MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reseq12i Structured version   Visualization version   GIF version

Theorem reseq12i 5975
Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
reseqi.1 𝐴 = 𝐵
reseqi.2 𝐶 = 𝐷
Assertion
Ref Expression
reseq12i (𝐴𝐶) = (𝐵𝐷)

Proof of Theorem reseq12i
StepHypRef Expression
1 reseqi.1 . . 3 𝐴 = 𝐵
21reseq1i 5973 . 2 (𝐴𝐶) = (𝐵𝐶)
3 reseqi.2 . . 3 𝐶 = 𝐷
43reseq2i 5974 . 2 (𝐵𝐶) = (𝐵𝐷)
52, 4eqtri 2757 1 (𝐴𝐶) = (𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cres 5667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-in 3938  df-opab 5186  df-xp 5671  df-res 5677
This theorem is referenced by:  cnvresid  6625  fprlem1  8307  wfrlem5OLD  8335  dfoi  9533  frrlem15  9779  lubfval  18364  glbfval  18377  odulub  18421  oduglb  18423  dvlog  26629  dvlog2  26631  issubgr  29216  finsumvtxdg2size  29496  sitgclg  34303  fourierdlem57  46135  fourierdlem74  46152  fourierdlem75  46153
  Copyright terms: Public domain W3C validator