Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvresid | Structured version Visualization version GIF version |
Description: Converse of a restricted identity function. (Contributed by FL, 4-Mar-2007.) |
Ref | Expression |
---|---|
cnvresid | ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvi 6045 | . . 3 ⊢ ◡ I = I | |
2 | 1 | eqcomi 2747 | . 2 ⊢ I = ◡ I |
3 | funi 6466 | . . 3 ⊢ Fun I | |
4 | funeq 6454 | . . 3 ⊢ ( I = ◡ I → (Fun I ↔ Fun ◡ I )) | |
5 | 3, 4 | mpbii 232 | . 2 ⊢ ( I = ◡ I → Fun ◡ I ) |
6 | funcnvres 6512 | . . 3 ⊢ (Fun ◡ I → ◡( I ↾ 𝐴) = (◡ I ↾ ( I “ 𝐴))) | |
7 | imai 5982 | . . . 4 ⊢ ( I “ 𝐴) = 𝐴 | |
8 | 1, 7 | reseq12i 5889 | . . 3 ⊢ (◡ I ↾ ( I “ 𝐴)) = ( I ↾ 𝐴) |
9 | 6, 8 | eqtrdi 2794 | . 2 ⊢ (Fun ◡ I → ◡( I ↾ 𝐴) = ( I ↾ 𝐴)) |
10 | 2, 5, 9 | mp2b 10 | 1 ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 I cid 5488 ◡ccnv 5588 ↾ cres 5591 “ cima 5592 Fun wfun 6427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-fun 6435 |
This theorem is referenced by: fcoi1 6648 f1oi 6754 relexpcnv 14746 tsrdir 18322 gicref 18887 ssidcn 22406 idqtop 22857 idhmeo 22924 bj-iminvid 35366 ltrncnvnid 38141 dihmeetlem1N 39304 dihglblem5apreN 39305 diophrw 40581 cnvrcl0 41233 relexpaddss 41326 |
Copyright terms: Public domain | W3C validator |