| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvsnun1 | Structured version Visualization version GIF version | ||
| Description: The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 7180. (Contributed by NM, 23-Sep-2007.) Put in deduction form. (Revised by BJ, 25-Feb-2023.) |
| Ref | Expression |
|---|---|
| fvsnun.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| fvsnun.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| fvsnun.3 | ⊢ 𝐺 = ({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) |
| Ref | Expression |
|---|---|
| fvsnun1 | ⊢ (𝜑 → (𝐺‘𝐴) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvsnun.3 | . . . . 5 ⊢ 𝐺 = ({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) | |
| 2 | 1 | reseq1i 5967 | . . . 4 ⊢ (𝐺 ↾ {𝐴}) = (({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴}) |
| 3 | resundir 5986 | . . . . 5 ⊢ (({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴}) = (({〈𝐴, 𝐵〉} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴})) | |
| 4 | disjdifr 4453 | . . . . . . . 8 ⊢ ((𝐶 ∖ {𝐴}) ∩ {𝐴}) = ∅ | |
| 5 | resdisj 6163 | . . . . . . . 8 ⊢ (((𝐶 ∖ {𝐴}) ∩ {𝐴}) = ∅ → ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴}) = ∅) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . . 7 ⊢ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴}) = ∅ |
| 7 | 6 | uneq2i 4145 | . . . . . 6 ⊢ (({〈𝐴, 𝐵〉} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴})) = (({〈𝐴, 𝐵〉} ↾ {𝐴}) ∪ ∅) |
| 8 | un0 4374 | . . . . . 6 ⊢ (({〈𝐴, 𝐵〉} ↾ {𝐴}) ∪ ∅) = ({〈𝐴, 𝐵〉} ↾ {𝐴}) | |
| 9 | 7, 8 | eqtri 2759 | . . . . 5 ⊢ (({〈𝐴, 𝐵〉} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴})) = ({〈𝐴, 𝐵〉} ↾ {𝐴}) |
| 10 | 3, 9 | eqtri 2759 | . . . 4 ⊢ (({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴}) = ({〈𝐴, 𝐵〉} ↾ {𝐴}) |
| 11 | 2, 10 | eqtri 2759 | . . 3 ⊢ (𝐺 ↾ {𝐴}) = ({〈𝐴, 𝐵〉} ↾ {𝐴}) |
| 12 | 11 | fveq1i 6882 | . 2 ⊢ ((𝐺 ↾ {𝐴})‘𝐴) = (({〈𝐴, 𝐵〉} ↾ {𝐴})‘𝐴) |
| 13 | fvsnun.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 14 | snidg 4641 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
| 15 | 13, 14 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ∈ {𝐴}) |
| 16 | 15 | fvresd 6901 | . 2 ⊢ (𝜑 → ((𝐺 ↾ {𝐴})‘𝐴) = (𝐺‘𝐴)) |
| 17 | 15 | fvresd 6901 | . . 3 ⊢ (𝜑 → (({〈𝐴, 𝐵〉} ↾ {𝐴})‘𝐴) = ({〈𝐴, 𝐵〉}‘𝐴)) |
| 18 | fvsnun.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 19 | fvsng 7177 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) | |
| 20 | 13, 18, 19 | syl2anc 584 | . . 3 ⊢ (𝜑 → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) |
| 21 | 17, 20 | eqtrd 2771 | . 2 ⊢ (𝜑 → (({〈𝐴, 𝐵〉} ↾ {𝐴})‘𝐴) = 𝐵) |
| 22 | 12, 16, 21 | 3eqtr3a 2795 | 1 ⊢ (𝜑 → (𝐺‘𝐴) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3928 ∪ cun 3929 ∩ cin 3930 ∅c0 4313 {csn 4606 〈cop 4612 ↾ cres 5661 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-res 5671 df-iota 6489 df-fun 6538 df-fv 6544 |
| This theorem is referenced by: fac0 14299 ruclem4 16257 satfv1lem 35389 |
| Copyright terms: Public domain | W3C validator |