| Step | Hyp | Ref
| Expression |
| 1 | | brttrcl2 9754 |
. . . . . . 7
⊢ (𝑦t++(𝑅 ↾ 𝐴)𝑥 ↔ ∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) |
| 2 | | eqid 2737 |
. . . . . . . . . . 11
⊢
rec((𝑏 ∈ V
↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) = rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) |
| 3 | 2 | ttrclselem2 9766 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ω ∧ 𝑅 Se 𝐴 ∧ 𝑥 ∈ 𝐴) → (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛))) |
| 4 | 3 | 3expb 1121 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴 ∧ 𝑥 ∈ 𝐴)) → (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛))) |
| 5 | 4 | ancoms 458 |
. . . . . . . 8
⊢ (((𝑅 Se 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ ω) → (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛))) |
| 6 | 5 | rexbidva 3177 |
. . . . . . 7
⊢ ((𝑅 Se 𝐴 ∧ 𝑥 ∈ 𝐴) → (∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑛 ∈ ω 𝑦 ∈ (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛))) |
| 7 | 1, 6 | bitrid 283 |
. . . . . 6
⊢ ((𝑅 Se 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦t++(𝑅 ↾ 𝐴)𝑥 ↔ ∃𝑛 ∈ ω 𝑦 ∈ (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛))) |
| 8 | | vex 3484 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
| 9 | 8 | elpred 6338 |
. . . . . . . 8
⊢ (𝑥 ∈ V → (𝑦 ∈ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑥) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦t++(𝑅 ↾ 𝐴)𝑥))) |
| 10 | 9 | elv 3485 |
. . . . . . 7
⊢ (𝑦 ∈ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑥) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦t++(𝑅 ↾ 𝐴)𝑥)) |
| 11 | | resdmss 6255 |
. . . . . . . . 9
⊢ dom
(𝑅 ↾ 𝐴) ⊆ 𝐴 |
| 12 | | vex 3484 |
. . . . . . . . . . 11
⊢ 𝑥 ∈ V |
| 13 | 8, 12 | breldm 5919 |
. . . . . . . . . 10
⊢ (𝑦t++(𝑅 ↾ 𝐴)𝑥 → 𝑦 ∈ dom t++(𝑅 ↾ 𝐴)) |
| 14 | | dmttrcl 9761 |
. . . . . . . . . 10
⊢ dom
t++(𝑅 ↾ 𝐴) = dom (𝑅 ↾ 𝐴) |
| 15 | 13, 14 | eleqtrdi 2851 |
. . . . . . . . 9
⊢ (𝑦t++(𝑅 ↾ 𝐴)𝑥 → 𝑦 ∈ dom (𝑅 ↾ 𝐴)) |
| 16 | 11, 15 | sselid 3981 |
. . . . . . . 8
⊢ (𝑦t++(𝑅 ↾ 𝐴)𝑥 → 𝑦 ∈ 𝐴) |
| 17 | 16 | pm4.71ri 560 |
. . . . . . 7
⊢ (𝑦t++(𝑅 ↾ 𝐴)𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦t++(𝑅 ↾ 𝐴)𝑥)) |
| 18 | 10, 17 | bitr4i 278 |
. . . . . 6
⊢ (𝑦 ∈ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑥) ↔ 𝑦t++(𝑅 ↾ 𝐴)𝑥) |
| 19 | | rdgfun 8456 |
. . . . . . 7
⊢ Fun
rec((𝑏 ∈ V ↦
∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) |
| 20 | | eluniima 7270 |
. . . . . . 7
⊢ (Fun
rec((𝑏 ∈ V ↦
∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) → (𝑦 ∈ ∪
(rec((𝑏 ∈ V ↦
∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ↔ ∃𝑛 ∈ ω 𝑦 ∈ (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛))) |
| 21 | 19, 20 | ax-mp 5 |
. . . . . 6
⊢ (𝑦 ∈ ∪ (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ↔ ∃𝑛 ∈ ω 𝑦 ∈ (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛)) |
| 22 | 7, 18, 21 | 3bitr4g 314 |
. . . . 5
⊢ ((𝑅 Se 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑥) ↔ 𝑦 ∈ ∪
(rec((𝑏 ∈ V ↦
∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω))) |
| 23 | 22 | eqrdv 2735 |
. . . 4
⊢ ((𝑅 Se 𝐴 ∧ 𝑥 ∈ 𝐴) → Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑥) = ∪ (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω)) |
| 24 | | omex 9683 |
. . . . . . 7
⊢ ω
∈ V |
| 25 | 24 | funimaex 6655 |
. . . . . 6
⊢ (Fun
rec((𝑏 ∈ V ↦
∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) → (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ∈
V) |
| 26 | 19, 25 | ax-mp 5 |
. . . . 5
⊢
(rec((𝑏 ∈ V
↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ∈ V |
| 27 | 26 | uniex 7761 |
. . . 4
⊢ ∪ (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ∈ V |
| 28 | 23, 27 | eqeltrdi 2849 |
. . 3
⊢ ((𝑅 Se 𝐴 ∧ 𝑥 ∈ 𝐴) → Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑥) ∈ V) |
| 29 | 28 | ralrimiva 3146 |
. 2
⊢ (𝑅 Se 𝐴 → ∀𝑥 ∈ 𝐴 Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑥) ∈ V) |
| 30 | | dfse3 6357 |
. 2
⊢
(t++(𝑅 ↾ 𝐴) Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑥) ∈ V) |
| 31 | 29, 30 | sylibr 234 |
1
⊢ (𝑅 Se 𝐴 → t++(𝑅 ↾ 𝐴) Se 𝐴) |