MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnxp Structured version   Visualization version   GIF version

Theorem rnxp 6191
Description: The range of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.)
Assertion
Ref Expression
rnxp (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵)

Proof of Theorem rnxp
StepHypRef Expression
1 df-rn 5699 . . 3 ran (𝐴 × 𝐵) = dom (𝐴 × 𝐵)
2 cnvxp 6178 . . . 4 (𝐴 × 𝐵) = (𝐵 × 𝐴)
32dmeqi 5917 . . 3 dom (𝐴 × 𝐵) = dom (𝐵 × 𝐴)
41, 3eqtri 2762 . 2 ran (𝐴 × 𝐵) = dom (𝐵 × 𝐴)
5 dmxp 5941 . 2 (𝐴 ≠ ∅ → dom (𝐵 × 𝐴) = 𝐵)
64, 5eqtrid 2786 1 (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wne 2937  c0 4338   × cxp 5686  ccnv 5687  dom cdm 5688  ran crn 5689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-11 2154  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5148  df-opab 5210  df-xp 5694  df-rel 5695  df-cnv 5696  df-dm 5698  df-rn 5699
This theorem is referenced by:  rnxpid  6194  ssxpb  6195  xpima  6203  unixp  6303  fconst5  7225  rnmptc  7226  xpexr  7940  xpexr2  7941  fparlem3  8137  fparlem4  8138  frxp  8149  fodomr  9166  fodomfir  9365  djuexb  9946  dfac5lem3  10162  fpwwe2lem12  10679  vdwlem8  17021  ramz  17058  gsumxp  20008  xkoccn  23642  txindislem  23656  cnextf  24089  metustexhalf  24584  ovolctb  25538  axlowdimlem13  28983  axlowdim1  28988  imadifxp  32620  sibf0  34315  ovoliunnfl  37648  voliunnfl  37650
  Copyright terms: Public domain W3C validator