![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnxp | Structured version Visualization version GIF version |
Description: The range of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.) |
Ref | Expression |
---|---|
rnxp | ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 5683 | . . 3 ⊢ ran (𝐴 × 𝐵) = dom ◡(𝐴 × 𝐵) | |
2 | cnvxp 6155 | . . . 4 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
3 | 2 | dmeqi 5901 | . . 3 ⊢ dom ◡(𝐴 × 𝐵) = dom (𝐵 × 𝐴) |
4 | 1, 3 | eqtri 2755 | . 2 ⊢ ran (𝐴 × 𝐵) = dom (𝐵 × 𝐴) |
5 | dmxp 5925 | . 2 ⊢ (𝐴 ≠ ∅ → dom (𝐵 × 𝐴) = 𝐵) | |
6 | 4, 5 | eqtrid 2779 | 1 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ≠ wne 2935 ∅c0 4318 × cxp 5670 ◡ccnv 5671 dom cdm 5672 ran crn 5673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-xp 5678 df-rel 5679 df-cnv 5680 df-dm 5682 df-rn 5683 |
This theorem is referenced by: rnxpid 6171 ssxpb 6172 xpima 6180 unixp 6280 fconst5 7212 rnmptc 7213 xpexr 7920 xpexr2 7921 fparlem3 8113 fparlem4 8114 frxp 8125 fodomr 9144 djuexb 9924 dfac5lem3 10140 fpwwe2lem12 10657 vdwlem8 16948 ramz 16985 gsumxp 19922 xkoccn 23510 txindislem 23524 cnextf 23957 metustexhalf 24452 ovolctb 25406 axlowdimlem13 28752 axlowdim1 28757 imadifxp 32376 sibf0 33890 ovoliunnfl 37070 voliunnfl 37072 |
Copyright terms: Public domain | W3C validator |