MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttrclse Structured version   Visualization version   GIF version

Theorem ttrclse 9724
Description: If 𝑅 is set-like over 𝐴, then the transitive closure of the restriction of 𝑅 to 𝐴 is set-like over 𝐴.

This theorem requires the axioms of infinity and replacement for its proof. (Contributed by Scott Fenton, 31-Oct-2024.)

Assertion
Ref Expression
ttrclse (𝑅 Se 𝐴 → t++(𝑅𝐴) Se 𝐴)

Proof of Theorem ttrclse
Dummy variables 𝑎 𝑏 𝑓 𝑛 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brttrcl2 9711 . . . . . . 7 (𝑦t++(𝑅𝐴)𝑥 ↔ ∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)))
2 eqid 2730 . . . . . . . . . . 11 rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) = rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))
32ttrclselem2 9723 . . . . . . . . . 10 ((𝑛 ∈ ω ∧ 𝑅 Se 𝐴𝑥𝐴) → (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛)))
433expb 1118 . . . . . . . . 9 ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴𝑥𝐴)) → (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛)))
54ancoms 457 . . . . . . . 8 (((𝑅 Se 𝐴𝑥𝐴) ∧ 𝑛 ∈ ω) → (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛)))
65rexbidva 3174 . . . . . . 7 ((𝑅 Se 𝐴𝑥𝐴) → (∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑛 ∈ ω 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛)))
71, 6bitrid 282 . . . . . 6 ((𝑅 Se 𝐴𝑥𝐴) → (𝑦t++(𝑅𝐴)𝑥 ↔ ∃𝑛 ∈ ω 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛)))
8 vex 3476 . . . . . . . . 9 𝑦 ∈ V
98elpred 6316 . . . . . . . 8 (𝑥 ∈ V → (𝑦 ∈ Pred(t++(𝑅𝐴), 𝐴, 𝑥) ↔ (𝑦𝐴𝑦t++(𝑅𝐴)𝑥)))
109elv 3478 . . . . . . 7 (𝑦 ∈ Pred(t++(𝑅𝐴), 𝐴, 𝑥) ↔ (𝑦𝐴𝑦t++(𝑅𝐴)𝑥))
11 resdmss 6233 . . . . . . . . 9 dom (𝑅𝐴) ⊆ 𝐴
12 vex 3476 . . . . . . . . . . 11 𝑥 ∈ V
138, 12breldm 5907 . . . . . . . . . 10 (𝑦t++(𝑅𝐴)𝑥𝑦 ∈ dom t++(𝑅𝐴))
14 dmttrcl 9718 . . . . . . . . . 10 dom t++(𝑅𝐴) = dom (𝑅𝐴)
1513, 14eleqtrdi 2841 . . . . . . . . 9 (𝑦t++(𝑅𝐴)𝑥𝑦 ∈ dom (𝑅𝐴))
1611, 15sselid 3979 . . . . . . . 8 (𝑦t++(𝑅𝐴)𝑥𝑦𝐴)
1716pm4.71ri 559 . . . . . . 7 (𝑦t++(𝑅𝐴)𝑥 ↔ (𝑦𝐴𝑦t++(𝑅𝐴)𝑥))
1810, 17bitr4i 277 . . . . . 6 (𝑦 ∈ Pred(t++(𝑅𝐴), 𝐴, 𝑥) ↔ 𝑦t++(𝑅𝐴)𝑥)
19 rdgfun 8418 . . . . . . 7 Fun rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))
20 eluniima 7251 . . . . . . 7 (Fun rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) → (𝑦 (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ↔ ∃𝑛 ∈ ω 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛)))
2119, 20ax-mp 5 . . . . . 6 (𝑦 (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ↔ ∃𝑛 ∈ ω 𝑦 ∈ (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥))‘𝑛))
227, 18, 213bitr4g 313 . . . . 5 ((𝑅 Se 𝐴𝑥𝐴) → (𝑦 ∈ Pred(t++(𝑅𝐴), 𝐴, 𝑥) ↔ 𝑦 (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω)))
2322eqrdv 2728 . . . 4 ((𝑅 Se 𝐴𝑥𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑥) = (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω))
24 omex 9640 . . . . . . 7 ω ∈ V
2524funimaex 6635 . . . . . 6 (Fun rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) → (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ∈ V)
2619, 25ax-mp 5 . . . . 5 (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ∈ V
2726uniex 7733 . . . 4 (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑥)) “ ω) ∈ V
2823, 27eqeltrdi 2839 . . 3 ((𝑅 Se 𝐴𝑥𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑥) ∈ V)
2928ralrimiva 3144 . 2 (𝑅 Se 𝐴 → ∀𝑥𝐴 Pred(t++(𝑅𝐴), 𝐴, 𝑥) ∈ V)
30 dfse3 6336 . 2 (t++(𝑅𝐴) Se 𝐴 ↔ ∀𝑥𝐴 Pred(t++(𝑅𝐴), 𝐴, 𝑥) ∈ V)
3129, 30sylibr 233 1 (𝑅 Se 𝐴 → t++(𝑅𝐴) Se 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1085   = wceq 1539  wex 1779  wcel 2104  wral 3059  wrex 3068  Vcvv 3472  c0 4321   cuni 4907   ciun 4996   class class class wbr 5147  cmpt 5230   Se wse 5628  dom cdm 5675  cres 5677  cima 5678  Predcpred 6298  suc csuc 6365  Fun wfun 6536   Fn wfn 6537  cfv 6542  ωcom 7857  reccrdg 8411  t++cttrcl 9704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727  ax-inf2 9638
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-oadd 8472  df-ttrcl 9705
This theorem is referenced by:  frmin  9746  frr1  9756
  Copyright terms: Public domain W3C validator