Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnxp | Structured version Visualization version GIF version |
Description: The range of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.) |
Ref | Expression |
---|---|
rnxp | ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 5600 | . . 3 ⊢ ran (𝐴 × 𝐵) = dom ◡(𝐴 × 𝐵) | |
2 | cnvxp 6060 | . . . 4 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
3 | 2 | dmeqi 5813 | . . 3 ⊢ dom ◡(𝐴 × 𝐵) = dom (𝐵 × 𝐴) |
4 | 1, 3 | eqtri 2766 | . 2 ⊢ ran (𝐴 × 𝐵) = dom (𝐵 × 𝐴) |
5 | dmxp 5838 | . 2 ⊢ (𝐴 ≠ ∅ → dom (𝐵 × 𝐴) = 𝐵) | |
6 | 4, 5 | eqtrid 2790 | 1 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ≠ wne 2943 ∅c0 4256 × cxp 5587 ◡ccnv 5588 dom cdm 5589 ran crn 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 |
This theorem is referenced by: rnxpid 6076 ssxpb 6077 xpima 6085 unixp 6185 fconst5 7081 rnmptc 7082 xpexr 7765 xpexr2 7766 fparlem3 7954 fparlem4 7955 frxp 7967 fodomr 8915 djuexb 9667 dfac5lem3 9881 fpwwe2lem12 10398 vdwlem8 16689 ramz 16726 gsumxp 19577 xkoccn 22770 txindislem 22784 cnextf 23217 metustexhalf 23712 ovolctb 24654 axlowdimlem13 27322 axlowdim1 27327 imadifxp 30940 sibf0 32301 ovoliunnfl 35819 voliunnfl 35821 |
Copyright terms: Public domain | W3C validator |