| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnxp | Structured version Visualization version GIF version | ||
| Description: The range of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.) |
| Ref | Expression |
|---|---|
| rnxp | ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rn 5665 | . . 3 ⊢ ran (𝐴 × 𝐵) = dom ◡(𝐴 × 𝐵) | |
| 2 | cnvxp 6146 | . . . 4 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
| 3 | 2 | dmeqi 5884 | . . 3 ⊢ dom ◡(𝐴 × 𝐵) = dom (𝐵 × 𝐴) |
| 4 | 1, 3 | eqtri 2758 | . 2 ⊢ ran (𝐴 × 𝐵) = dom (𝐵 × 𝐴) |
| 5 | dmxp 5908 | . 2 ⊢ (𝐴 ≠ ∅ → dom (𝐵 × 𝐴) = 𝐵) | |
| 6 | 4, 5 | eqtrid 2782 | 1 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2932 ∅c0 4308 × cxp 5652 ◡ccnv 5653 dom cdm 5654 ran crn 5655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-dm 5664 df-rn 5665 |
| This theorem is referenced by: rnxpid 6162 ssxpb 6163 xpima 6171 unixp 6271 fconst5 7198 rnmptc 7199 xpexr 7914 xpexr2 7915 fparlem3 8113 fparlem4 8114 frxp 8125 fodomr 9142 fodomfir 9340 djuexb 9923 dfac5lem3 10139 fpwwe2lem12 10656 vdwlem8 17008 ramz 17045 gsumxp 19957 xkoccn 23557 txindislem 23571 cnextf 24004 metustexhalf 24495 ovolctb 25443 axlowdimlem13 28933 axlowdim1 28938 imadifxp 32582 sibf0 34366 ovoliunnfl 37686 voliunnfl 37688 dmrnxp 48815 idfudiag1lem 49408 |
| Copyright terms: Public domain | W3C validator |