| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resdmss | Structured version Visualization version GIF version | ||
| Description: Subset relationship for the domain of a restriction. (Contributed by Scott Fenton, 9-Aug-2024.) |
| Ref | Expression |
|---|---|
| resdmss | ⊢ dom (𝐴 ↾ 𝐵) ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmres 6004 | . 2 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) | |
| 2 | inss1 4217 | . 2 ⊢ (𝐵 ∩ dom 𝐴) ⊆ 𝐵 | |
| 3 | 1, 2 | eqsstri 4010 | 1 ⊢ dom (𝐴 ↾ 𝐵) ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∩ cin 3930 ⊆ wss 3931 dom cdm 5659 ↾ cres 5661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-dm 5669 df-res 5671 |
| This theorem is referenced by: ttrclse 9746 noinfbnd2 27700 imadomfi 42020 cnvrcl0 43616 tposres3 48823 |
| Copyright terms: Public domain | W3C validator |