Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvresid | Structured version Visualization version GIF version |
Description: Converse of a restricted identity function. (Contributed by FL, 4-Mar-2007.) |
Ref | Expression |
---|---|
cnvresid | ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvi 5968 | . . 3 ⊢ ◡ I = I | |
2 | 1 | eqcomi 2747 | . 2 ⊢ I = ◡ I |
3 | funi 6365 | . . 3 ⊢ Fun I | |
4 | funeq 6353 | . . 3 ⊢ ( I = ◡ I → (Fun I ↔ Fun ◡ I )) | |
5 | 3, 4 | mpbii 236 | . 2 ⊢ ( I = ◡ I → Fun ◡ I ) |
6 | funcnvres 6411 | . . 3 ⊢ (Fun ◡ I → ◡( I ↾ 𝐴) = (◡ I ↾ ( I “ 𝐴))) | |
7 | imai 5910 | . . . 4 ⊢ ( I “ 𝐴) = 𝐴 | |
8 | 1, 7 | reseq12i 5817 | . . 3 ⊢ (◡ I ↾ ( I “ 𝐴)) = ( I ↾ 𝐴) |
9 | 6, 8 | eqtrdi 2789 | . 2 ⊢ (Fun ◡ I → ◡( I ↾ 𝐴) = ( I ↾ 𝐴)) |
10 | 2, 5, 9 | mp2b 10 | 1 ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 I cid 5424 ◡ccnv 5518 ↾ cres 5521 “ cima 5522 Fun wfun 6327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pr 5293 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3399 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-sn 4514 df-pr 4516 df-op 4520 df-br 5028 df-opab 5090 df-id 5425 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-fun 6335 |
This theorem is referenced by: fcoi1 6546 f1oi 6649 relexpcnv 14477 tsrdir 17957 gicref 18522 ssidcn 21999 idqtop 22450 idhmeo 22517 bj-iminvid 34976 ltrncnvnid 37753 dihmeetlem1N 38916 dihglblem5apreN 38917 diophrw 40137 cnvrcl0 40762 relexpaddss 40856 |
Copyright terms: Public domain | W3C validator |