![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnxp | Structured version Visualization version GIF version |
Description: The range of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.) |
Ref | Expression |
---|---|
rnxp | ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 5688 | . . 3 ⊢ ran (𝐴 × 𝐵) = dom ◡(𝐴 × 𝐵) | |
2 | cnvxp 6161 | . . . 4 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
3 | 2 | dmeqi 5906 | . . 3 ⊢ dom ◡(𝐴 × 𝐵) = dom (𝐵 × 𝐴) |
4 | 1, 3 | eqtri 2753 | . 2 ⊢ ran (𝐴 × 𝐵) = dom (𝐵 × 𝐴) |
5 | dmxp 5930 | . 2 ⊢ (𝐴 ≠ ∅ → dom (𝐵 × 𝐴) = 𝐵) | |
6 | 4, 5 | eqtrid 2777 | 1 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ≠ wne 2930 ∅c0 4323 × cxp 5675 ◡ccnv 5676 dom cdm 5677 ran crn 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rab 3420 df-v 3465 df-dif 3948 df-un 3950 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-xp 5683 df-rel 5684 df-cnv 5685 df-dm 5687 df-rn 5688 |
This theorem is referenced by: rnxpid 6177 ssxpb 6178 xpima 6186 unixp 6286 fconst5 7216 rnmptc 7217 xpexr 7924 xpexr2 7925 fparlem3 8117 fparlem4 8118 frxp 8129 fodomr 9151 djuexb 9932 dfac5lem3 10148 fpwwe2lem12 10665 vdwlem8 16956 ramz 16993 gsumxp 19935 xkoccn 23553 txindislem 23567 cnextf 24000 metustexhalf 24495 ovolctb 25449 axlowdimlem13 28821 axlowdim1 28826 imadifxp 32448 sibf0 34024 ovoliunnfl 37205 voliunnfl 37207 |
Copyright terms: Public domain | W3C validator |