![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reseq12i | Structured version Visualization version GIF version |
Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
reseqi.1 | ⊢ 𝐴 = 𝐵 |
reseqi.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
reseq12i | ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqi.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | reseq1i 5985 | . 2 ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶) |
3 | reseqi.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
4 | 3 | reseq2i 5986 | . 2 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ↾ 𝐷) |
5 | 2, 4 | eqtri 2756 | 1 ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ↾ cres 5684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3431 df-in 3956 df-opab 5215 df-xp 5688 df-res 5694 |
This theorem is referenced by: cnvresid 6637 fprlem1 8312 wfrlem5OLD 8340 dfoi 9542 frrlem15 9788 lubfval 18349 glbfval 18362 odulub 18406 oduglb 18408 dvlog 26605 dvlog2 26607 issubgr 29104 finsumvtxdg2size 29384 sitgclg 33995 fourierdlem57 45580 fourierdlem74 45597 fourierdlem75 45598 |
Copyright terms: Public domain | W3C validator |