Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnxp | Structured version Visualization version GIF version |
Description: The range of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.) |
Ref | Expression |
---|---|
rnxp | ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 5591 | . . 3 ⊢ ran (𝐴 × 𝐵) = dom ◡(𝐴 × 𝐵) | |
2 | cnvxp 6049 | . . . 4 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
3 | 2 | dmeqi 5802 | . . 3 ⊢ dom ◡(𝐴 × 𝐵) = dom (𝐵 × 𝐴) |
4 | 1, 3 | eqtri 2766 | . 2 ⊢ ran (𝐴 × 𝐵) = dom (𝐵 × 𝐴) |
5 | dmxp 5827 | . 2 ⊢ (𝐴 ≠ ∅ → dom (𝐵 × 𝐴) = 𝐵) | |
6 | 4, 5 | eqtrid 2790 | 1 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ≠ wne 2942 ∅c0 4253 × cxp 5578 ◡ccnv 5579 dom cdm 5580 ran crn 5581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: rnxpid 6065 ssxpb 6066 xpima 6074 unixp 6174 fconst5 7063 rnmptc 7064 xpexr 7739 xpexr2 7740 fparlem3 7925 fparlem4 7926 frxp 7938 fodomr 8864 djuexb 9598 dfac5lem3 9812 fpwwe2lem12 10329 vdwlem8 16617 ramz 16654 gsumxp 19492 xkoccn 22678 txindislem 22692 cnextf 23125 metustexhalf 23618 ovolctb 24559 axlowdimlem13 27225 axlowdim1 27230 imadifxp 30841 sibf0 32201 ovoliunnfl 35746 voliunnfl 35748 |
Copyright terms: Public domain | W3C validator |