MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttrclse Structured version   Visualization version   GIF version

Theorem ttrclse 9796
Description: If 𝑅 is set-like over 𝐴, then the transitive closure of the restriction of 𝑅 to 𝐴 is set-like over 𝐴.

This theorem requires the axioms of infinity and replacement for its proof. (Contributed by Scott Fenton, 31-Oct-2024.)

Assertion
Ref Expression
ttrclse (𝑅 Se 𝐴 → t++(𝑅𝐴) Se 𝐴)

Proof of Theorem ttrclse
Dummy variables 𝑎 𝑏 𝑓 𝑛 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brttrcl2 9783 . . . . . . 7 (𝑦t++(𝑅𝐴)𝑥 ↔ ∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)))
2 eqid 2740 . . . . . . . . . . 11 rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) = rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))
32ttrclselem2 9795 . . . . . . . . . 10 ((𝑛 ∈ ω ∧ 𝑅 Se 𝐴𝑥𝐴) → (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛)))
433expb 1120 . . . . . . . . 9 ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴𝑥𝐴)) → (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛)))
54ancoms 458 . . . . . . . 8 (((𝑅 Se 𝐴𝑥𝐴) ∧ 𝑛 ∈ ω) → (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛)))
65rexbidva 3183 . . . . . . 7 ((𝑅 Se 𝐴𝑥𝐴) → (∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑛 ∈ ω 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛)))
71, 6bitrid 283 . . . . . 6 ((𝑅 Se 𝐴𝑥𝐴) → (𝑦t++(𝑅𝐴)𝑥 ↔ ∃𝑛 ∈ ω 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛)))
8 vex 3492 . . . . . . . . 9 𝑦 ∈ V
98elpred 6349 . . . . . . . 8 (𝑥 ∈ V → (𝑦 ∈ Pred(t++(𝑅𝐴), 𝐴, 𝑥) ↔ (𝑦𝐴𝑦t++(𝑅𝐴)𝑥)))
109elv 3493 . . . . . . 7 (𝑦 ∈ Pred(t++(𝑅𝐴), 𝐴, 𝑥) ↔ (𝑦𝐴𝑦t++(𝑅𝐴)𝑥))
11 resdmss 6266 . . . . . . . . 9 dom (𝑅𝐴) ⊆ 𝐴
12 vex 3492 . . . . . . . . . . 11 𝑥 ∈ V
138, 12breldm 5933 . . . . . . . . . 10 (𝑦t++(𝑅𝐴)𝑥𝑦 ∈ dom t++(𝑅𝐴))
14 dmttrcl 9790 . . . . . . . . . 10 dom t++(𝑅𝐴) = dom (𝑅𝐴)
1513, 14eleqtrdi 2854 . . . . . . . . 9 (𝑦t++(𝑅𝐴)𝑥𝑦 ∈ dom (𝑅𝐴))
1611, 15sselid 4006 . . . . . . . 8 (𝑦t++(𝑅𝐴)𝑥𝑦𝐴)
1716pm4.71ri 560 . . . . . . 7 (𝑦t++(𝑅𝐴)𝑥 ↔ (𝑦𝐴𝑦t++(𝑅𝐴)𝑥))
1810, 17bitr4i 278 . . . . . 6 (𝑦 ∈ Pred(t++(𝑅𝐴), 𝐴, 𝑥) ↔ 𝑦t++(𝑅𝐴)𝑥)
19 rdgfun 8472 . . . . . . 7 Fun rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))
20 eluniima 7287 . . . . . . 7 (Fun rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) → (𝑦 (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ↔ ∃𝑛 ∈ ω 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛)))
2119, 20ax-mp 5 . . . . . 6 (𝑦 (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ↔ ∃𝑛 ∈ ω 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛))
227, 18, 213bitr4g 314 . . . . 5 ((𝑅 Se 𝐴𝑥𝐴) → (𝑦 ∈ Pred(t++(𝑅𝐴), 𝐴, 𝑥) ↔ 𝑦 (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω)))
2322eqrdv 2738 . . . 4 ((𝑅 Se 𝐴𝑥𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑥) = (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω))
24 omex 9712 . . . . . . 7 ω ∈ V
2524funimaex 6666 . . . . . 6 (Fun rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) → (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ∈ V)
2619, 25ax-mp 5 . . . . 5 (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ∈ V
2726uniex 7776 . . . 4 (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ∈ V
2823, 27eqeltrdi 2852 . . 3 ((𝑅 Se 𝐴𝑥𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑥) ∈ V)
2928ralrimiva 3152 . 2 (𝑅 Se 𝐴 → ∀𝑥𝐴 Pred(t++(𝑅𝐴), 𝐴, 𝑥) ∈ V)
30 dfse3 6368 . 2 (t++(𝑅𝐴) Se 𝐴 ↔ ∀𝑥𝐴 Pred(t++(𝑅𝐴), 𝐴, 𝑥) ∈ V)
3129, 30sylibr 234 1 (𝑅 Se 𝐴 → t++(𝑅𝐴) Se 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  c0 4352   cuni 4931   ciun 5015   class class class wbr 5166  cmpt 5249   Se wse 5650  dom cdm 5700  cres 5702  cima 5703  Predcpred 6331  suc csuc 6397  Fun wfun 6567   Fn wfn 6568  cfv 6573  ωcom 7903  reccrdg 8465  t++cttrcl 9776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-ttrcl 9777
This theorem is referenced by:  frmin  9818  frr1  9828
  Copyright terms: Public domain W3C validator