MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttrclse Structured version   Visualization version   GIF version

Theorem ttrclse 9656
Description: If 𝑅 is set-like over 𝐴, then the transitive closure of the restriction of 𝑅 to 𝐴 is set-like over 𝐴.

This theorem requires the axioms of infinity and replacement for its proof. (Contributed by Scott Fenton, 31-Oct-2024.)

Assertion
Ref Expression
ttrclse (𝑅 Se 𝐴 → t++(𝑅𝐴) Se 𝐴)

Proof of Theorem ttrclse
Dummy variables 𝑎 𝑏 𝑓 𝑛 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brttrcl2 9643 . . . . . . 7 (𝑦t++(𝑅𝐴)𝑥 ↔ ∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)))
2 eqid 2729 . . . . . . . . . . 11 rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) = rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))
32ttrclselem2 9655 . . . . . . . . . 10 ((𝑛 ∈ ω ∧ 𝑅 Se 𝐴𝑥𝐴) → (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛)))
433expb 1120 . . . . . . . . 9 ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴𝑥𝐴)) → (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛)))
54ancoms 458 . . . . . . . 8 (((𝑅 Se 𝐴𝑥𝐴) ∧ 𝑛 ∈ ω) → (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛)))
65rexbidva 3155 . . . . . . 7 ((𝑅 Se 𝐴𝑥𝐴) → (∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑛 ∈ ω 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛)))
71, 6bitrid 283 . . . . . 6 ((𝑅 Se 𝐴𝑥𝐴) → (𝑦t++(𝑅𝐴)𝑥 ↔ ∃𝑛 ∈ ω 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛)))
8 vex 3448 . . . . . . . . 9 𝑦 ∈ V
98elpred 6279 . . . . . . . 8 (𝑥 ∈ V → (𝑦 ∈ Pred(t++(𝑅𝐴), 𝐴, 𝑥) ↔ (𝑦𝐴𝑦t++(𝑅𝐴)𝑥)))
109elv 3449 . . . . . . 7 (𝑦 ∈ Pred(t++(𝑅𝐴), 𝐴, 𝑥) ↔ (𝑦𝐴𝑦t++(𝑅𝐴)𝑥))
11 resdmss 6196 . . . . . . . . 9 dom (𝑅𝐴) ⊆ 𝐴
12 vex 3448 . . . . . . . . . . 11 𝑥 ∈ V
138, 12breldm 5862 . . . . . . . . . 10 (𝑦t++(𝑅𝐴)𝑥𝑦 ∈ dom t++(𝑅𝐴))
14 dmttrcl 9650 . . . . . . . . . 10 dom t++(𝑅𝐴) = dom (𝑅𝐴)
1513, 14eleqtrdi 2838 . . . . . . . . 9 (𝑦t++(𝑅𝐴)𝑥𝑦 ∈ dom (𝑅𝐴))
1611, 15sselid 3941 . . . . . . . 8 (𝑦t++(𝑅𝐴)𝑥𝑦𝐴)
1716pm4.71ri 560 . . . . . . 7 (𝑦t++(𝑅𝐴)𝑥 ↔ (𝑦𝐴𝑦t++(𝑅𝐴)𝑥))
1810, 17bitr4i 278 . . . . . 6 (𝑦 ∈ Pred(t++(𝑅𝐴), 𝐴, 𝑥) ↔ 𝑦t++(𝑅𝐴)𝑥)
19 rdgfun 8361 . . . . . . 7 Fun rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))
20 eluniima 7206 . . . . . . 7 (Fun rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) → (𝑦 (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ↔ ∃𝑛 ∈ ω 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛)))
2119, 20ax-mp 5 . . . . . 6 (𝑦 (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ↔ ∃𝑛 ∈ ω 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛))
227, 18, 213bitr4g 314 . . . . 5 ((𝑅 Se 𝐴𝑥𝐴) → (𝑦 ∈ Pred(t++(𝑅𝐴), 𝐴, 𝑥) ↔ 𝑦 (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω)))
2322eqrdv 2727 . . . 4 ((𝑅 Se 𝐴𝑥𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑥) = (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω))
24 omex 9572 . . . . . . 7 ω ∈ V
2524funimaex 6588 . . . . . 6 (Fun rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) → (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ∈ V)
2619, 25ax-mp 5 . . . . 5 (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ∈ V
2726uniex 7697 . . . 4 (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ∈ V
2823, 27eqeltrdi 2836 . . 3 ((𝑅 Se 𝐴𝑥𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑥) ∈ V)
2928ralrimiva 3125 . 2 (𝑅 Se 𝐴 → ∀𝑥𝐴 Pred(t++(𝑅𝐴), 𝐴, 𝑥) ∈ V)
30 dfse3 6297 . 2 (t++(𝑅𝐴) Se 𝐴 ↔ ∀𝑥𝐴 Pred(t++(𝑅𝐴), 𝐴, 𝑥) ∈ V)
3129, 30sylibr 234 1 (𝑅 Se 𝐴 → t++(𝑅𝐴) Se 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3444  c0 4292   cuni 4867   ciun 4951   class class class wbr 5102  cmpt 5183   Se wse 5582  dom cdm 5631  cres 5633  cima 5634  Predcpred 6261  suc csuc 6322  Fun wfun 6493   Fn wfn 6494  cfv 6499  ωcom 7822  reccrdg 8354  t++cttrcl 9636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-ttrcl 9637
This theorem is referenced by:  frmin  9678  frr1  9688
  Copyright terms: Public domain W3C validator