MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdmss Structured version   Visualization version   GIF version

Theorem resdmss 6187
Description: Subset relationship for the domain of a restriction. (Contributed by Scott Fenton, 9-Aug-2024.)
Assertion
Ref Expression
resdmss dom (𝐴𝐵) ⊆ 𝐵

Proof of Theorem resdmss
StepHypRef Expression
1 dmres 5965 . 2 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
2 inss1 4186 . 2 (𝐵 ∩ dom 𝐴) ⊆ 𝐵
31, 2eqsstri 3977 1 dom (𝐴𝐵) ⊆ 𝐵
Colors of variables: wff setvar class
Syntax hints:  cin 3897  wss 3898  dom cdm 5619  cres 5621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-xp 5625  df-dm 5629  df-res 5631
This theorem is referenced by:  ttrclse  9624  noinfbnd2  27671  esplyind  33613  imadomfi  42116  cnvrcl0  43743  tposres3  49006
  Copyright terms: Public domain W3C validator