MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reseq12i Structured version   Visualization version   GIF version

Theorem reseq12i 5987
Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
reseqi.1 𝐴 = 𝐵
reseqi.2 𝐶 = 𝐷
Assertion
Ref Expression
reseq12i (𝐴𝐶) = (𝐵𝐷)

Proof of Theorem reseq12i
StepHypRef Expression
1 reseqi.1 . . 3 𝐴 = 𝐵
21reseq1i 5985 . 2 (𝐴𝐶) = (𝐵𝐶)
3 reseqi.2 . . 3 𝐶 = 𝐷
43reseq2i 5986 . 2 (𝐵𝐶) = (𝐵𝐷)
52, 4eqtri 2756 1 (𝐴𝐶) = (𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  cres 5684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3431  df-in 3956  df-opab 5215  df-xp 5688  df-res 5694
This theorem is referenced by:  cnvresid  6637  fprlem1  8312  wfrlem5OLD  8340  dfoi  9542  frrlem15  9788  lubfval  18349  glbfval  18362  odulub  18406  oduglb  18408  dvlog  26605  dvlog2  26607  issubgr  29104  finsumvtxdg2size  29384  sitgclg  33995  fourierdlem57  45580  fourierdlem74  45597  fourierdlem75  45598
  Copyright terms: Public domain W3C validator