| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imadomfi | Structured version Visualization version GIF version | ||
| Description: An image of a function under a finite set is dominated by the set. (Contributed by SN, 10-May-2025.) |
| Ref | Expression |
|---|---|
| imadomfi | ⊢ ((𝐴 ∈ Fin ∧ Fun 𝐹) → (𝐹 “ 𝐴) ≼ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5672 | . . . 4 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
| 2 | funfn 6571 | . . . . . . 7 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
| 3 | resfnfinfin 9354 | . . . . . . 7 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐴 ∈ Fin) → (𝐹 ↾ 𝐴) ∈ Fin) | |
| 4 | 2, 3 | sylanb 581 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ Fin) → (𝐹 ↾ 𝐴) ∈ Fin) |
| 5 | dmfi 9352 | . . . . . 6 ⊢ ((𝐹 ↾ 𝐴) ∈ Fin → dom (𝐹 ↾ 𝐴) ∈ Fin) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ Fin) → dom (𝐹 ↾ 𝐴) ∈ Fin) |
| 7 | funres 6583 | . . . . . . 7 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | |
| 8 | funforn 6802 | . . . . . . 7 ⊢ (Fun (𝐹 ↾ 𝐴) ↔ (𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)–onto→ran (𝐹 ↾ 𝐴)) | |
| 9 | 7, 8 | sylib 218 | . . . . . 6 ⊢ (Fun 𝐹 → (𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)–onto→ran (𝐹 ↾ 𝐴)) |
| 10 | 9 | adantr 480 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ Fin) → (𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)–onto→ran (𝐹 ↾ 𝐴)) |
| 11 | fodomfi 9327 | . . . . 5 ⊢ ((dom (𝐹 ↾ 𝐴) ∈ Fin ∧ (𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)–onto→ran (𝐹 ↾ 𝐴)) → ran (𝐹 ↾ 𝐴) ≼ dom (𝐹 ↾ 𝐴)) | |
| 12 | 6, 10, 11 | syl2anc 584 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ Fin) → ran (𝐹 ↾ 𝐴) ≼ dom (𝐹 ↾ 𝐴)) |
| 13 | 1, 12 | eqbrtrid 5159 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ Fin) → (𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴)) |
| 14 | resdmss 6229 | . . . . 5 ⊢ dom (𝐹 ↾ 𝐴) ⊆ 𝐴 | |
| 15 | ssdomfi 9215 | . . . . 5 ⊢ (𝐴 ∈ Fin → (dom (𝐹 ↾ 𝐴) ⊆ 𝐴 → dom (𝐹 ↾ 𝐴) ≼ 𝐴)) | |
| 16 | 14, 15 | mpi 20 | . . . 4 ⊢ (𝐴 ∈ Fin → dom (𝐹 ↾ 𝐴) ≼ 𝐴) |
| 17 | domtr 9026 | . . . 4 ⊢ (((𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴) ∧ dom (𝐹 ↾ 𝐴) ≼ 𝐴) → (𝐹 “ 𝐴) ≼ 𝐴) | |
| 18 | 16, 17 | sylan2 593 | . . 3 ⊢ (((𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴) ∧ 𝐴 ∈ Fin) → (𝐹 “ 𝐴) ≼ 𝐴) |
| 19 | 13, 18 | sylancom 588 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ Fin) → (𝐹 “ 𝐴) ≼ 𝐴) |
| 20 | 19 | ancoms 458 | 1 ⊢ ((𝐴 ∈ Fin ∧ Fun 𝐹) → (𝐹 “ 𝐴) ≼ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3931 class class class wbr 5124 dom cdm 5659 ran crn 5660 ↾ cres 5661 “ cima 5662 Fun wfun 6530 Fn wfn 6531 –onto→wfo 6534 ≼ cdom 8962 Fincfn 8964 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-om 7867 df-1st 7993 df-2nd 7994 df-1o 8485 df-en 8965 df-dom 8966 df-fin 8968 |
| This theorem is referenced by: aks6d1c6lem5 42195 |
| Copyright terms: Public domain | W3C validator |