MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttrclse Structured version   Visualization version   GIF version

Theorem ttrclse 9767
Description: If 𝑅 is set-like over 𝐴, then the transitive closure of the restriction of 𝑅 to 𝐴 is set-like over 𝐴.

This theorem requires the axioms of infinity and replacement for its proof. (Contributed by Scott Fenton, 31-Oct-2024.)

Assertion
Ref Expression
ttrclse (𝑅 Se 𝐴 → t++(𝑅𝐴) Se 𝐴)

Proof of Theorem ttrclse
Dummy variables 𝑎 𝑏 𝑓 𝑛 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brttrcl2 9754 . . . . . . 7 (𝑦t++(𝑅𝐴)𝑥 ↔ ∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)))
2 eqid 2737 . . . . . . . . . . 11 rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) = rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))
32ttrclselem2 9766 . . . . . . . . . 10 ((𝑛 ∈ ω ∧ 𝑅 Se 𝐴𝑥𝐴) → (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛)))
433expb 1121 . . . . . . . . 9 ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴𝑥𝐴)) → (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛)))
54ancoms 458 . . . . . . . 8 (((𝑅 Se 𝐴𝑥𝐴) ∧ 𝑛 ∈ ω) → (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛)))
65rexbidva 3177 . . . . . . 7 ((𝑅 Se 𝐴𝑥𝐴) → (∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑛 ∈ ω 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛)))
71, 6bitrid 283 . . . . . 6 ((𝑅 Se 𝐴𝑥𝐴) → (𝑦t++(𝑅𝐴)𝑥 ↔ ∃𝑛 ∈ ω 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛)))
8 vex 3484 . . . . . . . . 9 𝑦 ∈ V
98elpred 6338 . . . . . . . 8 (𝑥 ∈ V → (𝑦 ∈ Pred(t++(𝑅𝐴), 𝐴, 𝑥) ↔ (𝑦𝐴𝑦t++(𝑅𝐴)𝑥)))
109elv 3485 . . . . . . 7 (𝑦 ∈ Pred(t++(𝑅𝐴), 𝐴, 𝑥) ↔ (𝑦𝐴𝑦t++(𝑅𝐴)𝑥))
11 resdmss 6255 . . . . . . . . 9 dom (𝑅𝐴) ⊆ 𝐴
12 vex 3484 . . . . . . . . . . 11 𝑥 ∈ V
138, 12breldm 5919 . . . . . . . . . 10 (𝑦t++(𝑅𝐴)𝑥𝑦 ∈ dom t++(𝑅𝐴))
14 dmttrcl 9761 . . . . . . . . . 10 dom t++(𝑅𝐴) = dom (𝑅𝐴)
1513, 14eleqtrdi 2851 . . . . . . . . 9 (𝑦t++(𝑅𝐴)𝑥𝑦 ∈ dom (𝑅𝐴))
1611, 15sselid 3981 . . . . . . . 8 (𝑦t++(𝑅𝐴)𝑥𝑦𝐴)
1716pm4.71ri 560 . . . . . . 7 (𝑦t++(𝑅𝐴)𝑥 ↔ (𝑦𝐴𝑦t++(𝑅𝐴)𝑥))
1810, 17bitr4i 278 . . . . . 6 (𝑦 ∈ Pred(t++(𝑅𝐴), 𝐴, 𝑥) ↔ 𝑦t++(𝑅𝐴)𝑥)
19 rdgfun 8456 . . . . . . 7 Fun rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))
20 eluniima 7270 . . . . . . 7 (Fun rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) → (𝑦 (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ↔ ∃𝑛 ∈ ω 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛)))
2119, 20ax-mp 5 . . . . . 6 (𝑦 (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ↔ ∃𝑛 ∈ ω 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛))
227, 18, 213bitr4g 314 . . . . 5 ((𝑅 Se 𝐴𝑥𝐴) → (𝑦 ∈ Pred(t++(𝑅𝐴), 𝐴, 𝑥) ↔ 𝑦 (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω)))
2322eqrdv 2735 . . . 4 ((𝑅 Se 𝐴𝑥𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑥) = (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω))
24 omex 9683 . . . . . . 7 ω ∈ V
2524funimaex 6655 . . . . . 6 (Fun rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) → (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ∈ V)
2619, 25ax-mp 5 . . . . 5 (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ∈ V
2726uniex 7761 . . . 4 (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ∈ V
2823, 27eqeltrdi 2849 . . 3 ((𝑅 Se 𝐴𝑥𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑥) ∈ V)
2928ralrimiva 3146 . 2 (𝑅 Se 𝐴 → ∀𝑥𝐴 Pred(t++(𝑅𝐴), 𝐴, 𝑥) ∈ V)
30 dfse3 6357 . 2 (t++(𝑅𝐴) Se 𝐴 ↔ ∀𝑥𝐴 Pred(t++(𝑅𝐴), 𝐴, 𝑥) ∈ V)
3129, 30sylibr 234 1 (𝑅 Se 𝐴 → t++(𝑅𝐴) Se 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wex 1779  wcel 2108  wral 3061  wrex 3070  Vcvv 3480  c0 4333   cuni 4907   ciun 4991   class class class wbr 5143  cmpt 5225   Se wse 5635  dom cdm 5685  cres 5687  cima 5688  Predcpred 6320  suc csuc 6386  Fun wfun 6555   Fn wfn 6556  cfv 6561  ωcom 7887  reccrdg 8449  t++cttrcl 9747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-ttrcl 9748
This theorem is referenced by:  frmin  9789  frr1  9799
  Copyright terms: Public domain W3C validator