MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reseq12i Structured version   Visualization version   GIF version

Theorem reseq12i 5951
Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
reseqi.1 𝐴 = 𝐵
reseqi.2 𝐶 = 𝐷
Assertion
Ref Expression
reseq12i (𝐴𝐶) = (𝐵𝐷)

Proof of Theorem reseq12i
StepHypRef Expression
1 reseqi.1 . . 3 𝐴 = 𝐵
21reseq1i 5949 . 2 (𝐴𝐶) = (𝐵𝐶)
3 reseqi.2 . . 3 𝐶 = 𝐷
43reseq2i 5950 . 2 (𝐵𝐶) = (𝐵𝐷)
52, 4eqtri 2753 1 (𝐴𝐶) = (𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cres 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-in 3924  df-opab 5173  df-xp 5647  df-res 5653
This theorem is referenced by:  cnvresid  6598  fprlem1  8282  dfoi  9471  frrlem15  9717  lubfval  18316  glbfval  18329  odulub  18373  oduglb  18375  dvlog  26567  dvlog2  26569  issubgr  29205  finsumvtxdg2size  29485  sitgclg  34340  fourierdlem57  46168  fourierdlem74  46185  fourierdlem75  46186
  Copyright terms: Public domain W3C validator