| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnxp | Structured version Visualization version GIF version | ||
| Description: The range of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.) |
| Ref | Expression |
|---|---|
| rnxp | ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rn 5649 | . . 3 ⊢ ran (𝐴 × 𝐵) = dom ◡(𝐴 × 𝐵) | |
| 2 | cnvxp 6130 | . . . 4 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
| 3 | 2 | dmeqi 5868 | . . 3 ⊢ dom ◡(𝐴 × 𝐵) = dom (𝐵 × 𝐴) |
| 4 | 1, 3 | eqtri 2752 | . 2 ⊢ ran (𝐴 × 𝐵) = dom (𝐵 × 𝐴) |
| 5 | dmxp 5892 | . 2 ⊢ (𝐴 ≠ ∅ → dom (𝐵 × 𝐴) = 𝐵) | |
| 6 | 4, 5 | eqtrid 2776 | 1 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2925 ∅c0 4296 × cxp 5636 ◡ccnv 5637 dom cdm 5638 ran crn 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 |
| This theorem is referenced by: rnxpid 6146 ssxpb 6147 xpima 6155 unixp 6255 fconst5 7180 rnmptc 7181 xpexr 7894 xpexr2 7895 fparlem3 8093 fparlem4 8094 frxp 8105 fodomr 9092 fodomfir 9279 djuexb 9862 dfac5lem3 10078 fpwwe2lem12 10595 vdwlem8 16959 ramz 16996 gsumxp 19906 xkoccn 23506 txindislem 23520 cnextf 23953 metustexhalf 24444 ovolctb 25391 axlowdimlem13 28881 axlowdim1 28886 imadifxp 32530 sibf0 34325 ovoliunnfl 37656 voliunnfl 37658 dmrnxp 48825 idfudiag1lem 49512 |
| Copyright terms: Public domain | W3C validator |