MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnxp Structured version   Visualization version   GIF version

Theorem rnxp 6201
Description: The range of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.)
Assertion
Ref Expression
rnxp (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵)

Proof of Theorem rnxp
StepHypRef Expression
1 df-rn 5711 . . 3 ran (𝐴 × 𝐵) = dom (𝐴 × 𝐵)
2 cnvxp 6188 . . . 4 (𝐴 × 𝐵) = (𝐵 × 𝐴)
32dmeqi 5929 . . 3 dom (𝐴 × 𝐵) = dom (𝐵 × 𝐴)
41, 3eqtri 2768 . 2 ran (𝐴 × 𝐵) = dom (𝐵 × 𝐴)
5 dmxp 5953 . 2 (𝐴 ≠ ∅ → dom (𝐵 × 𝐴) = 𝐵)
64, 5eqtrid 2792 1 (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wne 2946  c0 4352   × cxp 5698  ccnv 5699  dom cdm 5700  ran crn 5701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711
This theorem is referenced by:  rnxpid  6204  ssxpb  6205  xpima  6213  unixp  6313  fconst5  7243  rnmptc  7244  xpexr  7958  xpexr2  7959  fparlem3  8155  fparlem4  8156  frxp  8167  fodomr  9194  fodomfir  9396  djuexb  9978  dfac5lem3  10194  fpwwe2lem12  10711  vdwlem8  17035  ramz  17072  gsumxp  20018  xkoccn  23648  txindislem  23662  cnextf  24095  metustexhalf  24590  ovolctb  25544  axlowdimlem13  28987  axlowdim1  28992  imadifxp  32623  sibf0  34299  ovoliunnfl  37622  voliunnfl  37624
  Copyright terms: Public domain W3C validator