| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvresid | Structured version Visualization version GIF version | ||
| Description: Converse of a restricted identity function. (Contributed by FL, 4-Mar-2007.) |
| Ref | Expression |
|---|---|
| cnvresid | ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvi 6117 | . . 3 ⊢ ◡ I = I | |
| 2 | 1 | eqcomi 2739 | . 2 ⊢ I = ◡ I |
| 3 | funi 6551 | . . 3 ⊢ Fun I | |
| 4 | funeq 6539 | . . 3 ⊢ ( I = ◡ I → (Fun I ↔ Fun ◡ I )) | |
| 5 | 3, 4 | mpbii 233 | . 2 ⊢ ( I = ◡ I → Fun ◡ I ) |
| 6 | funcnvres 6597 | . . 3 ⊢ (Fun ◡ I → ◡( I ↾ 𝐴) = (◡ I ↾ ( I “ 𝐴))) | |
| 7 | imai 6048 | . . . 4 ⊢ ( I “ 𝐴) = 𝐴 | |
| 8 | 1, 7 | reseq12i 5951 | . . 3 ⊢ (◡ I ↾ ( I “ 𝐴)) = ( I ↾ 𝐴) |
| 9 | 6, 8 | eqtrdi 2781 | . 2 ⊢ (Fun ◡ I → ◡( I ↾ 𝐴) = ( I ↾ 𝐴)) |
| 10 | 2, 5, 9 | mp2b 10 | 1 ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 I cid 5535 ◡ccnv 5640 ↾ cres 5643 “ cima 5644 Fun wfun 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 |
| This theorem is referenced by: fcoi1 6737 f1oi 6841 relexpcnv 15008 tsrdir 18570 gicref 19211 ssidcn 23149 idqtop 23600 idhmeo 23667 bj-iminvid 37190 ltrncnvnid 40128 dihmeetlem1N 41291 dihglblem5apreN 41292 diophrw 42754 cnvrcl0 43621 relexpaddss 43714 imaidfu 49103 |
| Copyright terms: Public domain | W3C validator |