![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > imadomfi | Structured version Visualization version GIF version |
Description: An image of a function under a finite set is dominated by the set. (Contributed by SN, 10-May-2025.) |
Ref | Expression |
---|---|
imadomfi | ⊢ ((𝐴 ∈ Fin ∧ Fun 𝐹) → (𝐹 “ 𝐴) ≼ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5713 | . . . 4 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
2 | funfn 6608 | . . . . . . 7 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
3 | resfnfinfin 9405 | . . . . . . 7 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐴 ∈ Fin) → (𝐹 ↾ 𝐴) ∈ Fin) | |
4 | 2, 3 | sylanb 580 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ Fin) → (𝐹 ↾ 𝐴) ∈ Fin) |
5 | dmfi 9403 | . . . . . 6 ⊢ ((𝐹 ↾ 𝐴) ∈ Fin → dom (𝐹 ↾ 𝐴) ∈ Fin) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ Fin) → dom (𝐹 ↾ 𝐴) ∈ Fin) |
7 | funres 6620 | . . . . . . 7 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | |
8 | funforn 6841 | . . . . . . 7 ⊢ (Fun (𝐹 ↾ 𝐴) ↔ (𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)–onto→ran (𝐹 ↾ 𝐴)) | |
9 | 7, 8 | sylib 218 | . . . . . 6 ⊢ (Fun 𝐹 → (𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)–onto→ran (𝐹 ↾ 𝐴)) |
10 | 9 | adantr 480 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ Fin) → (𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)–onto→ran (𝐹 ↾ 𝐴)) |
11 | fodomfi 9378 | . . . . 5 ⊢ ((dom (𝐹 ↾ 𝐴) ∈ Fin ∧ (𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)–onto→ran (𝐹 ↾ 𝐴)) → ran (𝐹 ↾ 𝐴) ≼ dom (𝐹 ↾ 𝐴)) | |
12 | 6, 10, 11 | syl2anc 583 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ Fin) → ran (𝐹 ↾ 𝐴) ≼ dom (𝐹 ↾ 𝐴)) |
13 | 1, 12 | eqbrtrid 5201 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ Fin) → (𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴)) |
14 | resdmss 6266 | . . . . 5 ⊢ dom (𝐹 ↾ 𝐴) ⊆ 𝐴 | |
15 | ssdomfi 9262 | . . . . 5 ⊢ (𝐴 ∈ Fin → (dom (𝐹 ↾ 𝐴) ⊆ 𝐴 → dom (𝐹 ↾ 𝐴) ≼ 𝐴)) | |
16 | 14, 15 | mpi 20 | . . . 4 ⊢ (𝐴 ∈ Fin → dom (𝐹 ↾ 𝐴) ≼ 𝐴) |
17 | domtr 9067 | . . . 4 ⊢ (((𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴) ∧ dom (𝐹 ↾ 𝐴) ≼ 𝐴) → (𝐹 “ 𝐴) ≼ 𝐴) | |
18 | 16, 17 | sylan2 592 | . . 3 ⊢ (((𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴) ∧ 𝐴 ∈ Fin) → (𝐹 “ 𝐴) ≼ 𝐴) |
19 | 13, 18 | sylancom 587 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ Fin) → (𝐹 “ 𝐴) ≼ 𝐴) |
20 | 19 | ancoms 458 | 1 ⊢ ((𝐴 ∈ Fin ∧ Fun 𝐹) → (𝐹 “ 𝐴) ≼ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3976 class class class wbr 5166 dom cdm 5700 ran crn 5701 ↾ cres 5702 “ cima 5703 Fun wfun 6567 Fn wfn 6568 –onto→wfo 6571 ≼ cdom 9001 Fincfn 9003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1st 8030 df-2nd 8031 df-1o 8522 df-en 9004 df-dom 9005 df-fin 9007 |
This theorem is referenced by: aks6d1c6lem5 42134 |
Copyright terms: Public domain | W3C validator |