Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imadomfi Structured version   Visualization version   GIF version

Theorem imadomfi 41959
Description: An image of a function under a finite set is dominated by the set. (Contributed by SN, 10-May-2025.)
Assertion
Ref Expression
imadomfi ((𝐴 ∈ Fin ∧ Fun 𝐹) → (𝐹𝐴) ≼ 𝐴)

Proof of Theorem imadomfi
StepHypRef Expression
1 df-ima 5713 . . . 4 (𝐹𝐴) = ran (𝐹𝐴)
2 funfn 6608 . . . . . . 7 (Fun 𝐹𝐹 Fn dom 𝐹)
3 resfnfinfin 9405 . . . . . . 7 ((𝐹 Fn dom 𝐹𝐴 ∈ Fin) → (𝐹𝐴) ∈ Fin)
42, 3sylanb 580 . . . . . 6 ((Fun 𝐹𝐴 ∈ Fin) → (𝐹𝐴) ∈ Fin)
5 dmfi 9403 . . . . . 6 ((𝐹𝐴) ∈ Fin → dom (𝐹𝐴) ∈ Fin)
64, 5syl 17 . . . . 5 ((Fun 𝐹𝐴 ∈ Fin) → dom (𝐹𝐴) ∈ Fin)
7 funres 6620 . . . . . . 7 (Fun 𝐹 → Fun (𝐹𝐴))
8 funforn 6841 . . . . . . 7 (Fun (𝐹𝐴) ↔ (𝐹𝐴):dom (𝐹𝐴)–onto→ran (𝐹𝐴))
97, 8sylib 218 . . . . . 6 (Fun 𝐹 → (𝐹𝐴):dom (𝐹𝐴)–onto→ran (𝐹𝐴))
109adantr 480 . . . . 5 ((Fun 𝐹𝐴 ∈ Fin) → (𝐹𝐴):dom (𝐹𝐴)–onto→ran (𝐹𝐴))
11 fodomfi 9378 . . . . 5 ((dom (𝐹𝐴) ∈ Fin ∧ (𝐹𝐴):dom (𝐹𝐴)–onto→ran (𝐹𝐴)) → ran (𝐹𝐴) ≼ dom (𝐹𝐴))
126, 10, 11syl2anc 583 . . . 4 ((Fun 𝐹𝐴 ∈ Fin) → ran (𝐹𝐴) ≼ dom (𝐹𝐴))
131, 12eqbrtrid 5201 . . 3 ((Fun 𝐹𝐴 ∈ Fin) → (𝐹𝐴) ≼ dom (𝐹𝐴))
14 resdmss 6266 . . . . 5 dom (𝐹𝐴) ⊆ 𝐴
15 ssdomfi 9262 . . . . 5 (𝐴 ∈ Fin → (dom (𝐹𝐴) ⊆ 𝐴 → dom (𝐹𝐴) ≼ 𝐴))
1614, 15mpi 20 . . . 4 (𝐴 ∈ Fin → dom (𝐹𝐴) ≼ 𝐴)
17 domtr 9067 . . . 4 (((𝐹𝐴) ≼ dom (𝐹𝐴) ∧ dom (𝐹𝐴) ≼ 𝐴) → (𝐹𝐴) ≼ 𝐴)
1816, 17sylan2 592 . . 3 (((𝐹𝐴) ≼ dom (𝐹𝐴) ∧ 𝐴 ∈ Fin) → (𝐹𝐴) ≼ 𝐴)
1913, 18sylancom 587 . 2 ((Fun 𝐹𝐴 ∈ Fin) → (𝐹𝐴) ≼ 𝐴)
2019ancoms 458 1 ((𝐴 ∈ Fin ∧ Fun 𝐹) → (𝐹𝐴) ≼ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wss 3976   class class class wbr 5166  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  Fun wfun 6567   Fn wfn 6568  ontowfo 6571  cdom 9001  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1st 8030  df-2nd 8031  df-1o 8522  df-en 9004  df-dom 9005  df-fin 9007
This theorem is referenced by:  aks6d1c6lem5  42134
  Copyright terms: Public domain W3C validator