| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reseq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.) |
| Ref | Expression |
|---|---|
| reseqi.1 | ⊢ 𝐴 = 𝐵 |
| reseqi.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| reseq12i | ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqi.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | reseq1i 5930 | . 2 ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶) |
| 3 | reseqi.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
| 4 | 3 | reseq2i 5931 | . 2 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ↾ 𝐷) |
| 5 | 2, 4 | eqtri 2752 | 1 ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ↾ cres 5625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-in 3912 df-opab 5158 df-xp 5629 df-res 5635 |
| This theorem is referenced by: cnvresid 6565 fprlem1 8240 dfoi 9422 frrlem15 9672 lubfval 18272 glbfval 18285 odulub 18329 oduglb 18331 dvlog 26576 dvlog2 26578 issubgr 29234 finsumvtxdg2size 29514 sitgclg 34312 fourierdlem57 46148 fourierdlem74 46165 fourierdlem75 46166 |
| Copyright terms: Public domain | W3C validator |