| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reseq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.) |
| Ref | Expression |
|---|---|
| reseqi.1 | ⊢ 𝐴 = 𝐵 |
| reseqi.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| reseq12i | ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqi.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | reseq1i 5973 | . 2 ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶) |
| 3 | reseqi.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
| 4 | 3 | reseq2i 5974 | . 2 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ↾ 𝐷) |
| 5 | 2, 4 | eqtri 2757 | 1 ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ↾ cres 5667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-in 3938 df-opab 5186 df-xp 5671 df-res 5677 |
| This theorem is referenced by: cnvresid 6625 fprlem1 8307 wfrlem5OLD 8335 dfoi 9533 frrlem15 9779 lubfval 18364 glbfval 18377 odulub 18421 oduglb 18423 dvlog 26629 dvlog2 26631 issubgr 29216 finsumvtxdg2size 29496 sitgclg 34303 fourierdlem57 46135 fourierdlem74 46152 fourierdlem75 46153 |
| Copyright terms: Public domain | W3C validator |