Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem57 Structured version   Visualization version   GIF version

Theorem fourierdlem57 43379
Description: The derivative of 𝑂. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem57.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem57.xre (𝜑𝑋 ∈ ℝ)
fourierdlem57.a (𝜑𝐴 ∈ ℝ)
fourierdlem57.b (𝜑𝐵 ∈ ℝ)
fourierdlem57.fdv (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
fourierdlem57.ab (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π))
fourierdlem57.n0 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
fourierdlem57.c (𝜑𝐶 ∈ ℝ)
fourierdlem57.o 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
Assertion
Ref Expression
fourierdlem57 ((𝜑 → ((ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ ∧ (ℝ D 𝑂) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))))) ∧ (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2))))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐶,𝑠   𝐹,𝑠   𝑋,𝑠   𝜑,𝑠
Allowed substitution hint:   𝑂(𝑠)

Proof of Theorem fourierdlem57
StepHypRef Expression
1 fourierdlem57.fdv . . . . . . . . . 10 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
21adantr 484 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
3 fourierdlem57.xre . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℝ)
4 fourierdlem57.a . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ)
53, 4readdcld 10862 . . . . . . . . . . . 12 (𝜑 → (𝑋 + 𝐴) ∈ ℝ)
65rexrd 10883 . . . . . . . . . . 11 (𝜑 → (𝑋 + 𝐴) ∈ ℝ*)
76adantr 484 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) ∈ ℝ*)
8 fourierdlem57.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ)
93, 8readdcld 10862 . . . . . . . . . . . 12 (𝜑 → (𝑋 + 𝐵) ∈ ℝ)
109rexrd 10883 . . . . . . . . . . 11 (𝜑 → (𝑋 + 𝐵) ∈ ℝ*)
1110adantr 484 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐵) ∈ ℝ*)
123adantr 484 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ)
13 elioore 12965 . . . . . . . . . . . 12 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
1413adantl 485 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
1512, 14readdcld 10862 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
164adantr 484 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
1716rexrd 10883 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
188rexrd 10883 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ*)
1918adantr 484 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
20 simpr 488 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴(,)𝐵))
21 ioogtlb 42708 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
2217, 19, 20, 21syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
2316, 14, 12, 22ltadd2dd 10991 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) < (𝑋 + 𝑠))
248adantr 484 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
25 iooltub 42723 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
2617, 19, 20, 25syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
2714, 24, 12, 26ltadd2dd 10991 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝑋 + 𝐵))
287, 11, 15, 23, 27eliood 42711 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))
292, 28ffvelrnd 6905 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) ∈ ℝ)
30 2re 11904 . . . . . . . . . 10 2 ∈ ℝ
3130a1i 11 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ)
32 rehalfcl 12056 . . . . . . . . . . 11 (𝑠 ∈ ℝ → (𝑠 / 2) ∈ ℝ)
3314, 32syl 17 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℝ)
3433resincld 15704 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℝ)
3531, 34remulcld 10863 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
3629, 35remulcld 10863 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
3733recoscld 15705 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (cos‘(𝑠 / 2)) ∈ ℝ)
38 fourierdlem57.f . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶ℝ)
3938adantr 484 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐹:ℝ⟶ℝ)
4039, 15ffvelrnd 6905 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
41 fourierdlem57.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ)
4241adantr 484 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℝ)
4340, 42resubcld 11260 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℝ)
4437, 43remulcld 10863 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ∈ ℝ)
4536, 44resubcld 11260 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) ∈ ℝ)
4635resqcld 13817 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((2 · (sin‘(𝑠 / 2)))↑2) ∈ ℝ)
47 2cnd 11908 . . . . . . . . 9 (𝑠 ∈ ℝ → 2 ∈ ℂ)
4832recnd 10861 . . . . . . . . . 10 (𝑠 ∈ ℝ → (𝑠 / 2) ∈ ℂ)
4948sincld 15691 . . . . . . . . 9 (𝑠 ∈ ℝ → (sin‘(𝑠 / 2)) ∈ ℂ)
5047, 49mulcld 10853 . . . . . . . 8 (𝑠 ∈ ℝ → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
5114, 50syl 17 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
52 2cnd 11908 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
5314, 49syl 17 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ)
54 2ne0 11934 . . . . . . . . 9 2 ≠ 0
5554a1i 11 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
56 fourierdlem57.ab . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π))
5756sselda 3901 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (-π[,]π))
58 eqcom 2744 . . . . . . . . . . . . . . 15 (𝑠 = 0 ↔ 0 = 𝑠)
5958biimpi 219 . . . . . . . . . . . . . 14 (𝑠 = 0 → 0 = 𝑠)
6059adantl 485 . . . . . . . . . . . . 13 ((𝑠 ∈ (𝐴(,)𝐵) ∧ 𝑠 = 0) → 0 = 𝑠)
61 simpl 486 . . . . . . . . . . . . 13 ((𝑠 ∈ (𝐴(,)𝐵) ∧ 𝑠 = 0) → 𝑠 ∈ (𝐴(,)𝐵))
6260, 61eqeltrd 2838 . . . . . . . . . . . 12 ((𝑠 ∈ (𝐴(,)𝐵) ∧ 𝑠 = 0) → 0 ∈ (𝐴(,)𝐵))
6362adantll 714 . . . . . . . . . . 11 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ 𝑠 = 0) → 0 ∈ (𝐴(,)𝐵))
64 fourierdlem57.n0 . . . . . . . . . . . 12 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
6564ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ 𝑠 = 0) → ¬ 0 ∈ (𝐴(,)𝐵))
6663, 65pm2.65da 817 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ¬ 𝑠 = 0)
6766neqned 2947 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0)
68 fourierdlem44 43367 . . . . . . . . 9 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
6957, 67, 68syl2anc 587 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ≠ 0)
7052, 53, 55, 69mulne0d 11484 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
71 2z 12209 . . . . . . . 8 2 ∈ ℤ
7271a1i 11 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℤ)
7351, 70, 72expne0d 13722 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((2 · (sin‘(𝑠 / 2)))↑2) ≠ 0)
7445, 46, 73redivcld 11660 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2)) ∈ ℝ)
75 eqid 2737 . . . . 5 (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2)))
7674, 75fmptd 6931 . . . 4 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))):(𝐴(,)𝐵)⟶ℝ)
77 fourierdlem57.o . . . . . . . 8 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
7877a1i 11 . . . . . . 7 (𝜑𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))
7978oveq2d 7229 . . . . . 6 (𝜑 → (ℝ D 𝑂) = (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))))
80 reelprrecn 10821 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
8180a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
8243recnd 10861 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ)
8340recnd 10861 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
84 eqid 2737 . . . . . . . . . 10 (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
8538, 3, 4, 8, 84, 1fourierdlem28 43351 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
8642recnd 10861 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℂ)
87 0red 10836 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
88 iooretop 23663 . . . . . . . . . . . 12 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
89 eqid 2737 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
9089tgioo2 23700 . . . . . . . . . . . 12 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
9188, 90eleqtri 2836 . . . . . . . . . . 11 (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ)
9291a1i 11 . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ))
9341recnd 10861 . . . . . . . . . 10 (𝜑𝐶 ∈ ℂ)
9481, 92, 93dvmptconst 43131 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 0))
9581, 83, 29, 85, 86, 87, 94dvmptsub 24864 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) − 0)))
9629recnd 10861 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) ∈ ℂ)
9796subid1d 11178 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) − 0) = ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)))
9897mpteq2dva 5150 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) − 0)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
9995, 98eqtrd 2777 . . . . . . 7 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
100 eldifsn 4700 . . . . . . . 8 ((2 · (sin‘(𝑠 / 2))) ∈ (ℂ ∖ {0}) ↔ ((2 · (sin‘(𝑠 / 2))) ∈ ℂ ∧ (2 · (sin‘(𝑠 / 2))) ≠ 0))
10151, 70, 100sylanbrc 586 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ (ℂ ∖ {0}))
102 recn 10819 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → 𝑠 ∈ ℂ)
10354a1i 11 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → 2 ≠ 0)
104102, 47, 103divrec2d 11612 . . . . . . . . . . . 12 (𝑠 ∈ ℝ → (𝑠 / 2) = ((1 / 2) · 𝑠))
105104eqcomd 2743 . . . . . . . . . . 11 (𝑠 ∈ ℝ → ((1 / 2) · 𝑠) = (𝑠 / 2))
10613, 105syl 17 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → ((1 / 2) · 𝑠) = (𝑠 / 2))
107106fveq2d 6721 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → (cos‘((1 / 2) · 𝑠)) = (cos‘(𝑠 / 2)))
108 halfcn 12045 . . . . . . . . . . . . 13 (1 / 2) ∈ ℂ
109108a1i 11 . . . . . . . . . . . 12 (𝑠 ∈ ℂ → (1 / 2) ∈ ℂ)
110 id 22 . . . . . . . . . . . 12 (𝑠 ∈ ℂ → 𝑠 ∈ ℂ)
111109, 110mulcld 10853 . . . . . . . . . . 11 (𝑠 ∈ ℂ → ((1 / 2) · 𝑠) ∈ ℂ)
112111coscld 15692 . . . . . . . . . 10 (𝑠 ∈ ℂ → (cos‘((1 / 2) · 𝑠)) ∈ ℂ)
11313, 102, 1123syl 18 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → (cos‘((1 / 2) · 𝑠)) ∈ ℂ)
114107, 113eqeltrrd 2839 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → (cos‘(𝑠 / 2)) ∈ ℂ)
115114adantl 485 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (cos‘(𝑠 / 2)) ∈ ℂ)
116 ioossre 12996 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ⊆ ℝ
117 resmpt 5905 . . . . . . . . . . . . 13 ((𝐴(,)𝐵) ⊆ ℝ → ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ (𝐴(,)𝐵)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2)))))
118116, 117ax-mp 5 . . . . . . . . . . . 12 ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ (𝐴(,)𝐵)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))
119118eqcomi 2746 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2)))) = ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ (𝐴(,)𝐵))
120119oveq2i 7224 . . . . . . . . . 10 (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (ℝ D ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ (𝐴(,)𝐵)))
121 ax-resscn 10786 . . . . . . . . . . 11 ℝ ⊆ ℂ
122 eqid 2737 . . . . . . . . . . . 12 (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) = (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))
123122, 50fmpti 6929 . . . . . . . . . . 11 (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))):ℝ⟶ℂ
124 ssid 3923 . . . . . . . . . . 11 ℝ ⊆ ℝ
12589, 90dvres 24808 . . . . . . . . . . 11 (((ℝ ⊆ ℂ ∧ (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ)) → (ℝ D ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ (𝐴(,)𝐵))) = ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵))))
126121, 123, 124, 116, 125mp4an 693 . . . . . . . . . 10 (ℝ D ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ (𝐴(,)𝐵))) = ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)))
127 resmpt 5905 . . . . . . . . . . . . . . 15 (ℝ ⊆ ℂ → ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑠)))))
128121, 127ax-mp 5 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑠))))
129105fveq2d 6721 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℝ → (sin‘((1 / 2) · 𝑠)) = (sin‘(𝑠 / 2)))
130129oveq2d 7229 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℝ → (2 · (sin‘((1 / 2) · 𝑠))) = (2 · (sin‘(𝑠 / 2))))
131130mpteq2ia 5146 . . . . . . . . . . . . . 14 (𝑠 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) = (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))
132128, 131eqtr2i 2766 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) = ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ)
133132oveq2i 7224 . . . . . . . . . . . 12 (ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) = (ℝ D ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ))
134 ioontr 42724 . . . . . . . . . . . 12 ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵)
135133, 134reseq12i 5849 . . . . . . . . . . 11 ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵))) = ((ℝ D ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ)) ↾ (𝐴(,)𝐵))
136 eqid 2737 . . . . . . . . . . . . . 14 (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) = (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))
137 2cnd 11908 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℂ → 2 ∈ ℂ)
138111sincld 15691 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℂ → (sin‘((1 / 2) · 𝑠)) ∈ ℂ)
139137, 138mulcld 10853 . . . . . . . . . . . . . 14 (𝑠 ∈ ℂ → (2 · (sin‘((1 / 2) · 𝑠))) ∈ ℂ)
140136, 139fmpti 6929 . . . . . . . . . . . . 13 (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))):ℂ⟶ℂ
141 ssid 3923 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
142 dmmptg 6105 . . . . . . . . . . . . . . . 16 (∀𝑠 ∈ ℂ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))) ∈ ℂ → dom (𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) = ℂ)
143 2cn 11905 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℂ
144143, 108mulcli 10840 . . . . . . . . . . . . . . . . . 18 (2 · (1 / 2)) ∈ ℂ
145144a1i 11 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℂ → (2 · (1 / 2)) ∈ ℂ)
146145, 112mulcld 10853 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℂ → ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))) ∈ ℂ)
147142, 146mprg 3075 . . . . . . . . . . . . . . 15 dom (𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) = ℂ
148121, 147sseqtrri 3938 . . . . . . . . . . . . . 14 ℝ ⊆ dom (𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))))
149 dvasinbx 43136 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = (𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))))
150143, 108, 149mp2an 692 . . . . . . . . . . . . . . 15 (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = (𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))))
151150dmeqi 5773 . . . . . . . . . . . . . 14 dom (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = dom (𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))))
152148, 151sseqtrri 3938 . . . . . . . . . . . . 13 ℝ ⊆ dom (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))))
153 dvres3 24810 . . . . . . . . . . . . 13 (((ℝ ∈ {ℝ, ℂ} ∧ (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))))) → (ℝ D ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ)) = ((ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) ↾ ℝ))
15480, 140, 141, 152, 153mp4an 693 . . . . . . . . . . . 12 (ℝ D ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ)) = ((ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) ↾ ℝ)
155154reseq1i 5847 . . . . . . . . . . 11 ((ℝ D ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ)) ↾ (𝐴(,)𝐵)) = (((ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) ↾ ℝ) ↾ (𝐴(,)𝐵))
156150reseq1i 5847 . . . . . . . . . . . . 13 ((ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) ↾ ℝ) = ((𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) ↾ ℝ)
157156reseq1i 5847 . . . . . . . . . . . 12 (((ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) ↾ ℝ) ↾ (𝐴(,)𝐵)) = (((𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) ↾ ℝ) ↾ (𝐴(,)𝐵))
158 resabs1 5881 . . . . . . . . . . . . 13 ((𝐴(,)𝐵) ⊆ ℝ → (((𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) ↾ ℝ) ↾ (𝐴(,)𝐵)) = ((𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) ↾ (𝐴(,)𝐵)))
159116, 158ax-mp 5 . . . . . . . . . . . 12 (((𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) ↾ ℝ) ↾ (𝐴(,)𝐵)) = ((𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) ↾ (𝐴(,)𝐵))
160 ioosscn 12997 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ⊆ ℂ
161 resmpt 5905 . . . . . . . . . . . . 13 ((𝐴(,)𝐵) ⊆ ℂ → ((𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) ↾ (𝐴(,)𝐵)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))))
162160, 161ax-mp 5 . . . . . . . . . . . 12 ((𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) ↾ (𝐴(,)𝐵)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))))
163157, 159, 1623eqtri 2769 . . . . . . . . . . 11 (((ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) ↾ ℝ) ↾ (𝐴(,)𝐵)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))))
164135, 155, 1633eqtri 2769 . . . . . . . . . 10 ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))))
165120, 126, 1643eqtri 2769 . . . . . . . . 9 (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))))
166143, 54recidi 11563 . . . . . . . . . . . . 13 (2 · (1 / 2)) = 1
167166oveq1i 7223 . . . . . . . . . . . 12 ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))) = (1 · (cos‘((1 / 2) · 𝑠)))
168167a1i 11 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))) = (1 · (cos‘((1 / 2) · 𝑠))))
169113mulid2d 10851 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → (1 · (cos‘((1 / 2) · 𝑠))) = (cos‘((1 / 2) · 𝑠)))
170168, 169, 1073eqtrd 2781 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))) = (cos‘(𝑠 / 2)))
171170mpteq2ia 5146 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2)))
172165, 171eqtri 2765 . . . . . . . 8 (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2)))
173172a1i 11 . . . . . . 7 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2))))
17481, 82, 29, 99, 101, 115, 173dvmptdiv 24871 . . . . . 6 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))))
17579, 174eqtrd 2777 . . . . 5 (𝜑 → (ℝ D 𝑂) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))))
176175feq1d 6530 . . . 4 (𝜑 → ((ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ ↔ (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))):(𝐴(,)𝐵)⟶ℝ))
17776, 176mpbird 260 . . 3 (𝜑 → (ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ)
178177, 175jca 515 . 2 (𝜑 → ((ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ ∧ (ℝ D 𝑂) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2)))))
179178, 172pm3.2i 474 1 ((𝜑 → ((ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ ∧ (ℝ D 𝑂) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))))) ∧ (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2110  wne 2940  cdif 3863  wss 3866  {csn 4541  {cpr 4543   class class class wbr 5053  cmpt 5135  dom cdm 5551  ran crn 5552  cres 5553  wf 6376  cfv 6380  (class class class)co 7213  cc 10727  cr 10728  0cc0 10729  1c1 10730   + caddc 10732   · cmul 10734  *cxr 10866   < clt 10867  cmin 11062  -cneg 11063   / cdiv 11489  2c2 11885  cz 12176  (,)cioo 12935  [,]cicc 12938  cexp 13635  sincsin 15625  cosccos 15626  πcpi 15628  t crest 16925  TopOpenctopn 16926  topGenctg 16942  fldccnfld 20363  intcnt 21914   D cdv 24760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ioc 12940  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-fac 13840  df-bc 13869  df-hash 13897  df-shft 14630  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-limsup 15032  df-clim 15049  df-rlim 15050  df-sum 15250  df-ef 15629  df-sin 15631  df-cos 15632  df-pi 15634  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-lp 22033  df-perf 22034  df-cn 22124  df-cnp 22125  df-t1 22211  df-haus 22212  df-tx 22459  df-hmeo 22652  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-xms 23218  df-ms 23219  df-tms 23220  df-cncf 23775  df-limc 24763  df-dv 24764
This theorem is referenced by:  fourierdlem68  43390  fourierdlem80  43402
  Copyright terms: Public domain W3C validator