| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reseq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.) |
| Ref | Expression |
|---|---|
| reseqi.1 | ⊢ 𝐴 = 𝐵 |
| reseqi.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| reseq12i | ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqi.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | reseq1i 5924 | . 2 ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶) |
| 3 | reseqi.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
| 4 | 3 | reseq2i 5925 | . 2 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ↾ 𝐷) |
| 5 | 2, 4 | eqtri 2754 | 1 ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ↾ cres 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-in 3909 df-opab 5154 df-xp 5622 df-res 5628 |
| This theorem is referenced by: cnvresid 6560 fprlem1 8230 dfoi 9397 frrlem15 9650 lubfval 18254 glbfval 18267 odulub 18311 oduglb 18313 dvlog 26588 dvlog2 26590 issubgr 29250 finsumvtxdg2size 29530 sitgclg 34353 fourierdlem57 46207 fourierdlem74 46224 fourierdlem75 46225 |
| Copyright terms: Public domain | W3C validator |