Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvresid | Structured version Visualization version GIF version |
Description: Converse of a restricted identity function. (Contributed by FL, 4-Mar-2007.) |
Ref | Expression |
---|---|
cnvresid | ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvi 6034 | . . 3 ⊢ ◡ I = I | |
2 | 1 | eqcomi 2747 | . 2 ⊢ I = ◡ I |
3 | funi 6450 | . . 3 ⊢ Fun I | |
4 | funeq 6438 | . . 3 ⊢ ( I = ◡ I → (Fun I ↔ Fun ◡ I )) | |
5 | 3, 4 | mpbii 232 | . 2 ⊢ ( I = ◡ I → Fun ◡ I ) |
6 | funcnvres 6496 | . . 3 ⊢ (Fun ◡ I → ◡( I ↾ 𝐴) = (◡ I ↾ ( I “ 𝐴))) | |
7 | imai 5971 | . . . 4 ⊢ ( I “ 𝐴) = 𝐴 | |
8 | 1, 7 | reseq12i 5878 | . . 3 ⊢ (◡ I ↾ ( I “ 𝐴)) = ( I ↾ 𝐴) |
9 | 6, 8 | eqtrdi 2795 | . 2 ⊢ (Fun ◡ I → ◡( I ↾ 𝐴) = ( I ↾ 𝐴)) |
10 | 2, 5, 9 | mp2b 10 | 1 ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 I cid 5479 ◡ccnv 5579 ↾ cres 5582 “ cima 5583 Fun wfun 6412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fun 6420 |
This theorem is referenced by: fcoi1 6632 f1oi 6737 relexpcnv 14674 tsrdir 18237 gicref 18802 ssidcn 22314 idqtop 22765 idhmeo 22832 bj-iminvid 35293 ltrncnvnid 38068 dihmeetlem1N 39231 dihglblem5apreN 39232 diophrw 40497 cnvrcl0 41122 relexpaddss 41215 |
Copyright terms: Public domain | W3C validator |