MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvresid Structured version   Visualization version   GIF version

Theorem cnvresid 6657
Description: Converse of a restricted identity function. (Contributed by FL, 4-Mar-2007.)
Assertion
Ref Expression
cnvresid ( I ↾ 𝐴) = ( I ↾ 𝐴)

Proof of Theorem cnvresid
StepHypRef Expression
1 cnvi 6173 . . 3 I = I
21eqcomi 2749 . 2 I = I
3 funi 6610 . . 3 Fun I
4 funeq 6598 . . 3 ( I = I → (Fun I ↔ Fun I ))
53, 4mpbii 233 . 2 ( I = I → Fun I )
6 funcnvres 6656 . . 3 (Fun I → ( I ↾ 𝐴) = ( I ↾ ( I “ 𝐴)))
7 imai 6103 . . . 4 ( I “ 𝐴) = 𝐴
81, 7reseq12i 6007 . . 3 ( I ↾ ( I “ 𝐴)) = ( I ↾ 𝐴)
96, 8eqtrdi 2796 . 2 (Fun I → ( I ↾ 𝐴) = ( I ↾ 𝐴))
102, 5, 9mp2b 10 1 ( I ↾ 𝐴) = ( I ↾ 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537   I cid 5592  ccnv 5699  cres 5702  cima 5703  Fun wfun 6567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575
This theorem is referenced by:  fcoi1  6795  f1oi  6900  relexpcnv  15084  tsrdir  18674  gicref  19312  ssidcn  23284  idqtop  23735  idhmeo  23802  bj-iminvid  37161  ltrncnvnid  40084  dihmeetlem1N  41247  dihglblem5apreN  41248  diophrw  42715  cnvrcl0  43587  relexpaddss  43680
  Copyright terms: Public domain W3C validator