![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resdmss | Structured version Visualization version GIF version |
Description: Subset relationship for the domain of a restriction. (Contributed by Scott Fenton, 9-Aug-2024.) |
Ref | Expression |
---|---|
resdmss | ⊢ dom (𝐴 ↾ 𝐵) ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 5998 | . 2 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) | |
2 | inss1 4226 | . 2 ⊢ (𝐵 ∩ dom 𝐴) ⊆ 𝐵 | |
3 | 1, 2 | eqsstri 4014 | 1 ⊢ dom (𝐴 ↾ 𝐵) ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3945 ⊆ wss 3946 dom cdm 5672 ↾ cres 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5295 ax-nul 5302 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5145 df-opab 5207 df-xp 5678 df-dm 5682 df-res 5684 |
This theorem is referenced by: ttrclse 9709 noinfbnd2 27201 cnvrcl0 42247 |
Copyright terms: Public domain | W3C validator |