MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdmss Structured version   Visualization version   GIF version

Theorem resdmss 6208
Description: Subset relationship for the domain of a restriction. (Contributed by Scott Fenton, 9-Aug-2024.)
Assertion
Ref Expression
resdmss dom (𝐴𝐵) ⊆ 𝐵

Proof of Theorem resdmss
StepHypRef Expression
1 dmres 5983 . 2 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
2 inss1 4200 . 2 (𝐵 ∩ dom 𝐴) ⊆ 𝐵
31, 2eqsstri 3993 1 dom (𝐴𝐵) ⊆ 𝐵
Colors of variables: wff setvar class
Syntax hints:  cin 3913  wss 3914  dom cdm 5638  cres 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-dm 5648  df-res 5650
This theorem is referenced by:  ttrclse  9680  noinfbnd2  27643  imadomfi  41990  cnvrcl0  43614  tposres3  48869
  Copyright terms: Public domain W3C validator