𝐺 = ({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) |
| Ref | Expression |
|---|---|
| fvsnun1 | ⊢ (𝜑 → (𝐺‘𝐴) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvsnun.3 | . . . . 5 ⊢ 𝐺 = ({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) | |
| 2 | 1 | reseq1i 5946 | . . . 4 ⊢ (𝐺 ↾ {𝐴}) = (({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴}) |
| 3 | resundir 5965 | . . . . 5 ⊢ (({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴}) = (({〈𝐴, 𝐵〉} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴})) | |
| 4 | disjdifr 4436 | . . . . . . . 8 ⊢ ((𝐶 ∖ {𝐴}) ∩ {𝐴}) = ∅ | |
| 5 | resdisj 6142 | . . . . . . . 8 ⊢ (((𝐶 ∖ {𝐴}) ∩ {𝐴}) = ∅ → ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴}) = ∅) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . . 7 ⊢ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴}) = ∅ |
| 7 | 6 | uneq2i 4128 | . . . . . 6 ⊢ (({〈𝐴, 𝐵〉} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴})) = (({〈𝐴, 𝐵〉} ↾ {𝐴}) ∪ ∅) |
| 8 | un0 4357 | . . . . . 6 ⊢ (({〈𝐴, 𝐵〉} ↾ {𝐴}) ∪ ∅) = ({〈𝐴, 𝐵〉} ↾ {𝐴}) | |
| 9 | 7, 8 | eqtri 2752 | . . . . 5 ⊢ (({〈𝐴, 𝐵〉} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴})) = ({〈𝐴, 𝐵〉} ↾ {𝐴}) |
| 10 | 3, 9 | eqtri 2752 | . . . 4 ⊢ (({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴}) = ({〈𝐴, 𝐵〉} ↾ {𝐴}) |
| 11 | 2, 10 | eqtri 2752 | . . 3 ⊢ (𝐺 ↾ {𝐴}) = ({〈𝐴, 𝐵〉} ↾ {𝐴}) |
| 12 | 11 | fveq1i 6859 | . 2 ⊢ ((𝐺 ↾ {𝐴})‘𝐴) = (({〈𝐴, 𝐵〉} ↾ {𝐴})‘𝐴) |
| 13 | fvsnun.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 14 | snidg 4624 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
| 15 | 13, 14 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ∈ {𝐴}) |
| 16 | 15 | fvresd 6878 | . 2 ⊢ (𝜑 → ((𝐺 ↾ {𝐴})‘𝐴) = (𝐺‘𝐴)) |
| 17 | 15 | fvresd 6878 | . . 3 ⊢ (𝜑 → (({〈𝐴, 𝐵〉} ↾ {𝐴})‘𝐴) = ({〈𝐴, 𝐵〉}‘𝐴)) |
| 18 | fvsnun.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 19 | fvsng 7154 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) | |
| 20 | 13, 18, 19 | syl2anc 584 | . . 3 ⊢ (𝜑 → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) |
| 21 | 17, 20 | eqtrd 2764 | . 2 ⊢ (𝜑 → (({〈𝐴, 𝐵〉} ↾ {𝐴})‘𝐴) = 𝐵) |
| 22 | 12, 16, 21 | 3eqtr3a 2788 | 1 ⊢ (𝜑 → (𝐺‘𝐴) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3911 ∪ cun 3912 ∩ cin 3913 ∅c0 4296 {csn 4589 〈cop 4595 ↾ cres 5640 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-res 5650 df-iota 6464 df-fun 6513 df-fv 6519 |
| This theorem is referenced by: fac0 14241 ruclem4 16202 satfv1lem 35349 |
| Copyright terms: Public domain | W3C validator |