| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnxp | Structured version Visualization version GIF version | ||
| Description: The range of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.) |
| Ref | Expression |
|---|---|
| rnxp | ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rn 5634 | . . 3 ⊢ ran (𝐴 × 𝐵) = dom ◡(𝐴 × 𝐵) | |
| 2 | cnvxp 6110 | . . . 4 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
| 3 | 2 | dmeqi 5851 | . . 3 ⊢ dom ◡(𝐴 × 𝐵) = dom (𝐵 × 𝐴) |
| 4 | 1, 3 | eqtri 2752 | . 2 ⊢ ran (𝐴 × 𝐵) = dom (𝐵 × 𝐴) |
| 5 | dmxp 5875 | . 2 ⊢ (𝐴 ≠ ∅ → dom (𝐵 × 𝐴) = 𝐵) | |
| 6 | 4, 5 | eqtrid 2776 | 1 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2925 ∅c0 4286 × cxp 5621 ◡ccnv 5622 dom cdm 5623 ran crn 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 df-dm 5633 df-rn 5634 |
| This theorem is referenced by: rnxpid 6126 ssxpb 6127 xpima 6135 unixp 6234 fconst5 7146 rnmptc 7147 xpexr 7858 xpexr2 7859 fparlem3 8054 fparlem4 8055 frxp 8066 fodomr 9052 fodomfir 9237 djuexb 9824 dfac5lem3 10038 fpwwe2lem12 10555 vdwlem8 16918 ramz 16955 gsumxp 19873 xkoccn 23522 txindislem 23536 cnextf 23969 metustexhalf 24460 ovolctb 25407 axlowdimlem13 28917 axlowdim1 28922 imadifxp 32563 sibf0 34301 ovoliunnfl 37641 voliunnfl 37643 dmrnxp 48822 idfudiag1lem 49509 |
| Copyright terms: Public domain | W3C validator |