Step | Hyp | Ref
| Expression |
1 | | elfzofz 13403 |
. . . . . 6
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀)) |
2 | | pire 25615 |
. . . . . . . . . . . 12
⊢ π
∈ ℝ |
3 | 2 | renegcli 11282 |
. . . . . . . . . . 11
⊢ -π
∈ ℝ |
4 | 3 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → -π ∈
ℝ) |
5 | | fourierdlem74.xre |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ ℝ) |
6 | 4, 5 | readdcld 11004 |
. . . . . . . . 9
⊢ (𝜑 → (-π + 𝑋) ∈ ℝ) |
7 | 2 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → π ∈
ℝ) |
8 | 7, 5 | readdcld 11004 |
. . . . . . . . 9
⊢ (𝜑 → (π + 𝑋) ∈ ℝ) |
9 | 6, 8 | iccssred 13166 |
. . . . . . . 8
⊢ (𝜑 → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ) |
10 | 9 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ) |
11 | | fourierdlem74.p |
. . . . . . . . 9
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝‘𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
12 | | fourierdlem74.m |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℕ) |
13 | | fourierdlem74.v |
. . . . . . . . 9
⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) |
14 | 11, 12, 13 | fourierdlem15 43663 |
. . . . . . . 8
⊢ (𝜑 → 𝑉:(0...𝑀)⟶((-π + 𝑋)[,](π + 𝑋))) |
15 | 14 | ffvelrnda 6961 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑉‘𝑖) ∈ ((-π + 𝑋)[,](π + 𝑋))) |
16 | 10, 15 | sseldd 3922 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑉‘𝑖) ∈ ℝ) |
17 | 1, 16 | sylan2 593 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘𝑖) ∈ ℝ) |
18 | 17 | adantr 481 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝑉‘𝑖) ∈ ℝ) |
19 | 5 | ad2antrr 723 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → 𝑋 ∈ ℝ) |
20 | 11 | fourierdlem2 43650 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃‘𝑀) ↔ (𝑉 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉‘𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))))) |
21 | 12, 20 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑉 ∈ (𝑃‘𝑀) ↔ (𝑉 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉‘𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))))) |
22 | 13, 21 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → (𝑉 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉‘𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1))))) |
23 | 22 | simprrd 771 |
. . . . . . 7
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1))) |
24 | 23 | r19.21bi 3134 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘𝑖) < (𝑉‘(𝑖 + 1))) |
25 | 24 | adantr 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝑉‘𝑖) < (𝑉‘(𝑖 + 1))) |
26 | | eqcom 2745 |
. . . . . . 7
⊢ ((𝑉‘(𝑖 + 1)) = 𝑋 ↔ 𝑋 = (𝑉‘(𝑖 + 1))) |
27 | 26 | biimpi 215 |
. . . . . 6
⊢ ((𝑉‘(𝑖 + 1)) = 𝑋 → 𝑋 = (𝑉‘(𝑖 + 1))) |
28 | 27 | adantl 482 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → 𝑋 = (𝑉‘(𝑖 + 1))) |
29 | 25, 28 | breqtrrd 5102 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝑉‘𝑖) < 𝑋) |
30 | | fourierdlem74.f |
. . . . . 6
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
31 | | ioossre 13140 |
. . . . . . 7
⊢ ((𝑉‘𝑖)(,)𝑋) ⊆ ℝ |
32 | 31 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ((𝑉‘𝑖)(,)𝑋) ⊆ ℝ) |
33 | 30, 32 | fssresd 6641 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾ ((𝑉‘𝑖)(,)𝑋)):((𝑉‘𝑖)(,)𝑋)⟶ℝ) |
34 | 33 | ad2antrr 723 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝐹 ↾ ((𝑉‘𝑖)(,)𝑋)):((𝑉‘𝑖)(,)𝑋)⟶ℝ) |
35 | | limcresi 25049 |
. . . . . . . 8
⊢ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) ⊆ (((𝐹 ↾ (-∞(,)𝑋)) ↾ ((𝑉‘𝑖)(,)𝑋)) limℂ 𝑋) |
36 | | fourierdlem74.w |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) |
37 | 35, 36 | sselid 3919 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ (((𝐹 ↾ (-∞(,)𝑋)) ↾ ((𝑉‘𝑖)(,)𝑋)) limℂ 𝑋)) |
38 | 37 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑊 ∈ (((𝐹 ↾ (-∞(,)𝑋)) ↾ ((𝑉‘𝑖)(,)𝑋)) limℂ 𝑋)) |
39 | | mnfxr 11032 |
. . . . . . . . . 10
⊢ -∞
∈ ℝ* |
40 | 39 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → -∞ ∈
ℝ*) |
41 | 17 | rexrd 11025 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘𝑖) ∈
ℝ*) |
42 | 17 | mnfltd 12860 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → -∞ < (𝑉‘𝑖)) |
43 | 40, 41, 42 | xrltled 12884 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → -∞ ≤ (𝑉‘𝑖)) |
44 | | iooss1 13114 |
. . . . . . . . 9
⊢
((-∞ ∈ ℝ* ∧ -∞ ≤ (𝑉‘𝑖)) → ((𝑉‘𝑖)(,)𝑋) ⊆ (-∞(,)𝑋)) |
45 | 40, 43, 44 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑉‘𝑖)(,)𝑋) ⊆ (-∞(,)𝑋)) |
46 | 45 | resabs1d 5922 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ (-∞(,)𝑋)) ↾ ((𝑉‘𝑖)(,)𝑋)) = (𝐹 ↾ ((𝑉‘𝑖)(,)𝑋))) |
47 | 46 | oveq1d 7290 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐹 ↾ (-∞(,)𝑋)) ↾ ((𝑉‘𝑖)(,)𝑋)) limℂ 𝑋) = ((𝐹 ↾ ((𝑉‘𝑖)(,)𝑋)) limℂ 𝑋)) |
48 | 38, 47 | eleqtrd 2841 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑊 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)𝑋)) limℂ 𝑋)) |
49 | 48 | adantr 481 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → 𝑊 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)𝑋)) limℂ 𝑋)) |
50 | | eqid 2738 |
. . . 4
⊢ (ℝ
D (𝐹 ↾ ((𝑉‘𝑖)(,)𝑋))) = (ℝ D (𝐹 ↾ ((𝑉‘𝑖)(,)𝑋))) |
51 | | ax-resscn 10928 |
. . . . . . . . . 10
⊢ ℝ
⊆ ℂ |
52 | 51 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → ℝ ⊆
ℂ) |
53 | 30, 52 | fssd 6618 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:ℝ⟶ℂ) |
54 | | ssid 3943 |
. . . . . . . . . 10
⊢ ℝ
⊆ ℝ |
55 | 54 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → ℝ ⊆
ℝ) |
56 | | eqid 2738 |
. . . . . . . . . 10
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
57 | 56 | tgioo2 23966 |
. . . . . . . . . 10
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
58 | 56, 57 | dvres 25075 |
. . . . . . . . 9
⊢
(((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ) ∧ (ℝ
⊆ ℝ ∧ ((𝑉‘𝑖)(,)𝑋) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝑉‘𝑖)(,)𝑋))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran
(,)))‘((𝑉‘𝑖)(,)𝑋)))) |
59 | 52, 53, 55, 32, 58 | syl22anc 836 |
. . . . . . . 8
⊢ (𝜑 → (ℝ D (𝐹 ↾ ((𝑉‘𝑖)(,)𝑋))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran
(,)))‘((𝑉‘𝑖)(,)𝑋)))) |
60 | | fourierdlem74.g |
. . . . . . . . . . 11
⊢ 𝐺 = (ℝ D 𝐹) |
61 | 60 | eqcomi 2747 |
. . . . . . . . . 10
⊢ (ℝ
D 𝐹) = 𝐺 |
62 | | ioontr 43049 |
. . . . . . . . . 10
⊢
((int‘(topGen‘ran (,)))‘((𝑉‘𝑖)(,)𝑋)) = ((𝑉‘𝑖)(,)𝑋) |
63 | 61, 62 | reseq12i 5889 |
. . . . . . . . 9
⊢ ((ℝ
D 𝐹) ↾
((int‘(topGen‘ran (,)))‘((𝑉‘𝑖)(,)𝑋))) = (𝐺 ↾ ((𝑉‘𝑖)(,)𝑋)) |
64 | 63 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ((ℝ D 𝐹) ↾
((int‘(topGen‘ran (,)))‘((𝑉‘𝑖)(,)𝑋))) = (𝐺 ↾ ((𝑉‘𝑖)(,)𝑋))) |
65 | 59, 64 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → (ℝ D (𝐹 ↾ ((𝑉‘𝑖)(,)𝑋))) = (𝐺 ↾ ((𝑉‘𝑖)(,)𝑋))) |
66 | 65 | dmeqd 5814 |
. . . . . 6
⊢ (𝜑 → dom (ℝ D (𝐹 ↾ ((𝑉‘𝑖)(,)𝑋))) = dom (𝐺 ↾ ((𝑉‘𝑖)(,)𝑋))) |
67 | 66 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → dom (ℝ D (𝐹 ↾ ((𝑉‘𝑖)(,)𝑋))) = dom (𝐺 ↾ ((𝑉‘𝑖)(,)𝑋))) |
68 | | fourierdlem74.gcn |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ) |
69 | 68 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝐺 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ) |
70 | | oveq2 7283 |
. . . . . . . . . 10
⊢ ((𝑉‘(𝑖 + 1)) = 𝑋 → ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))) = ((𝑉‘𝑖)(,)𝑋)) |
71 | 70 | reseq2d 5891 |
. . . . . . . . 9
⊢ ((𝑉‘(𝑖 + 1)) = 𝑋 → (𝐺 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) = (𝐺 ↾ ((𝑉‘𝑖)(,)𝑋))) |
72 | 71, 70 | feq12d 6588 |
. . . . . . . 8
⊢ ((𝑉‘(𝑖 + 1)) = 𝑋 → ((𝐺 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ ↔ (𝐺 ↾ ((𝑉‘𝑖)(,)𝑋)):((𝑉‘𝑖)(,)𝑋)⟶ℝ)) |
73 | 72 | adantl 482 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → ((𝐺 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ ↔ (𝐺 ↾ ((𝑉‘𝑖)(,)𝑋)):((𝑉‘𝑖)(,)𝑋)⟶ℝ)) |
74 | 69, 73 | mpbid 231 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝐺 ↾ ((𝑉‘𝑖)(,)𝑋)):((𝑉‘𝑖)(,)𝑋)⟶ℝ) |
75 | | fdm 6609 |
. . . . . 6
⊢ ((𝐺 ↾ ((𝑉‘𝑖)(,)𝑋)):((𝑉‘𝑖)(,)𝑋)⟶ℝ → dom (𝐺 ↾ ((𝑉‘𝑖)(,)𝑋)) = ((𝑉‘𝑖)(,)𝑋)) |
76 | 74, 75 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → dom (𝐺 ↾ ((𝑉‘𝑖)(,)𝑋)) = ((𝑉‘𝑖)(,)𝑋)) |
77 | 67, 76 | eqtrd 2778 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → dom (ℝ D (𝐹 ↾ ((𝑉‘𝑖)(,)𝑋))) = ((𝑉‘𝑖)(,)𝑋)) |
78 | | limcresi 25049 |
. . . . . . . 8
⊢ ((𝐺 ↾ (-∞(,)𝑋)) limℂ 𝑋) ⊆ (((𝐺 ↾ (-∞(,)𝑋)) ↾ ((𝑉‘𝑖)(,)𝑋)) limℂ 𝑋) |
79 | 45 | resabs1d 5922 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐺 ↾ (-∞(,)𝑋)) ↾ ((𝑉‘𝑖)(,)𝑋)) = (𝐺 ↾ ((𝑉‘𝑖)(,)𝑋))) |
80 | 79 | oveq1d 7290 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐺 ↾ (-∞(,)𝑋)) ↾ ((𝑉‘𝑖)(,)𝑋)) limℂ 𝑋) = ((𝐺 ↾ ((𝑉‘𝑖)(,)𝑋)) limℂ 𝑋)) |
81 | 78, 80 | sseqtrid 3973 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐺 ↾ (-∞(,)𝑋)) limℂ 𝑋) ⊆ ((𝐺 ↾ ((𝑉‘𝑖)(,)𝑋)) limℂ 𝑋)) |
82 | | fourierdlem74.e |
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∈ ((𝐺 ↾ (-∞(,)𝑋)) limℂ 𝑋)) |
83 | 82 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐸 ∈ ((𝐺 ↾ (-∞(,)𝑋)) limℂ 𝑋)) |
84 | 81, 83 | sseldd 3922 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐸 ∈ ((𝐺 ↾ ((𝑉‘𝑖)(,)𝑋)) limℂ 𝑋)) |
85 | 59, 64 | eqtr2d 2779 |
. . . . . . . 8
⊢ (𝜑 → (𝐺 ↾ ((𝑉‘𝑖)(,)𝑋)) = (ℝ D (𝐹 ↾ ((𝑉‘𝑖)(,)𝑋)))) |
86 | 85 | oveq1d 7290 |
. . . . . . 7
⊢ (𝜑 → ((𝐺 ↾ ((𝑉‘𝑖)(,)𝑋)) limℂ 𝑋) = ((ℝ D (𝐹 ↾ ((𝑉‘𝑖)(,)𝑋))) limℂ 𝑋)) |
87 | 86 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐺 ↾ ((𝑉‘𝑖)(,)𝑋)) limℂ 𝑋) = ((ℝ D (𝐹 ↾ ((𝑉‘𝑖)(,)𝑋))) limℂ 𝑋)) |
88 | 84, 87 | eleqtrd 2841 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐸 ∈ ((ℝ D (𝐹 ↾ ((𝑉‘𝑖)(,)𝑋))) limℂ 𝑋)) |
89 | 88 | adantr 481 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → 𝐸 ∈ ((ℝ D (𝐹 ↾ ((𝑉‘𝑖)(,)𝑋))) limℂ 𝑋)) |
90 | | eqid 2738 |
. . . 4
⊢ (𝑠 ∈ (((𝑉‘𝑖) − 𝑋)(,)0) ↦ ((((𝐹 ↾ ((𝑉‘𝑖)(,)𝑋))‘(𝑋 + 𝑠)) − 𝑊) / 𝑠)) = (𝑠 ∈ (((𝑉‘𝑖) − 𝑋)(,)0) ↦ ((((𝐹 ↾ ((𝑉‘𝑖)(,)𝑋))‘(𝑋 + 𝑠)) − 𝑊) / 𝑠)) |
91 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑥 = 𝑠 → (𝑋 + 𝑥) = (𝑋 + 𝑠)) |
92 | 91 | fveq2d 6778 |
. . . . . 6
⊢ (𝑥 = 𝑠 → ((𝐹 ↾ ((𝑉‘𝑖)(,)𝑋))‘(𝑋 + 𝑥)) = ((𝐹 ↾ ((𝑉‘𝑖)(,)𝑋))‘(𝑋 + 𝑠))) |
93 | 92 | oveq1d 7290 |
. . . . 5
⊢ (𝑥 = 𝑠 → (((𝐹 ↾ ((𝑉‘𝑖)(,)𝑋))‘(𝑋 + 𝑥)) − 𝑊) = (((𝐹 ↾ ((𝑉‘𝑖)(,)𝑋))‘(𝑋 + 𝑠)) − 𝑊)) |
94 | 93 | cbvmptv 5187 |
. . . 4
⊢ (𝑥 ∈ (((𝑉‘𝑖) − 𝑋)(,)0) ↦ (((𝐹 ↾ ((𝑉‘𝑖)(,)𝑋))‘(𝑋 + 𝑥)) − 𝑊)) = (𝑠 ∈ (((𝑉‘𝑖) − 𝑋)(,)0) ↦ (((𝐹 ↾ ((𝑉‘𝑖)(,)𝑋))‘(𝑋 + 𝑠)) − 𝑊)) |
95 | | id 22 |
. . . . 5
⊢ (𝑥 = 𝑠 → 𝑥 = 𝑠) |
96 | 95 | cbvmptv 5187 |
. . . 4
⊢ (𝑥 ∈ (((𝑉‘𝑖) − 𝑋)(,)0) ↦ 𝑥) = (𝑠 ∈ (((𝑉‘𝑖) − 𝑋)(,)0) ↦ 𝑠) |
97 | 18, 19, 29, 34, 49, 50, 77, 89, 90, 94, 96 | fourierdlem60 43707 |
. . 3
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → 𝐸 ∈ ((𝑠 ∈ (((𝑉‘𝑖) − 𝑋)(,)0) ↦ ((((𝐹 ↾ ((𝑉‘𝑖)(,)𝑋))‘(𝑋 + 𝑠)) − 𝑊) / 𝑠)) limℂ 0)) |
98 | | fourierdlem74.a |
. . . . 5
⊢ 𝐴 = if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐸, ((𝑅 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) |
99 | | iftrue 4465 |
. . . . 5
⊢ ((𝑉‘(𝑖 + 1)) = 𝑋 → if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐸, ((𝑅 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) = 𝐸) |
100 | 98, 99 | eqtrid 2790 |
. . . 4
⊢ ((𝑉‘(𝑖 + 1)) = 𝑋 → 𝐴 = 𝐸) |
101 | 100 | adantl 482 |
. . 3
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → 𝐴 = 𝐸) |
102 | | fourierdlem74.h |
. . . . . . 7
⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) |
103 | 102 | reseq1i 5887 |
. . . . . 6
⊢ (𝐻 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
104 | 103 | a1i 11 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝐻 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
105 | | ioossicc 13165 |
. . . . . . . 8
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) |
106 | 3 | rexri 11033 |
. . . . . . . . . 10
⊢ -π
∈ ℝ* |
107 | 106 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → -π ∈
ℝ*) |
108 | 2 | rexri 11033 |
. . . . . . . . . 10
⊢ π
∈ ℝ* |
109 | 108 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → π ∈
ℝ*) |
110 | 3 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → -π ∈
ℝ) |
111 | 2 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → π ∈
ℝ) |
112 | 5 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝑋 ∈ ℝ) |
113 | 16, 112 | resubcld 11403 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → ((𝑉‘𝑖) − 𝑋) ∈ ℝ) |
114 | 4 | recnd 11003 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → -π ∈
ℂ) |
115 | 5 | recnd 11003 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑋 ∈ ℂ) |
116 | 114, 115 | pncand 11333 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((-π + 𝑋) − 𝑋) = -π) |
117 | 116 | eqcomd 2744 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → -π = ((-π + 𝑋) − 𝑋)) |
118 | 117 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → -π = ((-π + 𝑋) − 𝑋)) |
119 | 6 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (-π + 𝑋) ∈ ℝ) |
120 | 8 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (π + 𝑋) ∈ ℝ) |
121 | | elicc2 13144 |
. . . . . . . . . . . . . . . . 17
⊢ (((-π
+ 𝑋) ∈ ℝ ∧
(π + 𝑋) ∈ ℝ)
→ ((𝑉‘𝑖) ∈ ((-π + 𝑋)[,](π + 𝑋)) ↔ ((𝑉‘𝑖) ∈ ℝ ∧ (-π + 𝑋) ≤ (𝑉‘𝑖) ∧ (𝑉‘𝑖) ≤ (π + 𝑋)))) |
122 | 119, 120,
121 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → ((𝑉‘𝑖) ∈ ((-π + 𝑋)[,](π + 𝑋)) ↔ ((𝑉‘𝑖) ∈ ℝ ∧ (-π + 𝑋) ≤ (𝑉‘𝑖) ∧ (𝑉‘𝑖) ≤ (π + 𝑋)))) |
123 | 15, 122 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → ((𝑉‘𝑖) ∈ ℝ ∧ (-π + 𝑋) ≤ (𝑉‘𝑖) ∧ (𝑉‘𝑖) ≤ (π + 𝑋))) |
124 | 123 | simp2d 1142 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (-π + 𝑋) ≤ (𝑉‘𝑖)) |
125 | 119, 16, 112, 124 | lesub1dd 11591 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → ((-π + 𝑋) − 𝑋) ≤ ((𝑉‘𝑖) − 𝑋)) |
126 | 118, 125 | eqbrtrd 5096 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → -π ≤ ((𝑉‘𝑖) − 𝑋)) |
127 | 123 | simp3d 1143 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑉‘𝑖) ≤ (π + 𝑋)) |
128 | 16, 120, 112, 127 | lesub1dd 11591 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → ((𝑉‘𝑖) − 𝑋) ≤ ((π + 𝑋) − 𝑋)) |
129 | 111 | recnd 11003 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → π ∈
ℂ) |
130 | 115 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝑋 ∈ ℂ) |
131 | 129, 130 | pncand 11333 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → ((π + 𝑋) − 𝑋) = π) |
132 | 128, 131 | breqtrd 5100 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → ((𝑉‘𝑖) − 𝑋) ≤ π) |
133 | 110, 111,
113, 126, 132 | eliccd 43042 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → ((𝑉‘𝑖) − 𝑋) ∈ (-π[,]π)) |
134 | | fourierdlem74.q |
. . . . . . . . . . 11
⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) |
135 | 133, 134 | fmptd 6988 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑄:(0...𝑀)⟶(-π[,]π)) |
136 | 135 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π)) |
137 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀)) |
138 | 107, 109,
136, 137 | fourierdlem8 43656 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ⊆
(-π[,]π)) |
139 | 105, 138 | sstrid 3932 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆
(-π[,]π)) |
140 | 139 | resmptd 5948 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))) |
141 | 140 | adantr 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))) |
142 | 1 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀)) |
143 | 1, 113 | sylan2 593 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑉‘𝑖) − 𝑋) ∈ ℝ) |
144 | 134 | fvmpt2 6886 |
. . . . . . . . 9
⊢ ((𝑖 ∈ (0...𝑀) ∧ ((𝑉‘𝑖) − 𝑋) ∈ ℝ) → (𝑄‘𝑖) = ((𝑉‘𝑖) − 𝑋)) |
145 | 142, 143,
144 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) = ((𝑉‘𝑖) − 𝑋)) |
146 | 145 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝑄‘𝑖) = ((𝑉‘𝑖) − 𝑋)) |
147 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑗 → (𝑉‘𝑖) = (𝑉‘𝑗)) |
148 | 147 | oveq1d 7290 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → ((𝑉‘𝑖) − 𝑋) = ((𝑉‘𝑗) − 𝑋)) |
149 | 148 | cbvmptv 5187 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) = (𝑗 ∈ (0...𝑀) ↦ ((𝑉‘𝑗) − 𝑋)) |
150 | 134, 149 | eqtri 2766 |
. . . . . . . . . . 11
⊢ 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉‘𝑗) − 𝑋)) |
151 | 150 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉‘𝑗) − 𝑋))) |
152 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑗 = (𝑖 + 1) → (𝑉‘𝑗) = (𝑉‘(𝑖 + 1))) |
153 | 152 | oveq1d 7290 |
. . . . . . . . . . 11
⊢ (𝑗 = (𝑖 + 1) → ((𝑉‘𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋)) |
154 | 153 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑉‘𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋)) |
155 | | fzofzp1 13484 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀)) |
156 | 155 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀)) |
157 | 22 | simpld 495 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑉 ∈ (ℝ ↑m
(0...𝑀))) |
158 | | elmapi 8637 |
. . . . . . . . . . . . . 14
⊢ (𝑉 ∈ (ℝ
↑m (0...𝑀))
→ 𝑉:(0...𝑀)⟶ℝ) |
159 | 157, 158 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑉:(0...𝑀)⟶ℝ) |
160 | 159 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶ℝ) |
161 | 160, 156 | ffvelrnd 6962 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℝ) |
162 | 5 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ) |
163 | 161, 162 | resubcld 11403 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ) |
164 | 151, 154,
156, 163 | fvmptd 6882 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋)) |
165 | 164 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋)) |
166 | | oveq1 7282 |
. . . . . . . . 9
⊢ ((𝑉‘(𝑖 + 1)) = 𝑋 → ((𝑉‘(𝑖 + 1)) − 𝑋) = (𝑋 − 𝑋)) |
167 | 166 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → ((𝑉‘(𝑖 + 1)) − 𝑋) = (𝑋 − 𝑋)) |
168 | 115 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → 𝑋 ∈ ℂ) |
169 | 168 | subidd 11320 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝑋 − 𝑋) = 0) |
170 | 1, 169 | sylanl2 678 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝑋 − 𝑋) = 0) |
171 | 165, 167,
170 | 3eqtrd 2782 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝑄‘(𝑖 + 1)) = 0) |
172 | 146, 171 | oveq12d 7293 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) = (((𝑉‘𝑖) − 𝑋)(,)0)) |
173 | | simplr 766 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑠 = 0) → 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
174 | | fourierdlem74.o |
. . . . . . . . . . . . 13
⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
175 | 12 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 = 0) → 𝑀 ∈ ℕ) |
176 | 4, 7, 5, 11, 174, 12, 13, 134 | fourierdlem14 43662 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑄 ∈ (𝑂‘𝑀)) |
177 | 176 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 = 0) → 𝑄 ∈ (𝑂‘𝑀)) |
178 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 = 0) → 𝑠 = 0) |
179 | | fourierdlem74.x |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑋 ∈ ran 𝑉) |
180 | | ffn 6600 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑉:(0...𝑀)⟶((-π + 𝑋)[,](π + 𝑋)) → 𝑉 Fn (0...𝑀)) |
181 | | fvelrnb 6830 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑉 Fn (0...𝑀) → (𝑋 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (0...𝑀)(𝑉‘𝑖) = 𝑋)) |
182 | 14, 180, 181 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑋 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (0...𝑀)(𝑉‘𝑖) = 𝑋)) |
183 | 179, 182 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∃𝑖 ∈ (0...𝑀)(𝑉‘𝑖) = 𝑋) |
184 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝑖 ∈ (0...𝑀)) |
185 | 134 | fvmpt2 6886 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0...𝑀) ∧ ((𝑉‘𝑖) − 𝑋) ∈ (-π[,]π)) → (𝑄‘𝑖) = ((𝑉‘𝑖) − 𝑋)) |
186 | 184, 133,
185 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘𝑖) = ((𝑉‘𝑖) − 𝑋)) |
187 | 186 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ (𝑉‘𝑖) = 𝑋) → (𝑄‘𝑖) = ((𝑉‘𝑖) − 𝑋)) |
188 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑉‘𝑖) = 𝑋 → ((𝑉‘𝑖) − 𝑋) = (𝑋 − 𝑋)) |
189 | 188 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ (𝑉‘𝑖) = 𝑋) → ((𝑉‘𝑖) − 𝑋) = (𝑋 − 𝑋)) |
190 | 115 | subidd 11320 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑋 − 𝑋) = 0) |
191 | 190 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ (𝑉‘𝑖) = 𝑋) → (𝑋 − 𝑋) = 0) |
192 | 187, 189,
191 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ (𝑉‘𝑖) = 𝑋) → (𝑄‘𝑖) = 0) |
193 | 192 | ex 413 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → ((𝑉‘𝑖) = 𝑋 → (𝑄‘𝑖) = 0)) |
194 | 193 | reximdva 3203 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (∃𝑖 ∈ (0...𝑀)(𝑉‘𝑖) = 𝑋 → ∃𝑖 ∈ (0...𝑀)(𝑄‘𝑖) = 0)) |
195 | 183, 194 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∃𝑖 ∈ (0...𝑀)(𝑄‘𝑖) = 0) |
196 | 113, 134 | fmptd 6988 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) |
197 | | ffn 6600 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑄:(0...𝑀)⟶ℝ → 𝑄 Fn (0...𝑀)) |
198 | | fvelrnb 6830 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑄 Fn (0...𝑀) → (0 ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)(𝑄‘𝑖) = 0)) |
199 | 196, 197,
198 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (0 ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)(𝑄‘𝑖) = 0)) |
200 | 195, 199 | mpbird 256 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 ∈ ran 𝑄) |
201 | 200 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 = 0) → 0 ∈ ran 𝑄) |
202 | 178, 201 | eqeltrd 2839 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 = 0) → 𝑠 ∈ ran 𝑄) |
203 | 174, 175,
177, 202 | fourierdlem12 43660 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑠 = 0) ∧ 𝑖 ∈ (0..^𝑀)) → ¬ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
204 | 203 | an32s 649 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 = 0) → ¬ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
205 | 204 | adantlr 712 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑠 = 0) → ¬ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
206 | 173, 205 | pm2.65da 814 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ¬ 𝑠 = 0) |
207 | 206 | adantlr 712 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ¬ 𝑠 = 0) |
208 | 207 | iffalsed 4470 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) |
209 | | elioore 13109 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑠 ∈ ℝ) |
210 | 209 | adantl 482 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ℝ) |
211 | | 0red 10978 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 0 ∈
ℝ) |
212 | | elioo3g 13108 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↔ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ 𝑠 ∈ ℝ*)
∧ ((𝑄‘𝑖) < 𝑠 ∧ 𝑠 < (𝑄‘(𝑖 + 1))))) |
213 | 212 | biimpi 215 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → (((𝑄‘𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ 𝑠 ∈ ℝ*)
∧ ((𝑄‘𝑖) < 𝑠 ∧ 𝑠 < (𝑄‘(𝑖 + 1))))) |
214 | 213 | simprrd 771 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑠 < (𝑄‘(𝑖 + 1))) |
215 | 214 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 < (𝑄‘(𝑖 + 1))) |
216 | 171 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) = 0) |
217 | 215, 216 | breqtrd 5100 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 < 0) |
218 | 210, 211,
217 | ltnsymd 11124 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ¬ 0 < 𝑠) |
219 | 218 | iffalsed 4470 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑊) |
220 | 219 | oveq2d 7291 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) = ((𝐹‘(𝑋 + 𝑠)) − 𝑊)) |
221 | 220 | oveq1d 7290 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠)) |
222 | 41 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑉‘𝑖) ∈
ℝ*) |
223 | 5 | rexrd 11025 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈
ℝ*) |
224 | 223 | ad3antrrr 727 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑋 ∈
ℝ*) |
225 | 162 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ) |
226 | 225, 210 | readdcld 11004 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ℝ) |
227 | 115 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℂ) |
228 | | iccssre 13161 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((-π
∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆
ℝ) |
229 | 3, 2, 228 | mp2an 689 |
. . . . . . . . . . . . . . . . . 18
⊢
(-π[,]π) ⊆ ℝ |
230 | 229, 51 | sstri 3930 |
. . . . . . . . . . . . . . . . 17
⊢
(-π[,]π) ⊆ ℂ |
231 | 186, 133 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘𝑖) ∈ (-π[,]π)) |
232 | 1, 231 | sylan2 593 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ (-π[,]π)) |
233 | 230, 232 | sselid 3919 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℂ) |
234 | 227, 233 | addcomd 11177 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝑄‘𝑖)) = ((𝑄‘𝑖) + 𝑋)) |
235 | 145 | oveq1d 7290 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) + 𝑋) = (((𝑉‘𝑖) − 𝑋) + 𝑋)) |
236 | 17 | recnd 11003 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘𝑖) ∈ ℂ) |
237 | 236, 227 | npcand 11336 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑉‘𝑖) − 𝑋) + 𝑋) = (𝑉‘𝑖)) |
238 | 234, 235,
237 | 3eqtrrd 2783 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘𝑖) = (𝑋 + (𝑄‘𝑖))) |
239 | 238 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑉‘𝑖) = (𝑋 + (𝑄‘𝑖))) |
240 | 145, 143 | eqeltrd 2839 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
241 | 240 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈ ℝ) |
242 | 209 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ℝ) |
243 | 5 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ) |
244 | 213 | simprld 769 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝑄‘𝑖) < 𝑠) |
245 | 244 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) < 𝑠) |
246 | 241, 242,
243, 245 | ltadd2dd 11134 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + (𝑄‘𝑖)) < (𝑋 + 𝑠)) |
247 | 239, 246 | eqbrtrd 5096 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑉‘𝑖) < (𝑋 + 𝑠)) |
248 | 247 | adantlr 712 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑉‘𝑖) < (𝑋 + 𝑠)) |
249 | | ltaddneg 11190 |
. . . . . . . . . . . . 13
⊢ ((𝑠 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝑠 < 0 ↔ (𝑋 + 𝑠) < 𝑋)) |
250 | 210, 225,
249 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑠 < 0 ↔ (𝑋 + 𝑠) < 𝑋)) |
251 | 217, 250 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) < 𝑋) |
252 | 222, 224,
226, 248, 251 | eliood 43036 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ((𝑉‘𝑖)(,)𝑋)) |
253 | | fvres 6793 |
. . . . . . . . . . 11
⊢ ((𝑋 + 𝑠) ∈ ((𝑉‘𝑖)(,)𝑋) → ((𝐹 ↾ ((𝑉‘𝑖)(,)𝑋))‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑠))) |
254 | 253 | eqcomd 2744 |
. . . . . . . . . 10
⊢ ((𝑋 + 𝑠) ∈ ((𝑉‘𝑖)(,)𝑋) → (𝐹‘(𝑋 + 𝑠)) = ((𝐹 ↾ ((𝑉‘𝑖)(,)𝑋))‘(𝑋 + 𝑠))) |
255 | 252, 254 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑠)) = ((𝐹 ↾ ((𝑉‘𝑖)(,)𝑋))‘(𝑋 + 𝑠))) |
256 | 255 | oveq1d 7290 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐹‘(𝑋 + 𝑠)) − 𝑊) = (((𝐹 ↾ ((𝑉‘𝑖)(,)𝑋))‘(𝑋 + 𝑠)) − 𝑊)) |
257 | 256 | oveq1d 7290 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) = ((((𝐹 ↾ ((𝑉‘𝑖)(,)𝑋))‘(𝑋 + 𝑠)) − 𝑊) / 𝑠)) |
258 | 208, 221,
257 | 3eqtrd 2782 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = ((((𝐹 ↾ ((𝑉‘𝑖)(,)𝑋))‘(𝑋 + 𝑠)) − 𝑊) / 𝑠)) |
259 | 172, 258 | mpteq12dva 5163 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) = (𝑠 ∈ (((𝑉‘𝑖) − 𝑋)(,)0) ↦ ((((𝐹 ↾ ((𝑉‘𝑖)(,)𝑋))‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))) |
260 | 104, 141,
259 | 3eqtrd 2782 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝐻 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ (((𝑉‘𝑖) − 𝑋)(,)0) ↦ ((((𝐹 ↾ ((𝑉‘𝑖)(,)𝑋))‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))) |
261 | 260, 171 | oveq12d 7293 |
. . 3
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → ((𝐻 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ (((𝑉‘𝑖) − 𝑋)(,)0) ↦ ((((𝐹 ↾ ((𝑉‘𝑖)(,)𝑋))‘(𝑋 + 𝑠)) − 𝑊) / 𝑠)) limℂ 0)) |
262 | 97, 101, 261 | 3eltr4d 2854 |
. 2
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → 𝐴 ∈ ((𝐻 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
263 | | eqid 2738 |
. . . . 5
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) |
264 | | eqid 2738 |
. . . . 5
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑠) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑠) |
265 | | eqid 2738 |
. . . . 5
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) |
266 | 30 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐹:ℝ⟶ℝ) |
267 | 5 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ) |
268 | 209 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ℝ) |
269 | 267, 268 | readdcld 11004 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ℝ) |
270 | 266, 269 | ffvelrnd 6962 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ) |
271 | 270 | recnd 11003 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ) |
272 | 271 | adantlr 712 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ) |
273 | 272 | 3adantl3 1167 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ) |
274 | | fourierdlem74.y |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ ℝ) |
275 | 274 | recnd 11003 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ ℂ) |
276 | | limccl 25039 |
. . . . . . . . . 10
⊢ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) ⊆
ℂ |
277 | 276, 36 | sselid 3919 |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 ∈ ℂ) |
278 | 275, 277 | ifcld 4505 |
. . . . . . . 8
⊢ (𝜑 → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℂ) |
279 | 278 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℂ) |
280 | 279 | 3ad2antl1 1184 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℂ) |
281 | 273, 280 | subcld 11332 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℂ) |
282 | 209 | recnd 11003 |
. . . . . . 7
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑠 ∈ ℂ) |
283 | 282 | adantl 482 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ℂ) |
284 | | velsn 4577 |
. . . . . . . 8
⊢ (𝑠 ∈ {0} ↔ 𝑠 = 0) |
285 | 206, 284 | sylnibr 329 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ¬ 𝑠 ∈ {0}) |
286 | 285 | 3adantl3 1167 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ¬ 𝑠 ∈ {0}) |
287 | 283, 286 | eldifd 3898 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ (ℂ ∖
{0})) |
288 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) |
289 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑊) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑊) |
290 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝑊)) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝑊)) |
291 | 277 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑊 ∈ ℂ) |
292 | 30 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐹:ℝ⟶ℝ) |
293 | | ioossre 13140 |
. . . . . . . . . . . 12
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ |
294 | 293 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ) |
295 | 41 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑉‘𝑖) ∈
ℝ*) |
296 | 161 | rexrd 11025 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈
ℝ*) |
297 | 296 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑉‘(𝑖 + 1)) ∈
ℝ*) |
298 | 269 | adantlr 712 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ℝ) |
299 | 196 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
300 | 299, 156 | ffvelrnd 6962 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
301 | 300 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
302 | 214 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 < (𝑄‘(𝑖 + 1))) |
303 | 242, 301,
243, 302 | ltadd2dd 11134 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) < (𝑋 + (𝑄‘(𝑖 + 1)))) |
304 | 164 | oveq2d 7291 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝑄‘(𝑖 + 1))) = (𝑋 + ((𝑉‘(𝑖 + 1)) − 𝑋))) |
305 | 161 | recnd 11003 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℂ) |
306 | 227, 305 | pncan3d 11335 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑋 + ((𝑉‘(𝑖 + 1)) − 𝑋)) = (𝑉‘(𝑖 + 1))) |
307 | 304, 306 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝑄‘(𝑖 + 1))) = (𝑉‘(𝑖 + 1))) |
308 | 307 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + (𝑄‘(𝑖 + 1))) = (𝑉‘(𝑖 + 1))) |
309 | 303, 308 | breqtrd 5100 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) < (𝑉‘(𝑖 + 1))) |
310 | 295, 297,
298, 247, 309 | eliood 43036 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) |
311 | | ioossre 13140 |
. . . . . . . . . . . 12
⊢ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))) ⊆ ℝ |
312 | 311 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))) ⊆ ℝ) |
313 | 242, 302 | ltned 11111 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ≠ (𝑄‘(𝑖 + 1))) |
314 | | fourierdlem74.r |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘(𝑖 + 1)))) |
315 | 307 | eqcomd 2744 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) = (𝑋 + (𝑄‘(𝑖 + 1)))) |
316 | 315 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘(𝑖 + 1))) = ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑋 + (𝑄‘(𝑖 + 1))))) |
317 | 314, 316 | eleqtrd 2841 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑋 + (𝑄‘(𝑖 + 1))))) |
318 | 300 | recnd 11003 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℂ) |
319 | 292, 162,
294, 288, 310, 312, 313, 317, 318 | fourierdlem53 43700 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) limℂ (𝑄‘(𝑖 + 1)))) |
320 | | ioosscn 13141 |
. . . . . . . . . . . 12
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ |
321 | 320 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ) |
322 | 277 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑊 ∈ ℂ) |
323 | 289, 321,
322, 318 | constlimc 43165 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑊 ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑊) limℂ (𝑄‘(𝑖 + 1)))) |
324 | 288, 289,
290, 272, 291, 319, 323 | sublimc 43193 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑅 − 𝑊) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝑊)) limℂ (𝑄‘(𝑖 + 1)))) |
325 | 324 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) → (𝑅 − 𝑊) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝑊)) limℂ (𝑄‘(𝑖 + 1)))) |
326 | | iftrue 4465 |
. . . . . . . . . 10
⊢ ((𝑉‘(𝑖 + 1)) < 𝑋 → if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌) = 𝑊) |
327 | 326 | oveq2d 7291 |
. . . . . . . . 9
⊢ ((𝑉‘(𝑖 + 1)) < 𝑋 → (𝑅 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) = (𝑅 − 𝑊)) |
328 | 327 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) → (𝑅 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) = (𝑅 − 𝑊)) |
329 | 209 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ℝ) |
330 | | 0red 10978 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 0 ∈
ℝ) |
331 | 300 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
332 | 214 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 < (𝑄‘(𝑖 + 1))) |
333 | 164 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋)) |
334 | 161 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) → (𝑉‘(𝑖 + 1)) ∈ ℝ) |
335 | 5 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) → 𝑋 ∈ ℝ) |
336 | | simpr 485 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) → (𝑉‘(𝑖 + 1)) < 𝑋) |
337 | 334, 335,
336 | ltled 11123 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) → (𝑉‘(𝑖 + 1)) ≤ 𝑋) |
338 | 334, 335 | suble0d 11566 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) → (((𝑉‘(𝑖 + 1)) − 𝑋) ≤ 0 ↔ (𝑉‘(𝑖 + 1)) ≤ 𝑋)) |
339 | 337, 338 | mpbird 256 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) → ((𝑉‘(𝑖 + 1)) − 𝑋) ≤ 0) |
340 | 333, 339 | eqbrtrd 5096 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) → (𝑄‘(𝑖 + 1)) ≤ 0) |
341 | 340 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ≤ 0) |
342 | 329, 331,
330, 332, 341 | ltletrd 11135 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 < 0) |
343 | 329, 330,
342 | ltnsymd 11124 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ¬ 0 < 𝑠) |
344 | 343 | iffalsed 4470 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑊) |
345 | 344 | oveq2d 7291 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) = ((𝐹‘(𝑋 + 𝑠)) − 𝑊)) |
346 | 345 | mpteq2dva 5174 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝑊))) |
347 | 346 | oveq1d 7290 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) → ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) limℂ (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝑊)) limℂ (𝑄‘(𝑖 + 1)))) |
348 | 325, 328,
347 | 3eltr4d 2854 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) → (𝑅 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) limℂ (𝑄‘(𝑖 + 1)))) |
349 | 348 | 3adantl3 1167 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) → (𝑅 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) limℂ (𝑄‘(𝑖 + 1)))) |
350 | | simpl1 1190 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ ¬ (𝑉‘(𝑖 + 1)) < 𝑋) → 𝜑) |
351 | | simpl2 1191 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ ¬ (𝑉‘(𝑖 + 1)) < 𝑋) → 𝑖 ∈ (0..^𝑀)) |
352 | 5 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ¬ (𝑉‘(𝑖 + 1)) < 𝑋) → 𝑋 ∈ ℝ) |
353 | 352 | 3adantl3 1167 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ ¬ (𝑉‘(𝑖 + 1)) < 𝑋) → 𝑋 ∈ ℝ) |
354 | 161 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ¬ (𝑉‘(𝑖 + 1)) < 𝑋) → (𝑉‘(𝑖 + 1)) ∈ ℝ) |
355 | 354 | 3adantl3 1167 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ ¬ (𝑉‘(𝑖 + 1)) < 𝑋) → (𝑉‘(𝑖 + 1)) ∈ ℝ) |
356 | | neqne 2951 |
. . . . . . . . . . 11
⊢ (¬
(𝑉‘(𝑖 + 1)) = 𝑋 → (𝑉‘(𝑖 + 1)) ≠ 𝑋) |
357 | 356 | necomd 2999 |
. . . . . . . . . 10
⊢ (¬
(𝑉‘(𝑖 + 1)) = 𝑋 → 𝑋 ≠ (𝑉‘(𝑖 + 1))) |
358 | 357 | adantr 481 |
. . . . . . . . 9
⊢ ((¬
(𝑉‘(𝑖 + 1)) = 𝑋 ∧ ¬ (𝑉‘(𝑖 + 1)) < 𝑋) → 𝑋 ≠ (𝑉‘(𝑖 + 1))) |
359 | 358 | 3ad2antl3 1186 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ ¬ (𝑉‘(𝑖 + 1)) < 𝑋) → 𝑋 ≠ (𝑉‘(𝑖 + 1))) |
360 | | simpr 485 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ ¬ (𝑉‘(𝑖 + 1)) < 𝑋) → ¬ (𝑉‘(𝑖 + 1)) < 𝑋) |
361 | 353, 355,
359, 360 | lttri5d 42838 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ ¬ (𝑉‘(𝑖 + 1)) < 𝑋) → 𝑋 < (𝑉‘(𝑖 + 1))) |
362 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ if(0 < 𝑠, 𝑌, 𝑊)) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ if(0 < 𝑠, 𝑌, 𝑊)) |
363 | 272 | adantlr 712 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ) |
364 | 278 | ad3antrrr 727 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℂ) |
365 | 319 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → 𝑅 ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) limℂ (𝑄‘(𝑖 + 1)))) |
366 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑌) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑌) |
367 | 275 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑌 ∈ ℂ) |
368 | 366, 321,
367, 318 | constlimc 43165 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑌 ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑌) limℂ (𝑄‘(𝑖 + 1)))) |
369 | 368 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → 𝑌 ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑌) limℂ (𝑄‘(𝑖 + 1)))) |
370 | 5 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → 𝑋 ∈ ℝ) |
371 | 161 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → (𝑉‘(𝑖 + 1)) ∈ ℝ) |
372 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → 𝑋 < (𝑉‘(𝑖 + 1))) |
373 | 370, 371,
372 | ltnsymd 11124 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → ¬ (𝑉‘(𝑖 + 1)) < 𝑋) |
374 | 373 | iffalsed 4470 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌) = 𝑌) |
375 | | 0red 10978 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 0 ∈
ℝ) |
376 | 240 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈ ℝ) |
377 | 209 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ℝ) |
378 | 190 | eqcomd 2744 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 0 = (𝑋 − 𝑋)) |
379 | 378 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → 0 = (𝑋 − 𝑋)) |
380 | 17 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → (𝑉‘𝑖) ∈ ℝ) |
381 | 41 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) ∧ ¬ 𝑋 ≤ (𝑉‘𝑖)) → (𝑉‘𝑖) ∈
ℝ*) |
382 | 296 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) ∧ ¬ 𝑋 ≤ (𝑉‘𝑖)) → (𝑉‘(𝑖 + 1)) ∈
ℝ*) |
383 | 162 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) ∧ ¬ 𝑋 ≤ (𝑉‘𝑖)) → 𝑋 ∈ ℝ) |
384 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ¬ 𝑋 ≤ (𝑉‘𝑖)) → ¬ 𝑋 ≤ (𝑉‘𝑖)) |
385 | 17 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ¬ 𝑋 ≤ (𝑉‘𝑖)) → (𝑉‘𝑖) ∈ ℝ) |
386 | 5 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ¬ 𝑋 ≤ (𝑉‘𝑖)) → 𝑋 ∈ ℝ) |
387 | 385, 386 | ltnled 11122 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ¬ 𝑋 ≤ (𝑉‘𝑖)) → ((𝑉‘𝑖) < 𝑋 ↔ ¬ 𝑋 ≤ (𝑉‘𝑖))) |
388 | 384, 387 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ¬ 𝑋 ≤ (𝑉‘𝑖)) → (𝑉‘𝑖) < 𝑋) |
389 | 388 | adantlr 712 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) ∧ ¬ 𝑋 ≤ (𝑉‘𝑖)) → (𝑉‘𝑖) < 𝑋) |
390 | | simplr 766 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) ∧ ¬ 𝑋 ≤ (𝑉‘𝑖)) → 𝑋 < (𝑉‘(𝑖 + 1))) |
391 | 381, 382,
383, 389, 390 | eliood 43036 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) ∧ ¬ 𝑋 ≤ (𝑉‘𝑖)) → 𝑋 ∈ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) |
392 | 11, 12, 13, 179 | fourierdlem12 43660 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ¬ 𝑋 ∈ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) |
393 | 392 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) ∧ ¬ 𝑋 ≤ (𝑉‘𝑖)) → ¬ 𝑋 ∈ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) |
394 | 391, 393 | condan 815 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → 𝑋 ≤ (𝑉‘𝑖)) |
395 | 370, 380,
370, 394 | lesub1dd 11591 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → (𝑋 − 𝑋) ≤ ((𝑉‘𝑖) − 𝑋)) |
396 | 379, 395 | eqbrtrd 5096 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → 0 ≤ ((𝑉‘𝑖) − 𝑋)) |
397 | 145 | eqcomd 2744 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑉‘𝑖) − 𝑋) = (𝑄‘𝑖)) |
398 | 397 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → ((𝑉‘𝑖) − 𝑋) = (𝑄‘𝑖)) |
399 | 396, 398 | breqtrd 5100 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → 0 ≤ (𝑄‘𝑖)) |
400 | 399 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 0 ≤ (𝑄‘𝑖)) |
401 | 244 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) < 𝑠) |
402 | 375, 376,
377, 400, 401 | lelttrd 11133 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 0 < 𝑠) |
403 | 402 | iftrued 4467 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑌) |
404 | 403 | mpteq2dva 5174 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ if(0 < 𝑠, 𝑌, 𝑊)) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑌)) |
405 | 404 | oveq1d 7290 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ if(0 < 𝑠, 𝑌, 𝑊)) limℂ (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑌) limℂ (𝑄‘(𝑖 + 1)))) |
406 | 369, 374,
405 | 3eltr4d 2854 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ if(0 < 𝑠, 𝑌, 𝑊)) limℂ (𝑄‘(𝑖 + 1)))) |
407 | 288, 362,
263, 363, 364, 365, 406 | sublimc 43193 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → (𝑅 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) limℂ (𝑄‘(𝑖 + 1)))) |
408 | 350, 351,
361, 407 | syl21anc 835 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ ¬ (𝑉‘(𝑖 + 1)) < 𝑋) → (𝑅 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) limℂ (𝑄‘(𝑖 + 1)))) |
409 | 349, 408 | pm2.61dan 810 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝑅 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) limℂ (𝑄‘(𝑖 + 1)))) |
410 | 321, 264,
318 | idlimc 43167 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑠) limℂ (𝑄‘(𝑖 + 1)))) |
411 | 410 | 3adant3 1131 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝑄‘(𝑖 + 1)) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑠) limℂ (𝑄‘(𝑖 + 1)))) |
412 | 164 | 3adant3 1131 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋)) |
413 | 305 | 3adant3 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝑉‘(𝑖 + 1)) ∈ ℂ) |
414 | 227 | 3adant3 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) → 𝑋 ∈ ℂ) |
415 | 356 | 3ad2ant3 1134 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝑉‘(𝑖 + 1)) ≠ 𝑋) |
416 | 413, 414,
415 | subne0d 11341 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) → ((𝑉‘(𝑖 + 1)) − 𝑋) ≠ 0) |
417 | 412, 416 | eqnetrd 3011 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝑄‘(𝑖 + 1)) ≠ 0) |
418 | 206 | 3adantl3 1167 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ¬ 𝑠 = 0) |
419 | 418 | neqned 2950 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ≠ 0) |
420 | 263, 264,
265, 281, 287, 409, 411, 417, 419 | divlimc 43197 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) → ((𝑅 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1))) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) limℂ (𝑄‘(𝑖 + 1)))) |
421 | | iffalse 4468 |
. . . . . 6
⊢ (¬
(𝑉‘(𝑖 + 1)) = 𝑋 → if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐸, ((𝑅 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) = ((𝑅 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) |
422 | 98, 421 | eqtrid 2790 |
. . . . 5
⊢ (¬
(𝑉‘(𝑖 + 1)) = 𝑋 → 𝐴 = ((𝑅 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) |
423 | 422 | 3ad2ant3 1134 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) → 𝐴 = ((𝑅 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) |
424 | | ioossre 13140 |
. . . . . . . . . . . . 13
⊢
(-∞(,)𝑋)
⊆ ℝ |
425 | 424 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (-∞(,)𝑋) ⊆
ℝ) |
426 | 30, 425 | fssresd 6641 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹 ↾ (-∞(,)𝑋)):(-∞(,)𝑋)⟶ℝ) |
427 | 424, 52 | sstrid 3932 |
. . . . . . . . . . 11
⊢ (𝜑 → (-∞(,)𝑋) ⊆
ℂ) |
428 | 39 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → -∞ ∈
ℝ*) |
429 | 5 | mnfltd 12860 |
. . . . . . . . . . . 12
⊢ (𝜑 → -∞ < 𝑋) |
430 | 56, 428, 5, 429 | lptioo2cn 43186 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈
((limPt‘(TopOpen‘ℂfld))‘(-∞(,)𝑋))) |
431 | 426, 427,
430, 36 | limcrecl 43170 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 ∈ ℝ) |
432 | 30, 5, 274, 431, 102 | fourierdlem9 43657 |
. . . . . . . . 9
⊢ (𝜑 → 𝐻:(-π[,]π)⟶ℝ) |
433 | 432 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐻:(-π[,]π)⟶ℝ) |
434 | 433, 139 | feqresmpt 6838 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻‘𝑠))) |
435 | 139 | sselda 3921 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ (-π[,]π)) |
436 | | 0cnd 10968 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 0 ∈
ℂ) |
437 | 278 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℂ) |
438 | 272, 437 | subcld 11332 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℂ) |
439 | 282 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ℂ) |
440 | 206 | neqned 2950 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ≠ 0) |
441 | 438, 439,
440 | divcld 11751 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) ∈ ℂ) |
442 | 436, 441 | ifcld 4505 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℂ) |
443 | 102 | fvmpt2 6886 |
. . . . . . . . . 10
⊢ ((𝑠 ∈ (-π[,]π) ∧
if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℂ) → (𝐻‘𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) |
444 | 435, 442,
443 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐻‘𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) |
445 | 206 | iffalsed 4470 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) |
446 | 444, 445 | eqtrd 2778 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐻‘𝑠) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) |
447 | 446 | mpteq2dva 5174 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻‘𝑠)) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) |
448 | 434, 447 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) |
449 | 448 | 3adant3 1131 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝐻 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) |
450 | 449 | oveq1d 7290 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) → ((𝐻 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) limℂ (𝑄‘(𝑖 + 1)))) |
451 | 420, 423,
450 | 3eltr4d 2854 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) → 𝐴 ∈ ((𝐻 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
452 | 451 | 3expa 1117 |
. 2
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) → 𝐴 ∈ ((𝐻 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
453 | 262, 452 | pm2.61dan 810 |
1
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐴 ∈ ((𝐻 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |