Step | Hyp | Ref
| Expression |
1 | | brttrcl2 9459 |
. . . . . . 7
⊢ (𝑦t++(𝑅 ↾ 𝐴)𝑥 ↔ ∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) |
2 | | eqid 2738 |
. . . . . . . . . . 11
⊢
rec((𝑏 ∈ V
↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) = rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) |
3 | 2 | ttrclselem2 9471 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ω ∧ 𝑅 Se 𝐴 ∧ 𝑥 ∈ 𝐴) → (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛))) |
4 | 3 | 3expb 1119 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴 ∧ 𝑥 ∈ 𝐴)) → (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛))) |
5 | 4 | ancoms 459 |
. . . . . . . 8
⊢ (((𝑅 Se 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ ω) → (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛))) |
6 | 5 | rexbidva 3223 |
. . . . . . 7
⊢ ((𝑅 Se 𝐴 ∧ 𝑥 ∈ 𝐴) → (∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑛 ∈ ω 𝑦 ∈ (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛))) |
7 | 1, 6 | bitrid 282 |
. . . . . 6
⊢ ((𝑅 Se 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦t++(𝑅 ↾ 𝐴)𝑥 ↔ ∃𝑛 ∈ ω 𝑦 ∈ (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛))) |
8 | | vex 3433 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
9 | 8 | elpred 6212 |
. . . . . . . 8
⊢ (𝑥 ∈ V → (𝑦 ∈ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑥) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦t++(𝑅 ↾ 𝐴)𝑥))) |
10 | 9 | elv 3435 |
. . . . . . 7
⊢ (𝑦 ∈ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑥) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦t++(𝑅 ↾ 𝐴)𝑥)) |
11 | | resdmss 6131 |
. . . . . . . . 9
⊢ dom
(𝑅 ↾ 𝐴) ⊆ 𝐴 |
12 | | vex 3433 |
. . . . . . . . . . 11
⊢ 𝑥 ∈ V |
13 | 8, 12 | breldm 5810 |
. . . . . . . . . 10
⊢ (𝑦t++(𝑅 ↾ 𝐴)𝑥 → 𝑦 ∈ dom t++(𝑅 ↾ 𝐴)) |
14 | | dmttrcl 9466 |
. . . . . . . . . 10
⊢ dom
t++(𝑅 ↾ 𝐴) = dom (𝑅 ↾ 𝐴) |
15 | 13, 14 | eleqtrdi 2849 |
. . . . . . . . 9
⊢ (𝑦t++(𝑅 ↾ 𝐴)𝑥 → 𝑦 ∈ dom (𝑅 ↾ 𝐴)) |
16 | 11, 15 | sselid 3918 |
. . . . . . . 8
⊢ (𝑦t++(𝑅 ↾ 𝐴)𝑥 → 𝑦 ∈ 𝐴) |
17 | 16 | pm4.71ri 561 |
. . . . . . 7
⊢ (𝑦t++(𝑅 ↾ 𝐴)𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦t++(𝑅 ↾ 𝐴)𝑥)) |
18 | 10, 17 | bitr4i 277 |
. . . . . 6
⊢ (𝑦 ∈ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑥) ↔ 𝑦t++(𝑅 ↾ 𝐴)𝑥) |
19 | | rdgfun 8234 |
. . . . . . 7
⊢ Fun
rec((𝑏 ∈ V ↦
∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) |
20 | | eluniima 7115 |
. . . . . . 7
⊢ (Fun
rec((𝑏 ∈ V ↦
∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) → (𝑦 ∈ ∪
(rec((𝑏 ∈ V ↦
∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ↔ ∃𝑛 ∈ ω 𝑦 ∈ (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛))) |
21 | 19, 20 | ax-mp 5 |
. . . . . 6
⊢ (𝑦 ∈ ∪ (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ↔ ∃𝑛 ∈ ω 𝑦 ∈ (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛)) |
22 | 7, 18, 21 | 3bitr4g 314 |
. . . . 5
⊢ ((𝑅 Se 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑥) ↔ 𝑦 ∈ ∪
(rec((𝑏 ∈ V ↦
∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω))) |
23 | 22 | eqrdv 2736 |
. . . 4
⊢ ((𝑅 Se 𝐴 ∧ 𝑥 ∈ 𝐴) → Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑥) = ∪ (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω)) |
24 | | omex 9388 |
. . . . . . 7
⊢ ω
∈ V |
25 | 24 | funimaex 6513 |
. . . . . 6
⊢ (Fun
rec((𝑏 ∈ V ↦
∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) → (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ∈
V) |
26 | 19, 25 | ax-mp 5 |
. . . . 5
⊢
(rec((𝑏 ∈ V
↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ∈ V |
27 | 26 | uniex 7584 |
. . . 4
⊢ ∪ (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ∈ V |
28 | 23, 27 | eqeltrdi 2847 |
. . 3
⊢ ((𝑅 Se 𝐴 ∧ 𝑥 ∈ 𝐴) → Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑥) ∈ V) |
29 | 28 | ralrimiva 3108 |
. 2
⊢ (𝑅 Se 𝐴 → ∀𝑥 ∈ 𝐴 Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑥) ∈ V) |
30 | | dfse3 6232 |
. 2
⊢
(t++(𝑅 ↾ 𝐴) Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑥) ∈ V) |
31 | 29, 30 | sylibr 233 |
1
⊢ (𝑅 Se 𝐴 → t++(𝑅 ↾ 𝐴) Se 𝐴) |