| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvresid | Structured version Visualization version GIF version | ||
| Description: Converse of a restricted identity function. (Contributed by FL, 4-Mar-2007.) |
| Ref | Expression |
|---|---|
| cnvresid | ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvi 6088 | . . 3 ⊢ ◡ I = I | |
| 2 | 1 | eqcomi 2740 | . 2 ⊢ I = ◡ I |
| 3 | funi 6513 | . . 3 ⊢ Fun I | |
| 4 | funeq 6501 | . . 3 ⊢ ( I = ◡ I → (Fun I ↔ Fun ◡ I )) | |
| 5 | 3, 4 | mpbii 233 | . 2 ⊢ ( I = ◡ I → Fun ◡ I ) |
| 6 | funcnvres 6559 | . . 3 ⊢ (Fun ◡ I → ◡( I ↾ 𝐴) = (◡ I ↾ ( I “ 𝐴))) | |
| 7 | imai 6022 | . . . 4 ⊢ ( I “ 𝐴) = 𝐴 | |
| 8 | 1, 7 | reseq12i 5925 | . . 3 ⊢ (◡ I ↾ ( I “ 𝐴)) = ( I ↾ 𝐴) |
| 9 | 6, 8 | eqtrdi 2782 | . 2 ⊢ (Fun ◡ I → ◡( I ↾ 𝐴) = ( I ↾ 𝐴)) |
| 10 | 2, 5, 9 | mp2b 10 | 1 ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 I cid 5508 ◡ccnv 5613 ↾ cres 5616 “ cima 5617 Fun wfun 6475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-fun 6483 |
| This theorem is referenced by: fcoi1 6697 f1oi 6801 relexpcnv 14942 tsrdir 18510 gicref 19184 ssidcn 23170 idqtop 23621 idhmeo 23688 bj-iminvid 37239 ltrncnvnid 40225 dihmeetlem1N 41388 dihglblem5apreN 41389 diophrw 42851 cnvrcl0 43717 relexpaddss 43810 imaidfu 49210 |
| Copyright terms: Public domain | W3C validator |