MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvresid Structured version   Visualization version   GIF version

Theorem cnvresid 6579
Description: Converse of a restricted identity function. (Contributed by FL, 4-Mar-2007.)
Assertion
Ref Expression
cnvresid ( I ↾ 𝐴) = ( I ↾ 𝐴)

Proof of Theorem cnvresid
StepHypRef Expression
1 cnvi 6102 . . 3 I = I
21eqcomi 2738 . 2 I = I
3 funi 6532 . . 3 Fun I
4 funeq 6520 . . 3 ( I = I → (Fun I ↔ Fun I ))
53, 4mpbii 233 . 2 ( I = I → Fun I )
6 funcnvres 6578 . . 3 (Fun I → ( I ↾ 𝐴) = ( I ↾ ( I “ 𝐴)))
7 imai 6034 . . . 4 ( I “ 𝐴) = 𝐴
81, 7reseq12i 5937 . . 3 ( I ↾ ( I “ 𝐴)) = ( I ↾ 𝐴)
96, 8eqtrdi 2780 . 2 (Fun I → ( I ↾ 𝐴) = ( I ↾ 𝐴))
102, 5, 9mp2b 10 1 ( I ↾ 𝐴) = ( I ↾ 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540   I cid 5525  ccnv 5630  cres 5633  cima 5634  Fun wfun 6493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-fun 6501
This theorem is referenced by:  fcoi1  6716  f1oi  6820  relexpcnv  14978  tsrdir  18546  gicref  19187  ssidcn  23176  idqtop  23627  idhmeo  23694  bj-iminvid  37177  ltrncnvnid  40115  dihmeetlem1N  41278  dihglblem5apreN  41279  diophrw  42741  cnvrcl0  43608  relexpaddss  43701  imaidfu  49093
  Copyright terms: Public domain W3C validator