MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reseq12i Structured version   Visualization version   GIF version

Theorem reseq12i 5878
Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
reseqi.1 𝐴 = 𝐵
reseqi.2 𝐶 = 𝐷
Assertion
Ref Expression
reseq12i (𝐴𝐶) = (𝐵𝐷)

Proof of Theorem reseq12i
StepHypRef Expression
1 reseqi.1 . . 3 𝐴 = 𝐵
21reseq1i 5876 . 2 (𝐴𝐶) = (𝐵𝐶)
3 reseqi.2 . . 3 𝐶 = 𝐷
43reseq2i 5877 . 2 (𝐵𝐶) = (𝐵𝐷)
52, 4eqtri 2766 1 (𝐴𝐶) = (𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cres 5582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-in 3890  df-opab 5133  df-xp 5586  df-res 5592
This theorem is referenced by:  cnvresid  6497  fprlem1  8087  wfrlem5OLD  8115  dfoi  9200  frrlem15  9446  lubfval  17983  glbfval  17996  odulub  18040  oduglb  18042  dvlog  25711  dvlog2  25713  issubgr  27541  finsumvtxdg2size  27820  sitgclg  32209  fourierdlem57  43594  fourierdlem74  43611  fourierdlem75  43612
  Copyright terms: Public domain W3C validator