MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reseq12i Structured version   Visualization version   GIF version

Theorem reseq12i 5930
Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
reseqi.1 𝐴 = 𝐵
reseqi.2 𝐶 = 𝐷
Assertion
Ref Expression
reseq12i (𝐴𝐶) = (𝐵𝐷)

Proof of Theorem reseq12i
StepHypRef Expression
1 reseqi.1 . . 3 𝐴 = 𝐵
21reseq1i 5928 . 2 (𝐴𝐶) = (𝐵𝐶)
3 reseqi.2 . . 3 𝐶 = 𝐷
43reseq2i 5929 . 2 (𝐵𝐶) = (𝐵𝐷)
52, 4eqtri 2756 1 (𝐴𝐶) = (𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cres 5621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-in 3905  df-opab 5156  df-xp 5625  df-res 5631
This theorem is referenced by:  cnvresid  6565  fprlem1  8236  dfoi  9404  frrlem15  9657  lubfval  18256  glbfval  18269  odulub  18313  oduglb  18315  dvlog  26588  dvlog2  26590  issubgr  29251  finsumvtxdg2size  29531  sitgclg  34376  fourierdlem57  46286  fourierdlem74  46303  fourierdlem75  46304
  Copyright terms: Public domain W3C validator