| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reseq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.) |
| Ref | Expression |
|---|---|
| reseqi.1 | ⊢ 𝐴 = 𝐵 |
| reseqi.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| reseq12i | ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqi.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | reseq1i 5949 | . 2 ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶) |
| 3 | reseqi.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
| 4 | 3 | reseq2i 5950 | . 2 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ↾ 𝐷) |
| 5 | 2, 4 | eqtri 2753 | 1 ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ↾ cres 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-in 3924 df-opab 5173 df-xp 5647 df-res 5653 |
| This theorem is referenced by: cnvresid 6598 fprlem1 8282 dfoi 9471 frrlem15 9717 lubfval 18316 glbfval 18329 odulub 18373 oduglb 18375 dvlog 26567 dvlog2 26569 issubgr 29205 finsumvtxdg2size 29485 sitgclg 34340 fourierdlem57 46168 fourierdlem74 46185 fourierdlem75 46186 |
| Copyright terms: Public domain | W3C validator |