Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem57 Structured version   Visualization version   GIF version

Theorem fourierdlem57 44394
Description: The derivative of 𝑂. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem57.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem57.xre (𝜑𝑋 ∈ ℝ)
fourierdlem57.a (𝜑𝐴 ∈ ℝ)
fourierdlem57.b (𝜑𝐵 ∈ ℝ)
fourierdlem57.fdv (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
fourierdlem57.ab (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π))
fourierdlem57.n0 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
fourierdlem57.c (𝜑𝐶 ∈ ℝ)
fourierdlem57.o 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
Assertion
Ref Expression
fourierdlem57 ((𝜑 → ((ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ ∧ (ℝ D 𝑂) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))))) ∧ (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2))))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐶,𝑠   𝐹,𝑠   𝑋,𝑠   𝜑,𝑠
Allowed substitution hint:   𝑂(𝑠)

Proof of Theorem fourierdlem57
StepHypRef Expression
1 fourierdlem57.fdv . . . . . . . . . 10 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
21adantr 481 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
3 fourierdlem57.xre . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℝ)
4 fourierdlem57.a . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ)
53, 4readdcld 11184 . . . . . . . . . . . 12 (𝜑 → (𝑋 + 𝐴) ∈ ℝ)
65rexrd 11205 . . . . . . . . . . 11 (𝜑 → (𝑋 + 𝐴) ∈ ℝ*)
76adantr 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) ∈ ℝ*)
8 fourierdlem57.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ)
93, 8readdcld 11184 . . . . . . . . . . . 12 (𝜑 → (𝑋 + 𝐵) ∈ ℝ)
109rexrd 11205 . . . . . . . . . . 11 (𝜑 → (𝑋 + 𝐵) ∈ ℝ*)
1110adantr 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐵) ∈ ℝ*)
123adantr 481 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ)
13 elioore 13294 . . . . . . . . . . . 12 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
1413adantl 482 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
1512, 14readdcld 11184 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
164adantr 481 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
1716rexrd 11205 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
188rexrd 11205 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ*)
1918adantr 481 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
20 simpr 485 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴(,)𝐵))
21 ioogtlb 43723 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
2217, 19, 20, 21syl3anc 1371 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
2316, 14, 12, 22ltadd2dd 11314 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) < (𝑋 + 𝑠))
248adantr 481 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
25 iooltub 43738 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
2617, 19, 20, 25syl3anc 1371 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
2714, 24, 12, 26ltadd2dd 11314 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝑋 + 𝐵))
287, 11, 15, 23, 27eliood 43726 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))
292, 28ffvelcdmd 7036 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) ∈ ℝ)
30 2re 12227 . . . . . . . . . 10 2 ∈ ℝ
3130a1i 11 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ)
32 rehalfcl 12379 . . . . . . . . . . 11 (𝑠 ∈ ℝ → (𝑠 / 2) ∈ ℝ)
3314, 32syl 17 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℝ)
3433resincld 16025 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℝ)
3531, 34remulcld 11185 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
3629, 35remulcld 11185 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
3733recoscld 16026 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (cos‘(𝑠 / 2)) ∈ ℝ)
38 fourierdlem57.f . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶ℝ)
3938adantr 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐹:ℝ⟶ℝ)
4039, 15ffvelcdmd 7036 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
41 fourierdlem57.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ)
4241adantr 481 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℝ)
4340, 42resubcld 11583 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℝ)
4437, 43remulcld 11185 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ∈ ℝ)
4536, 44resubcld 11583 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) ∈ ℝ)
4635resqcld 14030 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((2 · (sin‘(𝑠 / 2)))↑2) ∈ ℝ)
47 2cnd 12231 . . . . . . . . 9 (𝑠 ∈ ℝ → 2 ∈ ℂ)
4832recnd 11183 . . . . . . . . . 10 (𝑠 ∈ ℝ → (𝑠 / 2) ∈ ℂ)
4948sincld 16012 . . . . . . . . 9 (𝑠 ∈ ℝ → (sin‘(𝑠 / 2)) ∈ ℂ)
5047, 49mulcld 11175 . . . . . . . 8 (𝑠 ∈ ℝ → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
5114, 50syl 17 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
52 2cnd 12231 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
5314, 49syl 17 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ)
54 2ne0 12257 . . . . . . . . 9 2 ≠ 0
5554a1i 11 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
56 fourierdlem57.ab . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π))
5756sselda 3944 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (-π[,]π))
58 eqcom 2743 . . . . . . . . . . . . . . 15 (𝑠 = 0 ↔ 0 = 𝑠)
5958biimpi 215 . . . . . . . . . . . . . 14 (𝑠 = 0 → 0 = 𝑠)
6059adantl 482 . . . . . . . . . . . . 13 ((𝑠 ∈ (𝐴(,)𝐵) ∧ 𝑠 = 0) → 0 = 𝑠)
61 simpl 483 . . . . . . . . . . . . 13 ((𝑠 ∈ (𝐴(,)𝐵) ∧ 𝑠 = 0) → 𝑠 ∈ (𝐴(,)𝐵))
6260, 61eqeltrd 2838 . . . . . . . . . . . 12 ((𝑠 ∈ (𝐴(,)𝐵) ∧ 𝑠 = 0) → 0 ∈ (𝐴(,)𝐵))
6362adantll 712 . . . . . . . . . . 11 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ 𝑠 = 0) → 0 ∈ (𝐴(,)𝐵))
64 fourierdlem57.n0 . . . . . . . . . . . 12 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
6564ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ 𝑠 = 0) → ¬ 0 ∈ (𝐴(,)𝐵))
6663, 65pm2.65da 815 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ¬ 𝑠 = 0)
6766neqned 2950 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0)
68 fourierdlem44 44382 . . . . . . . . 9 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
6957, 67, 68syl2anc 584 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ≠ 0)
7052, 53, 55, 69mulne0d 11807 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
71 2z 12535 . . . . . . . 8 2 ∈ ℤ
7271a1i 11 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℤ)
7351, 70, 72expne0d 14057 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((2 · (sin‘(𝑠 / 2)))↑2) ≠ 0)
7445, 46, 73redivcld 11983 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2)) ∈ ℝ)
75 eqid 2736 . . . . 5 (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2)))
7674, 75fmptd 7062 . . . 4 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))):(𝐴(,)𝐵)⟶ℝ)
77 fourierdlem57.o . . . . . . . 8 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
7877a1i 11 . . . . . . 7 (𝜑𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))
7978oveq2d 7373 . . . . . 6 (𝜑 → (ℝ D 𝑂) = (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))))
80 reelprrecn 11143 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
8180a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
8243recnd 11183 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ)
8340recnd 11183 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
84 eqid 2736 . . . . . . . . . 10 (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
8538, 3, 4, 8, 84, 1fourierdlem28 44366 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
8642recnd 11183 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℂ)
87 0red 11158 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
88 iooretop 24129 . . . . . . . . . . . 12 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
89 eqid 2736 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
9089tgioo2 24166 . . . . . . . . . . . 12 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
9188, 90eleqtri 2836 . . . . . . . . . . 11 (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ)
9291a1i 11 . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ))
9341recnd 11183 . . . . . . . . . 10 (𝜑𝐶 ∈ ℂ)
9481, 92, 93dvmptconst 44146 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 0))
9581, 83, 29, 85, 86, 87, 94dvmptsub 25331 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) − 0)))
9629recnd 11183 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) ∈ ℂ)
9796subid1d 11501 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) − 0) = ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)))
9897mpteq2dva 5205 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) − 0)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
9995, 98eqtrd 2776 . . . . . . 7 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
100 eldifsn 4747 . . . . . . . 8 ((2 · (sin‘(𝑠 / 2))) ∈ (ℂ ∖ {0}) ↔ ((2 · (sin‘(𝑠 / 2))) ∈ ℂ ∧ (2 · (sin‘(𝑠 / 2))) ≠ 0))
10151, 70, 100sylanbrc 583 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ (ℂ ∖ {0}))
102 recn 11141 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → 𝑠 ∈ ℂ)
10354a1i 11 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → 2 ≠ 0)
104102, 47, 103divrec2d 11935 . . . . . . . . . . . 12 (𝑠 ∈ ℝ → (𝑠 / 2) = ((1 / 2) · 𝑠))
105104eqcomd 2742 . . . . . . . . . . 11 (𝑠 ∈ ℝ → ((1 / 2) · 𝑠) = (𝑠 / 2))
10613, 105syl 17 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → ((1 / 2) · 𝑠) = (𝑠 / 2))
107106fveq2d 6846 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → (cos‘((1 / 2) · 𝑠)) = (cos‘(𝑠 / 2)))
108 halfcn 12368 . . . . . . . . . . . . 13 (1 / 2) ∈ ℂ
109108a1i 11 . . . . . . . . . . . 12 (𝑠 ∈ ℂ → (1 / 2) ∈ ℂ)
110 id 22 . . . . . . . . . . . 12 (𝑠 ∈ ℂ → 𝑠 ∈ ℂ)
111109, 110mulcld 11175 . . . . . . . . . . 11 (𝑠 ∈ ℂ → ((1 / 2) · 𝑠) ∈ ℂ)
112111coscld 16013 . . . . . . . . . 10 (𝑠 ∈ ℂ → (cos‘((1 / 2) · 𝑠)) ∈ ℂ)
11313, 102, 1123syl 18 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → (cos‘((1 / 2) · 𝑠)) ∈ ℂ)
114107, 113eqeltrrd 2839 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → (cos‘(𝑠 / 2)) ∈ ℂ)
115114adantl 482 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (cos‘(𝑠 / 2)) ∈ ℂ)
116 ioossre 13325 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ⊆ ℝ
117 resmpt 5991 . . . . . . . . . . . . 13 ((𝐴(,)𝐵) ⊆ ℝ → ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ (𝐴(,)𝐵)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2)))))
118116, 117ax-mp 5 . . . . . . . . . . . 12 ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ (𝐴(,)𝐵)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))
119118eqcomi 2745 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2)))) = ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ (𝐴(,)𝐵))
120119oveq2i 7368 . . . . . . . . . 10 (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (ℝ D ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ (𝐴(,)𝐵)))
121 ax-resscn 11108 . . . . . . . . . . 11 ℝ ⊆ ℂ
122 eqid 2736 . . . . . . . . . . . 12 (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) = (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))
123122, 50fmpti 7060 . . . . . . . . . . 11 (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))):ℝ⟶ℂ
124 ssid 3966 . . . . . . . . . . 11 ℝ ⊆ ℝ
12589, 90dvres 25275 . . . . . . . . . . 11 (((ℝ ⊆ ℂ ∧ (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ)) → (ℝ D ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ (𝐴(,)𝐵))) = ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵))))
126121, 123, 124, 116, 125mp4an 691 . . . . . . . . . 10 (ℝ D ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ (𝐴(,)𝐵))) = ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)))
127 resmpt 5991 . . . . . . . . . . . . . . 15 (ℝ ⊆ ℂ → ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑠)))))
128121, 127ax-mp 5 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑠))))
129105fveq2d 6846 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℝ → (sin‘((1 / 2) · 𝑠)) = (sin‘(𝑠 / 2)))
130129oveq2d 7373 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℝ → (2 · (sin‘((1 / 2) · 𝑠))) = (2 · (sin‘(𝑠 / 2))))
131130mpteq2ia 5208 . . . . . . . . . . . . . 14 (𝑠 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) = (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))
132128, 131eqtr2i 2765 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) = ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ)
133132oveq2i 7368 . . . . . . . . . . . 12 (ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) = (ℝ D ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ))
134 ioontr 43739 . . . . . . . . . . . 12 ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵)
135133, 134reseq12i 5935 . . . . . . . . . . 11 ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵))) = ((ℝ D ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ)) ↾ (𝐴(,)𝐵))
136 eqid 2736 . . . . . . . . . . . . . 14 (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) = (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))
137 2cnd 12231 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℂ → 2 ∈ ℂ)
138111sincld 16012 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℂ → (sin‘((1 / 2) · 𝑠)) ∈ ℂ)
139137, 138mulcld 11175 . . . . . . . . . . . . . 14 (𝑠 ∈ ℂ → (2 · (sin‘((1 / 2) · 𝑠))) ∈ ℂ)
140136, 139fmpti 7060 . . . . . . . . . . . . 13 (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))):ℂ⟶ℂ
141 ssid 3966 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
142 dmmptg 6194 . . . . . . . . . . . . . . . 16 (∀𝑠 ∈ ℂ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))) ∈ ℂ → dom (𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) = ℂ)
143 2cn 12228 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℂ
144143, 108mulcli 11162 . . . . . . . . . . . . . . . . . 18 (2 · (1 / 2)) ∈ ℂ
145144a1i 11 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℂ → (2 · (1 / 2)) ∈ ℂ)
146145, 112mulcld 11175 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℂ → ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))) ∈ ℂ)
147142, 146mprg 3070 . . . . . . . . . . . . . . 15 dom (𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) = ℂ
148121, 147sseqtrri 3981 . . . . . . . . . . . . . 14 ℝ ⊆ dom (𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))))
149 dvasinbx 44151 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = (𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))))
150143, 108, 149mp2an 690 . . . . . . . . . . . . . . 15 (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = (𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))))
151150dmeqi 5860 . . . . . . . . . . . . . 14 dom (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = dom (𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))))
152148, 151sseqtrri 3981 . . . . . . . . . . . . 13 ℝ ⊆ dom (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))))
153 dvres3 25277 . . . . . . . . . . . . 13 (((ℝ ∈ {ℝ, ℂ} ∧ (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))))) → (ℝ D ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ)) = ((ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) ↾ ℝ))
15480, 140, 141, 152, 153mp4an 691 . . . . . . . . . . . 12 (ℝ D ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ)) = ((ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) ↾ ℝ)
155154reseq1i 5933 . . . . . . . . . . 11 ((ℝ D ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ)) ↾ (𝐴(,)𝐵)) = (((ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) ↾ ℝ) ↾ (𝐴(,)𝐵))
156150reseq1i 5933 . . . . . . . . . . . . 13 ((ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) ↾ ℝ) = ((𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) ↾ ℝ)
157156reseq1i 5933 . . . . . . . . . . . 12 (((ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) ↾ ℝ) ↾ (𝐴(,)𝐵)) = (((𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) ↾ ℝ) ↾ (𝐴(,)𝐵))
158 resabs1 5967 . . . . . . . . . . . . 13 ((𝐴(,)𝐵) ⊆ ℝ → (((𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) ↾ ℝ) ↾ (𝐴(,)𝐵)) = ((𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) ↾ (𝐴(,)𝐵)))
159116, 158ax-mp 5 . . . . . . . . . . . 12 (((𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) ↾ ℝ) ↾ (𝐴(,)𝐵)) = ((𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) ↾ (𝐴(,)𝐵))
160 ioosscn 13326 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ⊆ ℂ
161 resmpt 5991 . . . . . . . . . . . . 13 ((𝐴(,)𝐵) ⊆ ℂ → ((𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) ↾ (𝐴(,)𝐵)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))))
162160, 161ax-mp 5 . . . . . . . . . . . 12 ((𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) ↾ (𝐴(,)𝐵)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))))
163157, 159, 1623eqtri 2768 . . . . . . . . . . 11 (((ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) ↾ ℝ) ↾ (𝐴(,)𝐵)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))))
164135, 155, 1633eqtri 2768 . . . . . . . . . 10 ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))))
165120, 126, 1643eqtri 2768 . . . . . . . . 9 (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))))
166143, 54recidi 11886 . . . . . . . . . . . . 13 (2 · (1 / 2)) = 1
167166oveq1i 7367 . . . . . . . . . . . 12 ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))) = (1 · (cos‘((1 / 2) · 𝑠)))
168167a1i 11 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))) = (1 · (cos‘((1 / 2) · 𝑠))))
169113mulid2d 11173 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → (1 · (cos‘((1 / 2) · 𝑠))) = (cos‘((1 / 2) · 𝑠)))
170168, 169, 1073eqtrd 2780 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))) = (cos‘(𝑠 / 2)))
171170mpteq2ia 5208 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2)))
172165, 171eqtri 2764 . . . . . . . 8 (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2)))
173172a1i 11 . . . . . . 7 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2))))
17481, 82, 29, 99, 101, 115, 173dvmptdiv 25338 . . . . . 6 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))))
17579, 174eqtrd 2776 . . . . 5 (𝜑 → (ℝ D 𝑂) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))))
176175feq1d 6653 . . . 4 (𝜑 → ((ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ ↔ (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))):(𝐴(,)𝐵)⟶ℝ))
17776, 176mpbird 256 . . 3 (𝜑 → (ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ)
178177, 175jca 512 . 2 (𝜑 → ((ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ ∧ (ℝ D 𝑂) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2)))))
179178, 172pm3.2i 471 1 ((𝜑 → ((ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ ∧ (ℝ D 𝑂) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))))) ∧ (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2943  cdif 3907  wss 3910  {csn 4586  {cpr 4588   class class class wbr 5105  cmpt 5188  dom cdm 5633  ran crn 5634  cres 5635  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  *cxr 11188   < clt 11189  cmin 11385  -cneg 11386   / cdiv 11812  2c2 12208  cz 12499  (,)cioo 13264  [,]cicc 13267  cexp 13967  sincsin 15946  cosccos 15947  πcpi 15949  t crest 17302  TopOpenctopn 17303  topGenctg 17319  fldccnfld 20796  intcnt 22368   D cdv 25227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-t1 22665  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231
This theorem is referenced by:  fourierdlem68  44405  fourierdlem80  44417
  Copyright terms: Public domain W3C validator