MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reseq12i Structured version   Visualization version   GIF version

Theorem reseq12i 6007
Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
reseqi.1 𝐴 = 𝐵
reseqi.2 𝐶 = 𝐷
Assertion
Ref Expression
reseq12i (𝐴𝐶) = (𝐵𝐷)

Proof of Theorem reseq12i
StepHypRef Expression
1 reseqi.1 . . 3 𝐴 = 𝐵
21reseq1i 6005 . 2 (𝐴𝐶) = (𝐵𝐶)
3 reseqi.2 . . 3 𝐶 = 𝐷
43reseq2i 6006 . 2 (𝐵𝐶) = (𝐵𝐷)
52, 4eqtri 2768 1 (𝐴𝐶) = (𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cres 5702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-in 3983  df-opab 5229  df-xp 5706  df-res 5712
This theorem is referenced by:  cnvresid  6657  fprlem1  8341  wfrlem5OLD  8369  dfoi  9580  frrlem15  9826  lubfval  18420  glbfval  18433  odulub  18477  oduglb  18479  dvlog  26711  dvlog2  26713  issubgr  29306  finsumvtxdg2size  29586  sitgclg  34307  fourierdlem57  46084  fourierdlem74  46101  fourierdlem75  46102
  Copyright terms: Public domain W3C validator