| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnxp | Structured version Visualization version GIF version | ||
| Description: The range of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.) |
| Ref | Expression |
|---|---|
| rnxp | ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rn 5627 | . . 3 ⊢ ran (𝐴 × 𝐵) = dom ◡(𝐴 × 𝐵) | |
| 2 | cnvxp 6104 | . . . 4 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
| 3 | 2 | dmeqi 5844 | . . 3 ⊢ dom ◡(𝐴 × 𝐵) = dom (𝐵 × 𝐴) |
| 4 | 1, 3 | eqtri 2754 | . 2 ⊢ ran (𝐴 × 𝐵) = dom (𝐵 × 𝐴) |
| 5 | dmxp 5869 | . 2 ⊢ (𝐴 ≠ ∅ → dom (𝐵 × 𝐴) = 𝐵) | |
| 6 | 4, 5 | eqtrid 2778 | 1 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ≠ wne 2928 ∅c0 4283 × cxp 5614 ◡ccnv 5615 dom cdm 5616 ran crn 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-dm 5626 df-rn 5627 |
| This theorem is referenced by: rnxpid 6120 ssxpb 6121 xpima 6129 unixp 6229 fconst5 7140 rnmptc 7141 xpexr 7848 xpexr2 7849 fparlem3 8044 fparlem4 8045 frxp 8056 fodomr 9041 fodomfir 9212 djuexb 9799 dfac5lem3 10013 fpwwe2lem12 10530 vdwlem8 16897 ramz 16934 gsumxp 19886 xkoccn 23532 txindislem 23546 cnextf 23979 metustexhalf 24469 ovolctb 25416 axlowdimlem13 28930 axlowdim1 28935 imadifxp 32576 sibf0 34342 ovoliunnfl 37701 voliunnfl 37703 dmrnxp 48867 idfudiag1lem 49554 |
| Copyright terms: Public domain | W3C validator |