MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdmss Structured version   Visualization version   GIF version

Theorem resdmss 6226
Description: Subset relationship for the domain of a restriction. (Contributed by Scott Fenton, 9-Aug-2024.)
Assertion
Ref Expression
resdmss dom (𝐴𝐵) ⊆ 𝐵

Proof of Theorem resdmss
StepHypRef Expression
1 dmres 5998 . 2 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
2 inss1 4226 . 2 (𝐵 ∩ dom 𝐴) ⊆ 𝐵
31, 2eqsstri 4014 1 dom (𝐴𝐵) ⊆ 𝐵
Colors of variables: wff setvar class
Syntax hints:  cin 3945  wss 3946  dom cdm 5672  cres 5674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5145  df-opab 5207  df-xp 5678  df-dm 5682  df-res 5684
This theorem is referenced by:  ttrclse  9709  noinfbnd2  27201  cnvrcl0  42247
  Copyright terms: Public domain W3C validator