MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttrclse Structured version   Visualization version   GIF version

Theorem ttrclse 9752
Description: If 𝑅 is set-like over 𝐴, then the transitive closure of the restriction of 𝑅 to 𝐴 is set-like over 𝐴.

This theorem requires the axioms of infinity and replacement for its proof. (Contributed by Scott Fenton, 31-Oct-2024.)

Assertion
Ref Expression
ttrclse (𝑅 Se 𝐴 → t++(𝑅𝐴) Se 𝐴)

Proof of Theorem ttrclse
Dummy variables 𝑎 𝑏 𝑓 𝑛 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brttrcl2 9739 . . . . . . 7 (𝑦t++(𝑅𝐴)𝑥 ↔ ∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)))
2 eqid 2725 . . . . . . . . . . 11 rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) = rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))
32ttrclselem2 9751 . . . . . . . . . 10 ((𝑛 ∈ ω ∧ 𝑅 Se 𝐴𝑥𝐴) → (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛)))
433expb 1117 . . . . . . . . 9 ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴𝑥𝐴)) → (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛)))
54ancoms 457 . . . . . . . 8 (((𝑅 Se 𝐴𝑥𝐴) ∧ 𝑛 ∈ ω) → (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛)))
65rexbidva 3166 . . . . . . 7 ((𝑅 Se 𝐴𝑥𝐴) → (∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑛 ∈ ω 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛)))
71, 6bitrid 282 . . . . . 6 ((𝑅 Se 𝐴𝑥𝐴) → (𝑦t++(𝑅𝐴)𝑥 ↔ ∃𝑛 ∈ ω 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛)))
8 vex 3465 . . . . . . . . 9 𝑦 ∈ V
98elpred 6324 . . . . . . . 8 (𝑥 ∈ V → (𝑦 ∈ Pred(t++(𝑅𝐴), 𝐴, 𝑥) ↔ (𝑦𝐴𝑦t++(𝑅𝐴)𝑥)))
109elv 3467 . . . . . . 7 (𝑦 ∈ Pred(t++(𝑅𝐴), 𝐴, 𝑥) ↔ (𝑦𝐴𝑦t++(𝑅𝐴)𝑥))
11 resdmss 6241 . . . . . . . . 9 dom (𝑅𝐴) ⊆ 𝐴
12 vex 3465 . . . . . . . . . . 11 𝑥 ∈ V
138, 12breldm 5911 . . . . . . . . . 10 (𝑦t++(𝑅𝐴)𝑥𝑦 ∈ dom t++(𝑅𝐴))
14 dmttrcl 9746 . . . . . . . . . 10 dom t++(𝑅𝐴) = dom (𝑅𝐴)
1513, 14eleqtrdi 2835 . . . . . . . . 9 (𝑦t++(𝑅𝐴)𝑥𝑦 ∈ dom (𝑅𝐴))
1611, 15sselid 3974 . . . . . . . 8 (𝑦t++(𝑅𝐴)𝑥𝑦𝐴)
1716pm4.71ri 559 . . . . . . 7 (𝑦t++(𝑅𝐴)𝑥 ↔ (𝑦𝐴𝑦t++(𝑅𝐴)𝑥))
1810, 17bitr4i 277 . . . . . 6 (𝑦 ∈ Pred(t++(𝑅𝐴), 𝐴, 𝑥) ↔ 𝑦t++(𝑅𝐴)𝑥)
19 rdgfun 8437 . . . . . . 7 Fun rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))
20 eluniima 7260 . . . . . . 7 (Fun rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) → (𝑦 (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ↔ ∃𝑛 ∈ ω 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛)))
2119, 20ax-mp 5 . . . . . 6 (𝑦 (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ↔ ∃𝑛 ∈ ω 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛))
227, 18, 213bitr4g 313 . . . . 5 ((𝑅 Se 𝐴𝑥𝐴) → (𝑦 ∈ Pred(t++(𝑅𝐴), 𝐴, 𝑥) ↔ 𝑦 (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω)))
2322eqrdv 2723 . . . 4 ((𝑅 Se 𝐴𝑥𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑥) = (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω))
24 omex 9668 . . . . . . 7 ω ∈ V
2524funimaex 6642 . . . . . 6 (Fun rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) → (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ∈ V)
2619, 25ax-mp 5 . . . . 5 (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ∈ V
2726uniex 7747 . . . 4 (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ∈ V
2823, 27eqeltrdi 2833 . . 3 ((𝑅 Se 𝐴𝑥𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑥) ∈ V)
2928ralrimiva 3135 . 2 (𝑅 Se 𝐴 → ∀𝑥𝐴 Pred(t++(𝑅𝐴), 𝐴, 𝑥) ∈ V)
30 dfse3 6344 . 2 (t++(𝑅𝐴) Se 𝐴 ↔ ∀𝑥𝐴 Pred(t++(𝑅𝐴), 𝐴, 𝑥) ∈ V)
3129, 30sylibr 233 1 (𝑅 Se 𝐴 → t++(𝑅𝐴) Se 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wex 1773  wcel 2098  wral 3050  wrex 3059  Vcvv 3461  c0 4322   cuni 4909   ciun 4997   class class class wbr 5149  cmpt 5232   Se wse 5631  dom cdm 5678  cres 5680  cima 5681  Predcpred 6306  suc csuc 6373  Fun wfun 6543   Fn wfn 6544  cfv 6549  ωcom 7871  reccrdg 8430  t++cttrcl 9732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5429  ax-un 7741  ax-inf2 9666
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-oadd 8491  df-ttrcl 9733
This theorem is referenced by:  frmin  9774  frr1  9784
  Copyright terms: Public domain W3C validator