MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvresid Structured version   Visualization version   GIF version

Theorem cnvresid 6560
Description: Converse of a restricted identity function. (Contributed by FL, 4-Mar-2007.)
Assertion
Ref Expression
cnvresid ( I ↾ 𝐴) = ( I ↾ 𝐴)

Proof of Theorem cnvresid
StepHypRef Expression
1 cnvi 6088 . . 3 I = I
21eqcomi 2740 . 2 I = I
3 funi 6513 . . 3 Fun I
4 funeq 6501 . . 3 ( I = I → (Fun I ↔ Fun I ))
53, 4mpbii 233 . 2 ( I = I → Fun I )
6 funcnvres 6559 . . 3 (Fun I → ( I ↾ 𝐴) = ( I ↾ ( I “ 𝐴)))
7 imai 6022 . . . 4 ( I “ 𝐴) = 𝐴
81, 7reseq12i 5925 . . 3 ( I ↾ ( I “ 𝐴)) = ( I ↾ 𝐴)
96, 8eqtrdi 2782 . 2 (Fun I → ( I ↾ 𝐴) = ( I ↾ 𝐴))
102, 5, 9mp2b 10 1 ( I ↾ 𝐴) = ( I ↾ 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541   I cid 5508  ccnv 5613  cres 5616  cima 5617  Fun wfun 6475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-fun 6483
This theorem is referenced by:  fcoi1  6697  f1oi  6801  relexpcnv  14942  tsrdir  18510  gicref  19184  ssidcn  23170  idqtop  23621  idhmeo  23688  bj-iminvid  37239  ltrncnvnid  40225  dihmeetlem1N  41388  dihglblem5apreN  41389  diophrw  42851  cnvrcl0  43717  relexpaddss  43810  imaidfu  49210
  Copyright terms: Public domain W3C validator