![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvresid | Structured version Visualization version GIF version |
Description: Converse of a restricted identity function. (Contributed by FL, 4-Mar-2007.) |
Ref | Expression |
---|---|
cnvresid | ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvi 6163 | . . 3 ⊢ ◡ I = I | |
2 | 1 | eqcomi 2743 | . 2 ⊢ I = ◡ I |
3 | funi 6599 | . . 3 ⊢ Fun I | |
4 | funeq 6587 | . . 3 ⊢ ( I = ◡ I → (Fun I ↔ Fun ◡ I )) | |
5 | 3, 4 | mpbii 233 | . 2 ⊢ ( I = ◡ I → Fun ◡ I ) |
6 | funcnvres 6645 | . . 3 ⊢ (Fun ◡ I → ◡( I ↾ 𝐴) = (◡ I ↾ ( I “ 𝐴))) | |
7 | imai 6093 | . . . 4 ⊢ ( I “ 𝐴) = 𝐴 | |
8 | 1, 7 | reseq12i 5997 | . . 3 ⊢ (◡ I ↾ ( I “ 𝐴)) = ( I ↾ 𝐴) |
9 | 6, 8 | eqtrdi 2790 | . 2 ⊢ (Fun ◡ I → ◡( I ↾ 𝐴) = ( I ↾ 𝐴)) |
10 | 2, 5, 9 | mp2b 10 | 1 ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 I cid 5581 ◡ccnv 5687 ↾ cres 5690 “ cima 5691 Fun wfun 6556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-fun 6564 |
This theorem is referenced by: fcoi1 6782 f1oi 6886 relexpcnv 15070 tsrdir 18661 gicref 19302 ssidcn 23278 idqtop 23729 idhmeo 23796 bj-iminvid 37177 ltrncnvnid 40109 dihmeetlem1N 41272 dihglblem5apreN 41273 diophrw 42746 cnvrcl0 43614 relexpaddss 43707 |
Copyright terms: Public domain | W3C validator |