| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imadomfi | Structured version Visualization version GIF version | ||
| Description: An image of a function under a finite set is dominated by the set. (Contributed by SN, 10-May-2025.) |
| Ref | Expression |
|---|---|
| imadomfi | ⊢ ((𝐴 ∈ Fin ∧ Fun 𝐹) → (𝐹 “ 𝐴) ≼ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5664 | . . . 4 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
| 2 | funfn 6562 | . . . . . . 7 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
| 3 | resfnfinfin 9343 | . . . . . . 7 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐴 ∈ Fin) → (𝐹 ↾ 𝐴) ∈ Fin) | |
| 4 | 2, 3 | sylanb 581 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ Fin) → (𝐹 ↾ 𝐴) ∈ Fin) |
| 5 | dmfi 9341 | . . . . . 6 ⊢ ((𝐹 ↾ 𝐴) ∈ Fin → dom (𝐹 ↾ 𝐴) ∈ Fin) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ Fin) → dom (𝐹 ↾ 𝐴) ∈ Fin) |
| 7 | funres 6574 | . . . . . . 7 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | |
| 8 | funforn 6793 | . . . . . . 7 ⊢ (Fun (𝐹 ↾ 𝐴) ↔ (𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)–onto→ran (𝐹 ↾ 𝐴)) | |
| 9 | 7, 8 | sylib 218 | . . . . . 6 ⊢ (Fun 𝐹 → (𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)–onto→ran (𝐹 ↾ 𝐴)) |
| 10 | 9 | adantr 480 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ Fin) → (𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)–onto→ran (𝐹 ↾ 𝐴)) |
| 11 | fodomfi 9316 | . . . . 5 ⊢ ((dom (𝐹 ↾ 𝐴) ∈ Fin ∧ (𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)–onto→ran (𝐹 ↾ 𝐴)) → ran (𝐹 ↾ 𝐴) ≼ dom (𝐹 ↾ 𝐴)) | |
| 12 | 6, 10, 11 | syl2anc 584 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ Fin) → ran (𝐹 ↾ 𝐴) ≼ dom (𝐹 ↾ 𝐴)) |
| 13 | 1, 12 | eqbrtrid 5151 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ Fin) → (𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴)) |
| 14 | resdmss 6221 | . . . . 5 ⊢ dom (𝐹 ↾ 𝐴) ⊆ 𝐴 | |
| 15 | ssdomfi 9204 | . . . . 5 ⊢ (𝐴 ∈ Fin → (dom (𝐹 ↾ 𝐴) ⊆ 𝐴 → dom (𝐹 ↾ 𝐴) ≼ 𝐴)) | |
| 16 | 14, 15 | mpi 20 | . . . 4 ⊢ (𝐴 ∈ Fin → dom (𝐹 ↾ 𝐴) ≼ 𝐴) |
| 17 | domtr 9015 | . . . 4 ⊢ (((𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴) ∧ dom (𝐹 ↾ 𝐴) ≼ 𝐴) → (𝐹 “ 𝐴) ≼ 𝐴) | |
| 18 | 16, 17 | sylan2 593 | . . 3 ⊢ (((𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴) ∧ 𝐴 ∈ Fin) → (𝐹 “ 𝐴) ≼ 𝐴) |
| 19 | 13, 18 | sylancom 588 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ Fin) → (𝐹 “ 𝐴) ≼ 𝐴) |
| 20 | 19 | ancoms 458 | 1 ⊢ ((𝐴 ∈ Fin ∧ Fun 𝐹) → (𝐹 “ 𝐴) ≼ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ⊆ wss 3924 class class class wbr 5116 dom cdm 5651 ran crn 5652 ↾ cres 5653 “ cima 5654 Fun wfun 6521 Fn wfn 6522 –onto→wfo 6525 ≼ cdom 8951 Fincfn 8953 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-om 7856 df-1st 7982 df-2nd 7983 df-1o 8474 df-en 8954 df-dom 8955 df-fin 8957 |
| This theorem is referenced by: aks6d1c6lem5 42112 |
| Copyright terms: Public domain | W3C validator |