Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem74 Structured version   Visualization version   GIF version

Theorem fourierdlem74 41034
Description: Given a piecewise smooth function 𝐹, the derived function 𝐻 has a limit at the upper bound of each interval of the partition 𝑄. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem74.xre (𝜑𝑋 ∈ ℝ)
fourierdlem74.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem74.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem74.x (𝜑𝑋 ∈ ran 𝑉)
fourierdlem74.y (𝜑𝑌 ∈ ℝ)
fourierdlem74.w (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem74.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem74.m (𝜑𝑀 ∈ ℕ)
fourierdlem74.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem74.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
fourierdlem74.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
fourierdlem74.o 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem74.g 𝐺 = (ℝ D 𝐹)
fourierdlem74.gcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
fourierdlem74.e (𝜑𝐸 ∈ ((𝐺 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem74.a 𝐴 = if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐸, ((𝑅 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1))))
Assertion
Ref Expression
fourierdlem74 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐴 ∈ ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
Distinct variable groups:   𝐸,𝑠   𝐹,𝑠   𝐻,𝑠   𝑖,𝑀,𝑚,𝑝   𝑀,𝑠,𝑖   𝑄,𝑖,𝑝   𝑄,𝑠   𝑅,𝑠   𝑖,𝑉,𝑝   𝑉,𝑠   𝑊,𝑠   𝑖,𝑋,𝑚,𝑝   𝑋,𝑠   𝑌,𝑠   𝜑,𝑖,𝑠
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑖,𝑚,𝑠,𝑝)   𝑃(𝑖,𝑚,𝑠,𝑝)   𝑄(𝑚)   𝑅(𝑖,𝑚,𝑝)   𝐸(𝑖,𝑚,𝑝)   𝐹(𝑖,𝑚,𝑝)   𝐺(𝑖,𝑚,𝑠,𝑝)   𝐻(𝑖,𝑚,𝑝)   𝑂(𝑖,𝑚,𝑠,𝑝)   𝑉(𝑚)   𝑊(𝑖,𝑚,𝑝)   𝑌(𝑖,𝑚,𝑝)

Proof of Theorem fourierdlem74
Dummy variables 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfzofz 12693 . . . . . 6 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
2 pire 24502 . . . . . . . . . . . 12 π ∈ ℝ
32renegcli 10596 . . . . . . . . . . 11 -π ∈ ℝ
43a1i 11 . . . . . . . . . 10 (𝜑 → -π ∈ ℝ)
5 fourierdlem74.xre . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
64, 5readdcld 10323 . . . . . . . . 9 (𝜑 → (-π + 𝑋) ∈ ℝ)
72a1i 11 . . . . . . . . . 10 (𝜑 → π ∈ ℝ)
87, 5readdcld 10323 . . . . . . . . 9 (𝜑 → (π + 𝑋) ∈ ℝ)
96, 8iccssred 40369 . . . . . . . 8 (𝜑 → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ)
109adantr 472 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑀)) → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ)
11 fourierdlem74.p . . . . . . . . 9 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
12 fourierdlem74.m . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
13 fourierdlem74.v . . . . . . . . 9 (𝜑𝑉 ∈ (𝑃𝑀))
1411, 12, 13fourierdlem15 40976 . . . . . . . 8 (𝜑𝑉:(0...𝑀)⟶((-π + 𝑋)[,](π + 𝑋)))
1514ffvelrnda 6549 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑉𝑖) ∈ ((-π + 𝑋)[,](π + 𝑋)))
1610, 15sseldd 3762 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑉𝑖) ∈ ℝ)
171, 16sylan2 586 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℝ)
1817adantr 472 . . . 4 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝑉𝑖) ∈ ℝ)
195ad2antrr 717 . . . 4 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → 𝑋 ∈ ℝ)
2011fourierdlem2 40963 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
2112, 20syl 17 . . . . . . . . 9 (𝜑 → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
2213, 21mpbid 223 . . . . . . . 8 (𝜑 → (𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1)))))
2322simprrd 790 . . . . . . 7 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1)))
2423r19.21bi 3079 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) < (𝑉‘(𝑖 + 1)))
2524adantr 472 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝑉𝑖) < (𝑉‘(𝑖 + 1)))
26 eqcom 2772 . . . . . . 7 ((𝑉‘(𝑖 + 1)) = 𝑋𝑋 = (𝑉‘(𝑖 + 1)))
2726biimpi 207 . . . . . 6 ((𝑉‘(𝑖 + 1)) = 𝑋𝑋 = (𝑉‘(𝑖 + 1)))
2827adantl 473 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → 𝑋 = (𝑉‘(𝑖 + 1)))
2925, 28breqtrrd 4837 . . . 4 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝑉𝑖) < 𝑋)
30 fourierdlem74.f . . . . . 6 (𝜑𝐹:ℝ⟶ℝ)
31 ioossre 12437 . . . . . . 7 ((𝑉𝑖)(,)𝑋) ⊆ ℝ
3231a1i 11 . . . . . 6 (𝜑 → ((𝑉𝑖)(,)𝑋) ⊆ ℝ)
3330, 32fssresd 6253 . . . . 5 (𝜑 → (𝐹 ↾ ((𝑉𝑖)(,)𝑋)):((𝑉𝑖)(,)𝑋)⟶ℝ)
3433ad2antrr 717 . . . 4 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝐹 ↾ ((𝑉𝑖)(,)𝑋)):((𝑉𝑖)(,)𝑋)⟶ℝ)
35 limcresi 23940 . . . . . . . 8 ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ⊆ (((𝐹 ↾ (-∞(,)𝑋)) ↾ ((𝑉𝑖)(,)𝑋)) lim 𝑋)
36 fourierdlem74.w . . . . . . . 8 (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
3735, 36sseldi 3759 . . . . . . 7 (𝜑𝑊 ∈ (((𝐹 ↾ (-∞(,)𝑋)) ↾ ((𝑉𝑖)(,)𝑋)) lim 𝑋))
3837adantr 472 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑊 ∈ (((𝐹 ↾ (-∞(,)𝑋)) ↾ ((𝑉𝑖)(,)𝑋)) lim 𝑋))
39 mnfxr 10350 . . . . . . . . . 10 -∞ ∈ ℝ*
4039a1i 11 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → -∞ ∈ ℝ*)
4117rexrd 10343 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℝ*)
4217mnfltd 12158 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → -∞ < (𝑉𝑖))
4340, 41, 42xrltled 12183 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → -∞ ≤ (𝑉𝑖))
44 iooss1 12412 . . . . . . . . 9 ((-∞ ∈ ℝ* ∧ -∞ ≤ (𝑉𝑖)) → ((𝑉𝑖)(,)𝑋) ⊆ (-∞(,)𝑋))
4540, 43, 44syl2anc 579 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉𝑖)(,)𝑋) ⊆ (-∞(,)𝑋))
4645resabs1d 5603 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ (-∞(,)𝑋)) ↾ ((𝑉𝑖)(,)𝑋)) = (𝐹 ↾ ((𝑉𝑖)(,)𝑋)))
4746oveq1d 6857 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝐹 ↾ (-∞(,)𝑋)) ↾ ((𝑉𝑖)(,)𝑋)) lim 𝑋) = ((𝐹 ↾ ((𝑉𝑖)(,)𝑋)) lim 𝑋))
4838, 47eleqtrd 2846 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑊 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)𝑋)) lim 𝑋))
4948adantr 472 . . . 4 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → 𝑊 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)𝑋)) lim 𝑋))
50 eqid 2765 . . . 4 (ℝ D (𝐹 ↾ ((𝑉𝑖)(,)𝑋))) = (ℝ D (𝐹 ↾ ((𝑉𝑖)(,)𝑋)))
51 ax-resscn 10246 . . . . . . . . . 10 ℝ ⊆ ℂ
5251a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℂ)
5330, 52fssd 6237 . . . . . . . . 9 (𝜑𝐹:ℝ⟶ℂ)
54 ssid 3783 . . . . . . . . . 10 ℝ ⊆ ℝ
5554a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℝ)
56 eqid 2765 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
5756tgioo2 22885 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
5856, 57dvres 23966 . . . . . . . . 9 (((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ ((𝑉𝑖)(,)𝑋) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝑉𝑖)(,)𝑋))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑉𝑖)(,)𝑋))))
5952, 53, 55, 32, 58syl22anc 867 . . . . . . . 8 (𝜑 → (ℝ D (𝐹 ↾ ((𝑉𝑖)(,)𝑋))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑉𝑖)(,)𝑋))))
60 fourierdlem74.g . . . . . . . . . . 11 𝐺 = (ℝ D 𝐹)
6160eqcomi 2774 . . . . . . . . . 10 (ℝ D 𝐹) = 𝐺
62 ioontr 40376 . . . . . . . . . 10 ((int‘(topGen‘ran (,)))‘((𝑉𝑖)(,)𝑋)) = ((𝑉𝑖)(,)𝑋)
6361, 62reseq12i 5563 . . . . . . . . 9 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑉𝑖)(,)𝑋))) = (𝐺 ↾ ((𝑉𝑖)(,)𝑋))
6463a1i 11 . . . . . . . 8 (𝜑 → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑉𝑖)(,)𝑋))) = (𝐺 ↾ ((𝑉𝑖)(,)𝑋)))
6559, 64eqtrd 2799 . . . . . . 7 (𝜑 → (ℝ D (𝐹 ↾ ((𝑉𝑖)(,)𝑋))) = (𝐺 ↾ ((𝑉𝑖)(,)𝑋)))
6665dmeqd 5494 . . . . . 6 (𝜑 → dom (ℝ D (𝐹 ↾ ((𝑉𝑖)(,)𝑋))) = dom (𝐺 ↾ ((𝑉𝑖)(,)𝑋)))
6766ad2antrr 717 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → dom (ℝ D (𝐹 ↾ ((𝑉𝑖)(,)𝑋))) = dom (𝐺 ↾ ((𝑉𝑖)(,)𝑋)))
68 fourierdlem74.gcn . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
6968adantr 472 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝐺 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
70 oveq2 6850 . . . . . . . . . 10 ((𝑉‘(𝑖 + 1)) = 𝑋 → ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) = ((𝑉𝑖)(,)𝑋))
7170reseq2d 5565 . . . . . . . . 9 ((𝑉‘(𝑖 + 1)) = 𝑋 → (𝐺 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) = (𝐺 ↾ ((𝑉𝑖)(,)𝑋)))
7271, 70feq12d 6211 . . . . . . . 8 ((𝑉‘(𝑖 + 1)) = 𝑋 → ((𝐺 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ ↔ (𝐺 ↾ ((𝑉𝑖)(,)𝑋)):((𝑉𝑖)(,)𝑋)⟶ℝ))
7372adantl 473 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → ((𝐺 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ ↔ (𝐺 ↾ ((𝑉𝑖)(,)𝑋)):((𝑉𝑖)(,)𝑋)⟶ℝ))
7469, 73mpbid 223 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝐺 ↾ ((𝑉𝑖)(,)𝑋)):((𝑉𝑖)(,)𝑋)⟶ℝ)
75 fdm 6231 . . . . . 6 ((𝐺 ↾ ((𝑉𝑖)(,)𝑋)):((𝑉𝑖)(,)𝑋)⟶ℝ → dom (𝐺 ↾ ((𝑉𝑖)(,)𝑋)) = ((𝑉𝑖)(,)𝑋))
7674, 75syl 17 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → dom (𝐺 ↾ ((𝑉𝑖)(,)𝑋)) = ((𝑉𝑖)(,)𝑋))
7767, 76eqtrd 2799 . . . 4 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → dom (ℝ D (𝐹 ↾ ((𝑉𝑖)(,)𝑋))) = ((𝑉𝑖)(,)𝑋))
78 limcresi 23940 . . . . . . . 8 ((𝐺 ↾ (-∞(,)𝑋)) lim 𝑋) ⊆ (((𝐺 ↾ (-∞(,)𝑋)) ↾ ((𝑉𝑖)(,)𝑋)) lim 𝑋)
7945resabs1d 5603 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐺 ↾ (-∞(,)𝑋)) ↾ ((𝑉𝑖)(,)𝑋)) = (𝐺 ↾ ((𝑉𝑖)(,)𝑋)))
8079oveq1d 6857 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝐺 ↾ (-∞(,)𝑋)) ↾ ((𝑉𝑖)(,)𝑋)) lim 𝑋) = ((𝐺 ↾ ((𝑉𝑖)(,)𝑋)) lim 𝑋))
8178, 80syl5sseq 3813 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐺 ↾ (-∞(,)𝑋)) lim 𝑋) ⊆ ((𝐺 ↾ ((𝑉𝑖)(,)𝑋)) lim 𝑋))
82 fourierdlem74.e . . . . . . . 8 (𝜑𝐸 ∈ ((𝐺 ↾ (-∞(,)𝑋)) lim 𝑋))
8382adantr 472 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐸 ∈ ((𝐺 ↾ (-∞(,)𝑋)) lim 𝑋))
8481, 83sseldd 3762 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐸 ∈ ((𝐺 ↾ ((𝑉𝑖)(,)𝑋)) lim 𝑋))
8559, 64eqtr2d 2800 . . . . . . . 8 (𝜑 → (𝐺 ↾ ((𝑉𝑖)(,)𝑋)) = (ℝ D (𝐹 ↾ ((𝑉𝑖)(,)𝑋))))
8685oveq1d 6857 . . . . . . 7 (𝜑 → ((𝐺 ↾ ((𝑉𝑖)(,)𝑋)) lim 𝑋) = ((ℝ D (𝐹 ↾ ((𝑉𝑖)(,)𝑋))) lim 𝑋))
8786adantr 472 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐺 ↾ ((𝑉𝑖)(,)𝑋)) lim 𝑋) = ((ℝ D (𝐹 ↾ ((𝑉𝑖)(,)𝑋))) lim 𝑋))
8884, 87eleqtrd 2846 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐸 ∈ ((ℝ D (𝐹 ↾ ((𝑉𝑖)(,)𝑋))) lim 𝑋))
8988adantr 472 . . . 4 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → 𝐸 ∈ ((ℝ D (𝐹 ↾ ((𝑉𝑖)(,)𝑋))) lim 𝑋))
90 eqid 2765 . . . 4 (𝑠 ∈ (((𝑉𝑖) − 𝑋)(,)0) ↦ ((((𝐹 ↾ ((𝑉𝑖)(,)𝑋))‘(𝑋 + 𝑠)) − 𝑊) / 𝑠)) = (𝑠 ∈ (((𝑉𝑖) − 𝑋)(,)0) ↦ ((((𝐹 ↾ ((𝑉𝑖)(,)𝑋))‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
91 oveq2 6850 . . . . . . 7 (𝑥 = 𝑠 → (𝑋 + 𝑥) = (𝑋 + 𝑠))
9291fveq2d 6379 . . . . . 6 (𝑥 = 𝑠 → ((𝐹 ↾ ((𝑉𝑖)(,)𝑋))‘(𝑋 + 𝑥)) = ((𝐹 ↾ ((𝑉𝑖)(,)𝑋))‘(𝑋 + 𝑠)))
9392oveq1d 6857 . . . . 5 (𝑥 = 𝑠 → (((𝐹 ↾ ((𝑉𝑖)(,)𝑋))‘(𝑋 + 𝑥)) − 𝑊) = (((𝐹 ↾ ((𝑉𝑖)(,)𝑋))‘(𝑋 + 𝑠)) − 𝑊))
9493cbvmptv 4909 . . . 4 (𝑥 ∈ (((𝑉𝑖) − 𝑋)(,)0) ↦ (((𝐹 ↾ ((𝑉𝑖)(,)𝑋))‘(𝑋 + 𝑥)) − 𝑊)) = (𝑠 ∈ (((𝑉𝑖) − 𝑋)(,)0) ↦ (((𝐹 ↾ ((𝑉𝑖)(,)𝑋))‘(𝑋 + 𝑠)) − 𝑊))
95 id 22 . . . . 5 (𝑥 = 𝑠𝑥 = 𝑠)
9695cbvmptv 4909 . . . 4 (𝑥 ∈ (((𝑉𝑖) − 𝑋)(,)0) ↦ 𝑥) = (𝑠 ∈ (((𝑉𝑖) − 𝑋)(,)0) ↦ 𝑠)
9718, 19, 29, 34, 49, 50, 77, 89, 90, 94, 96fourierdlem60 41020 . . 3 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → 𝐸 ∈ ((𝑠 ∈ (((𝑉𝑖) − 𝑋)(,)0) ↦ ((((𝐹 ↾ ((𝑉𝑖)(,)𝑋))‘(𝑋 + 𝑠)) − 𝑊) / 𝑠)) lim 0))
98 fourierdlem74.a . . . . 5 𝐴 = if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐸, ((𝑅 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1))))
99 iftrue 4249 . . . . 5 ((𝑉‘(𝑖 + 1)) = 𝑋 → if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐸, ((𝑅 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) = 𝐸)
10098, 99syl5eq 2811 . . . 4 ((𝑉‘(𝑖 + 1)) = 𝑋𝐴 = 𝐸)
101100adantl 473 . . 3 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → 𝐴 = 𝐸)
102 fourierdlem74.h . . . . . . 7 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
103102reseq1i 5561 . . . . . 6 (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
104103a1i 11 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
105 ioossicc 12461 . . . . . . . 8 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))
1063rexri 10351 . . . . . . . . . 10 -π ∈ ℝ*
107106a1i 11 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → -π ∈ ℝ*)
1082rexri 10351 . . . . . . . . . 10 π ∈ ℝ*
109108a1i 11 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → π ∈ ℝ*)
1103a1i 11 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...𝑀)) → -π ∈ ℝ)
1112a1i 11 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...𝑀)) → π ∈ ℝ)
1125adantr 472 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑋 ∈ ℝ)
11316, 112resubcld 10712 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...𝑀)) → ((𝑉𝑖) − 𝑋) ∈ ℝ)
1144recnd 10322 . . . . . . . . . . . . . . . 16 (𝜑 → -π ∈ ℂ)
1155recnd 10322 . . . . . . . . . . . . . . . 16 (𝜑𝑋 ∈ ℂ)
116114, 115pncand 10647 . . . . . . . . . . . . . . 15 (𝜑 → ((-π + 𝑋) − 𝑋) = -π)
117116eqcomd 2771 . . . . . . . . . . . . . 14 (𝜑 → -π = ((-π + 𝑋) − 𝑋))
118117adantr 472 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...𝑀)) → -π = ((-π + 𝑋) − 𝑋))
1196adantr 472 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0...𝑀)) → (-π + 𝑋) ∈ ℝ)
1208adantr 472 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0...𝑀)) → (π + 𝑋) ∈ ℝ)
121 elicc2 12440 . . . . . . . . . . . . . . . . 17 (((-π + 𝑋) ∈ ℝ ∧ (π + 𝑋) ∈ ℝ) → ((𝑉𝑖) ∈ ((-π + 𝑋)[,](π + 𝑋)) ↔ ((𝑉𝑖) ∈ ℝ ∧ (-π + 𝑋) ≤ (𝑉𝑖) ∧ (𝑉𝑖) ≤ (π + 𝑋))))
122119, 120, 121syl2anc 579 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0...𝑀)) → ((𝑉𝑖) ∈ ((-π + 𝑋)[,](π + 𝑋)) ↔ ((𝑉𝑖) ∈ ℝ ∧ (-π + 𝑋) ≤ (𝑉𝑖) ∧ (𝑉𝑖) ≤ (π + 𝑋))))
12315, 122mpbid 223 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0...𝑀)) → ((𝑉𝑖) ∈ ℝ ∧ (-π + 𝑋) ≤ (𝑉𝑖) ∧ (𝑉𝑖) ≤ (π + 𝑋)))
124123simp2d 1173 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0...𝑀)) → (-π + 𝑋) ≤ (𝑉𝑖))
125119, 16, 112, 124lesub1dd 10897 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...𝑀)) → ((-π + 𝑋) − 𝑋) ≤ ((𝑉𝑖) − 𝑋))
126118, 125eqbrtrd 4831 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...𝑀)) → -π ≤ ((𝑉𝑖) − 𝑋))
127123simp3d 1174 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑉𝑖) ≤ (π + 𝑋))
12816, 120, 112, 127lesub1dd 10897 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...𝑀)) → ((𝑉𝑖) − 𝑋) ≤ ((π + 𝑋) − 𝑋))
129111recnd 10322 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0...𝑀)) → π ∈ ℂ)
130115adantr 472 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑋 ∈ ℂ)
131129, 130pncand 10647 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...𝑀)) → ((π + 𝑋) − 𝑋) = π)
132128, 131breqtrd 4835 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...𝑀)) → ((𝑉𝑖) − 𝑋) ≤ π)
133110, 111, 113, 126, 132eliccd 40368 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...𝑀)) → ((𝑉𝑖) − 𝑋) ∈ (-π[,]π))
134 fourierdlem74.q . . . . . . . . . . 11 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
135133, 134fmptd 6574 . . . . . . . . . 10 (𝜑𝑄:(0...𝑀)⟶(-π[,]π))
136135adantr 472 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π))
137 simpr 477 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
138107, 109, 136, 137fourierdlem8 40969 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
139105, 138syl5ss 3772 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
140139resmptd 5629 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))))
141140adantr 472 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))))
1421adantl 473 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
1431, 113sylan2 586 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉𝑖) − 𝑋) ∈ ℝ)
144134fvmpt2 6480 . . . . . . . . 9 ((𝑖 ∈ (0...𝑀) ∧ ((𝑉𝑖) − 𝑋) ∈ ℝ) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
145142, 143, 144syl2anc 579 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
146145adantr 472 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
147 fveq2 6375 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (𝑉𝑖) = (𝑉𝑗))
148147oveq1d 6857 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → ((𝑉𝑖) − 𝑋) = ((𝑉𝑗) − 𝑋))
149148cbvmptv 4909 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋)) = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋))
150134, 149eqtri 2787 . . . . . . . . . . 11 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋))
151150a1i 11 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋)))
152 fveq2 6375 . . . . . . . . . . . 12 (𝑗 = (𝑖 + 1) → (𝑉𝑗) = (𝑉‘(𝑖 + 1)))
153152oveq1d 6857 . . . . . . . . . . 11 (𝑗 = (𝑖 + 1) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
154153adantl 473 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
155 fzofzp1 12773 . . . . . . . . . . 11 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
156155adantl 473 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
15722simpld 488 . . . . . . . . . . . . . 14 (𝜑𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)))
158 elmapi 8082 . . . . . . . . . . . . . 14 (𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
159157, 158syl 17 . . . . . . . . . . . . 13 (𝜑𝑉:(0...𝑀)⟶ℝ)
160159adantr 472 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
161160, 156ffvelrnd 6550 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℝ)
1625adantr 472 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ)
163161, 162resubcld 10712 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ)
164151, 154, 156, 163fvmptd 6477 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋))
165164adantr 472 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋))
166 oveq1 6849 . . . . . . . . 9 ((𝑉‘(𝑖 + 1)) = 𝑋 → ((𝑉‘(𝑖 + 1)) − 𝑋) = (𝑋𝑋))
167166adantl 473 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → ((𝑉‘(𝑖 + 1)) − 𝑋) = (𝑋𝑋))
168115ad2antrr 717 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → 𝑋 ∈ ℂ)
169168subidd 10634 . . . . . . . . 9 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝑋𝑋) = 0)
1701, 169sylanl2 671 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝑋𝑋) = 0)
171165, 167, 1703eqtrd 2803 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝑄‘(𝑖 + 1)) = 0)
172146, 171oveq12d 6860 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = (((𝑉𝑖) − 𝑋)(,)0))
173 simplr 785 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑠 = 0) → 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
174 fourierdlem74.o . . . . . . . . . . . . 13 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
17512adantr 472 . . . . . . . . . . . . 13 ((𝜑𝑠 = 0) → 𝑀 ∈ ℕ)
1764, 7, 5, 11, 174, 12, 13, 134fourierdlem14 40975 . . . . . . . . . . . . . 14 (𝜑𝑄 ∈ (𝑂𝑀))
177176adantr 472 . . . . . . . . . . . . 13 ((𝜑𝑠 = 0) → 𝑄 ∈ (𝑂𝑀))
178 simpr 477 . . . . . . . . . . . . . 14 ((𝜑𝑠 = 0) → 𝑠 = 0)
179 fourierdlem74.x . . . . . . . . . . . . . . . . . 18 (𝜑𝑋 ∈ ran 𝑉)
180 ffn 6223 . . . . . . . . . . . . . . . . . . 19 (𝑉:(0...𝑀)⟶((-π + 𝑋)[,](π + 𝑋)) → 𝑉 Fn (0...𝑀))
181 fvelrnb 6432 . . . . . . . . . . . . . . . . . . 19 (𝑉 Fn (0...𝑀) → (𝑋 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋))
18214, 180, 1813syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑋 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋))
183179, 182mpbid 223 . . . . . . . . . . . . . . . . 17 (𝜑 → ∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋)
184 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑖 ∈ (0...𝑀))
185134fvmpt2 6480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ (0...𝑀) ∧ ((𝑉𝑖) − 𝑋) ∈ (-π[,]π)) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
186184, 133, 185syl2anc 579 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
187186adantr 472 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑉𝑖) = 𝑋) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
188 oveq1 6849 . . . . . . . . . . . . . . . . . . . . 21 ((𝑉𝑖) = 𝑋 → ((𝑉𝑖) − 𝑋) = (𝑋𝑋))
189188adantl 473 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑉𝑖) = 𝑋) → ((𝑉𝑖) − 𝑋) = (𝑋𝑋))
190115subidd 10634 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑋𝑋) = 0)
191190ad2antrr 717 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑉𝑖) = 𝑋) → (𝑋𝑋) = 0)
192187, 189, 1913eqtrd 2803 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑉𝑖) = 𝑋) → (𝑄𝑖) = 0)
193192ex 401 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0...𝑀)) → ((𝑉𝑖) = 𝑋 → (𝑄𝑖) = 0))
194193reximdva 3163 . . . . . . . . . . . . . . . . 17 (𝜑 → (∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋 → ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = 0))
195183, 194mpd 15 . . . . . . . . . . . . . . . 16 (𝜑 → ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = 0)
196113, 134fmptd 6574 . . . . . . . . . . . . . . . . 17 (𝜑𝑄:(0...𝑀)⟶ℝ)
197 ffn 6223 . . . . . . . . . . . . . . . . 17 (𝑄:(0...𝑀)⟶ℝ → 𝑄 Fn (0...𝑀))
198 fvelrnb 6432 . . . . . . . . . . . . . . . . 17 (𝑄 Fn (0...𝑀) → (0 ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = 0))
199196, 197, 1983syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (0 ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = 0))
200195, 199mpbird 248 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ran 𝑄)
201200adantr 472 . . . . . . . . . . . . . 14 ((𝜑𝑠 = 0) → 0 ∈ ran 𝑄)
202178, 201eqeltrd 2844 . . . . . . . . . . . . 13 ((𝜑𝑠 = 0) → 𝑠 ∈ ran 𝑄)
203174, 175, 177, 202fourierdlem12 40973 . . . . . . . . . . . 12 (((𝜑𝑠 = 0) ∧ 𝑖 ∈ (0..^𝑀)) → ¬ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
204203an32s 642 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 = 0) → ¬ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
205204adantlr 706 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑠 = 0) → ¬ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
206173, 205pm2.65da 851 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ¬ 𝑠 = 0)
207206adantlr 706 . . . . . . . 8 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ¬ 𝑠 = 0)
208207iffalsed 4254 . . . . . . 7 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))
209 elioore 12407 . . . . . . . . . . . 12 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑠 ∈ ℝ)
210209adantl 473 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ℝ)
211 0red 10297 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 0 ∈ ℝ)
212 elioo3g 12406 . . . . . . . . . . . . . . 15 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↔ (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑠 ∈ ℝ*) ∧ ((𝑄𝑖) < 𝑠𝑠 < (𝑄‘(𝑖 + 1)))))
213212biimpi 207 . . . . . . . . . . . . . 14 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑠 ∈ ℝ*) ∧ ((𝑄𝑖) < 𝑠𝑠 < (𝑄‘(𝑖 + 1)))))
214213simprrd 790 . . . . . . . . . . . . 13 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑠 < (𝑄‘(𝑖 + 1)))
215214adantl 473 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 < (𝑄‘(𝑖 + 1)))
216171adantr 472 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) = 0)
217215, 216breqtrd 4835 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 < 0)
218210, 211, 217ltnsymd 10440 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ¬ 0 < 𝑠)
219218iffalsed 4254 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑊)
220219oveq2d 6858 . . . . . . . 8 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) = ((𝐹‘(𝑋 + 𝑠)) − 𝑊))
221220oveq1d 6857 . . . . . . 7 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
22241ad2antrr 717 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑉𝑖) ∈ ℝ*)
2235rexrd 10343 . . . . . . . . . . . 12 (𝜑𝑋 ∈ ℝ*)
224223ad3antrrr 721 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ*)
225162ad2antrr 717 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ)
226225, 210readdcld 10323 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ℝ)
227115adantr 472 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℂ)
228 iccssre 12457 . . . . . . . . . . . . . . . . . . 19 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
2293, 2, 228mp2an 683 . . . . . . . . . . . . . . . . . 18 (-π[,]π) ⊆ ℝ
230229, 51sstri 3770 . . . . . . . . . . . . . . . . 17 (-π[,]π) ⊆ ℂ
231186, 133eqeltrd 2844 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ∈ (-π[,]π))
2321, 231sylan2 586 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ (-π[,]π))
233230, 232sseldi 3759 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℂ)
234227, 233addcomd 10492 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝑄𝑖)) = ((𝑄𝑖) + 𝑋))
235145oveq1d 6857 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + 𝑋) = (((𝑉𝑖) − 𝑋) + 𝑋))
23617recnd 10322 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℂ)
237236, 227npcand 10650 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑉𝑖) − 𝑋) + 𝑋) = (𝑉𝑖))
238234, 235, 2373eqtrrd 2804 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) = (𝑋 + (𝑄𝑖)))
239238adantr 472 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑉𝑖) = (𝑋 + (𝑄𝑖)))
240145, 143eqeltrd 2844 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
241240adantr 472 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ∈ ℝ)
242209adantl 473 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ℝ)
2435ad2antrr 717 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ)
244213simprld 788 . . . . . . . . . . . . . . 15 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝑄𝑖) < 𝑠)
245244adantl 473 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < 𝑠)
246241, 242, 243, 245ltadd2dd 10450 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + (𝑄𝑖)) < (𝑋 + 𝑠))
247239, 246eqbrtrd 4831 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑉𝑖) < (𝑋 + 𝑠))
248247adantlr 706 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑉𝑖) < (𝑋 + 𝑠))
249 ltaddneg 10505 . . . . . . . . . . . . 13 ((𝑠 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝑠 < 0 ↔ (𝑋 + 𝑠) < 𝑋))
250210, 225, 249syl2anc 579 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑠 < 0 ↔ (𝑋 + 𝑠) < 𝑋))
251217, 250mpbid 223 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) < 𝑋)
252222, 224, 226, 248, 251eliood 40362 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ((𝑉𝑖)(,)𝑋))
253 fvres 6394 . . . . . . . . . . 11 ((𝑋 + 𝑠) ∈ ((𝑉𝑖)(,)𝑋) → ((𝐹 ↾ ((𝑉𝑖)(,)𝑋))‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑠)))
254253eqcomd 2771 . . . . . . . . . 10 ((𝑋 + 𝑠) ∈ ((𝑉𝑖)(,)𝑋) → (𝐹‘(𝑋 + 𝑠)) = ((𝐹 ↾ ((𝑉𝑖)(,)𝑋))‘(𝑋 + 𝑠)))
255252, 254syl 17 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑠)) = ((𝐹 ↾ ((𝑉𝑖)(,)𝑋))‘(𝑋 + 𝑠)))
256255oveq1d 6857 . . . . . . . 8 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐹‘(𝑋 + 𝑠)) − 𝑊) = (((𝐹 ↾ ((𝑉𝑖)(,)𝑋))‘(𝑋 + 𝑠)) − 𝑊))
257256oveq1d 6857 . . . . . . 7 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) = ((((𝐹 ↾ ((𝑉𝑖)(,)𝑋))‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
258208, 221, 2573eqtrd 2803 . . . . . 6 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = ((((𝐹 ↾ ((𝑉𝑖)(,)𝑋))‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
259172, 258mpteq12dva 4891 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) = (𝑠 ∈ (((𝑉𝑖) − 𝑋)(,)0) ↦ ((((𝐹 ↾ ((𝑉𝑖)(,)𝑋))‘(𝑋 + 𝑠)) − 𝑊) / 𝑠)))
260104, 141, 2593eqtrd 2803 . . . 4 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ (((𝑉𝑖) − 𝑋)(,)0) ↦ ((((𝐹 ↾ ((𝑉𝑖)(,)𝑋))‘(𝑋 + 𝑠)) − 𝑊) / 𝑠)))
261260, 171oveq12d 6860 . . 3 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ (((𝑉𝑖) − 𝑋)(,)0) ↦ ((((𝐹 ↾ ((𝑉𝑖)(,)𝑋))‘(𝑋 + 𝑠)) − 𝑊) / 𝑠)) lim 0))
26297, 101, 2613eltr4d 2859 . 2 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) = 𝑋) → 𝐴 ∈ ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
263 eqid 2765 . . . . 5 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)))
264 eqid 2765 . . . . 5 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑠) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑠)
265 eqid 2765 . . . . 5 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))
26630adantr 472 . . . . . . . . . 10 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐹:ℝ⟶ℝ)
2675adantr 472 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ)
268209adantl 473 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ℝ)
269267, 268readdcld 10323 . . . . . . . . . 10 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ℝ)
270266, 269ffvelrnd 6550 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
271270recnd 10322 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
272271adantlr 706 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
2732723adantl3 1209 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
274 fourierdlem74.y . . . . . . . . . 10 (𝜑𝑌 ∈ ℝ)
275274recnd 10322 . . . . . . . . 9 (𝜑𝑌 ∈ ℂ)
276 limccl 23930 . . . . . . . . . 10 ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ⊆ ℂ
277276, 36sseldi 3759 . . . . . . . . 9 (𝜑𝑊 ∈ ℂ)
278275, 277ifcld 4288 . . . . . . . 8 (𝜑 → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℂ)
279278adantr 472 . . . . . . 7 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℂ)
2802793ad2antl1 1236 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℂ)
281273, 280subcld 10646 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℂ)
282209recnd 10322 . . . . . . 7 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑠 ∈ ℂ)
283282adantl 473 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ℂ)
284 velsn 4350 . . . . . . . 8 (𝑠 ∈ {0} ↔ 𝑠 = 0)
285206, 284sylnibr 320 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ¬ 𝑠 ∈ {0})
2862853adantl3 1209 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ¬ 𝑠 ∈ {0})
287283, 286eldifd 3743 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ (ℂ ∖ {0}))
288 eqid 2765 . . . . . . . . . 10 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠)))
289 eqid 2765 . . . . . . . . . 10 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑊) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑊)
290 eqid 2765 . . . . . . . . . 10 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝑊)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝑊))
291277ad2antrr 717 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑊 ∈ ℂ)
29230adantr 472 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹:ℝ⟶ℝ)
293 ioossre 12437 . . . . . . . . . . . 12 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ
294293a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
29541adantr 472 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑉𝑖) ∈ ℝ*)
296161rexrd 10343 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℝ*)
297296adantr 472 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑉‘(𝑖 + 1)) ∈ ℝ*)
298269adantlr 706 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ℝ)
299196adantr 472 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
300299, 156ffvelrnd 6550 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
301300adantr 472 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
302214adantl 473 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 < (𝑄‘(𝑖 + 1)))
303242, 301, 243, 302ltadd2dd 10450 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) < (𝑋 + (𝑄‘(𝑖 + 1))))
304164oveq2d 6858 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝑄‘(𝑖 + 1))) = (𝑋 + ((𝑉‘(𝑖 + 1)) − 𝑋)))
305161recnd 10322 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℂ)
306227, 305pncan3d 10649 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑋 + ((𝑉‘(𝑖 + 1)) − 𝑋)) = (𝑉‘(𝑖 + 1)))
307304, 306eqtrd 2799 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝑄‘(𝑖 + 1))) = (𝑉‘(𝑖 + 1)))
308307adantr 472 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + (𝑄‘(𝑖 + 1))) = (𝑉‘(𝑖 + 1)))
309303, 308breqtrd 4835 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) < (𝑉‘(𝑖 + 1)))
310295, 297, 298, 247, 309eliood 40362 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
311 ioossre 12437 . . . . . . . . . . . 12 ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) ⊆ ℝ
312311a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) ⊆ ℝ)
313242, 302ltned 10427 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ≠ (𝑄‘(𝑖 + 1)))
314 fourierdlem74.r . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
315307eqcomd 2771 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) = (𝑋 + (𝑄‘(𝑖 + 1))))
316315oveq2d 6858 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))) = ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑋 + (𝑄‘(𝑖 + 1)))))
317314, 316eleqtrd 2846 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑋 + (𝑄‘(𝑖 + 1)))))
318300recnd 10322 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℂ)
319292, 162, 294, 288, 310, 312, 313, 317, 318fourierdlem53 41013 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) lim (𝑄‘(𝑖 + 1))))
320 ioosscn 40358 . . . . . . . . . . . 12 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ
321320a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ)
322277adantr 472 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑊 ∈ ℂ)
323289, 321, 322, 318constlimc 40494 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑊 ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑊) lim (𝑄‘(𝑖 + 1))))
324288, 289, 290, 272, 291, 319, 323sublimc 40522 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑅𝑊) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝑊)) lim (𝑄‘(𝑖 + 1))))
325324adantr 472 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) → (𝑅𝑊) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝑊)) lim (𝑄‘(𝑖 + 1))))
326 iftrue 4249 . . . . . . . . . 10 ((𝑉‘(𝑖 + 1)) < 𝑋 → if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌) = 𝑊)
327326oveq2d 6858 . . . . . . . . 9 ((𝑉‘(𝑖 + 1)) < 𝑋 → (𝑅 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) = (𝑅𝑊))
328327adantl 473 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) → (𝑅 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) = (𝑅𝑊))
329209adantl 473 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ℝ)
330 0red 10297 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 0 ∈ ℝ)
331300ad2antrr 717 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
332214adantl 473 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 < (𝑄‘(𝑖 + 1)))
333164adantr 472 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋))
334161adantr 472 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) → (𝑉‘(𝑖 + 1)) ∈ ℝ)
3355ad2antrr 717 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) → 𝑋 ∈ ℝ)
336 simpr 477 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) → (𝑉‘(𝑖 + 1)) < 𝑋)
337334, 335, 336ltled 10439 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) → (𝑉‘(𝑖 + 1)) ≤ 𝑋)
338334, 335suble0d 10872 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) → (((𝑉‘(𝑖 + 1)) − 𝑋) ≤ 0 ↔ (𝑉‘(𝑖 + 1)) ≤ 𝑋))
339337, 338mpbird 248 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) → ((𝑉‘(𝑖 + 1)) − 𝑋) ≤ 0)
340333, 339eqbrtrd 4831 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) → (𝑄‘(𝑖 + 1)) ≤ 0)
341340adantr 472 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ≤ 0)
342329, 331, 330, 332, 341ltletrd 10451 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 < 0)
343329, 330, 342ltnsymd 10440 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ¬ 0 < 𝑠)
344343iffalsed 4254 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑊)
345344oveq2d 6858 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) = ((𝐹‘(𝑋 + 𝑠)) − 𝑊))
346345mpteq2dva 4903 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝑊)))
347346oveq1d 6857 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) → ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) lim (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝑊)) lim (𝑄‘(𝑖 + 1))))
348325, 328, 3473eltr4d 2859 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) → (𝑅 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) lim (𝑄‘(𝑖 + 1))))
3493483adantl3 1209 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ (𝑉‘(𝑖 + 1)) < 𝑋) → (𝑅 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) lim (𝑄‘(𝑖 + 1))))
350 simpl1 1242 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ ¬ (𝑉‘(𝑖 + 1)) < 𝑋) → 𝜑)
351 simpl2 1244 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ ¬ (𝑉‘(𝑖 + 1)) < 𝑋) → 𝑖 ∈ (0..^𝑀))
3525ad2antrr 717 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ¬ (𝑉‘(𝑖 + 1)) < 𝑋) → 𝑋 ∈ ℝ)
3533523adantl3 1209 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ ¬ (𝑉‘(𝑖 + 1)) < 𝑋) → 𝑋 ∈ ℝ)
354161adantr 472 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ¬ (𝑉‘(𝑖 + 1)) < 𝑋) → (𝑉‘(𝑖 + 1)) ∈ ℝ)
3553543adantl3 1209 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ ¬ (𝑉‘(𝑖 + 1)) < 𝑋) → (𝑉‘(𝑖 + 1)) ∈ ℝ)
356 neqne 2945 . . . . . . . . . . 11 (¬ (𝑉‘(𝑖 + 1)) = 𝑋 → (𝑉‘(𝑖 + 1)) ≠ 𝑋)
357356necomd 2992 . . . . . . . . . 10 (¬ (𝑉‘(𝑖 + 1)) = 𝑋𝑋 ≠ (𝑉‘(𝑖 + 1)))
358357adantr 472 . . . . . . . . 9 ((¬ (𝑉‘(𝑖 + 1)) = 𝑋 ∧ ¬ (𝑉‘(𝑖 + 1)) < 𝑋) → 𝑋 ≠ (𝑉‘(𝑖 + 1)))
3593583ad2antl3 1238 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ ¬ (𝑉‘(𝑖 + 1)) < 𝑋) → 𝑋 ≠ (𝑉‘(𝑖 + 1)))
360 simpr 477 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ ¬ (𝑉‘(𝑖 + 1)) < 𝑋) → ¬ (𝑉‘(𝑖 + 1)) < 𝑋)
361353, 355, 359, 360lttri5d 40152 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ ¬ (𝑉‘(𝑖 + 1)) < 𝑋) → 𝑋 < (𝑉‘(𝑖 + 1)))
362 eqid 2765 . . . . . . . 8 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ if(0 < 𝑠, 𝑌, 𝑊)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ if(0 < 𝑠, 𝑌, 𝑊))
363272adantlr 706 . . . . . . . 8 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
364278ad3antrrr 721 . . . . . . . 8 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℂ)
365319adantr 472 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → 𝑅 ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) lim (𝑄‘(𝑖 + 1))))
366 eqid 2765 . . . . . . . . . . 11 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑌) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑌)
367275adantr 472 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑌 ∈ ℂ)
368366, 321, 367, 318constlimc 40494 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑌 ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑌) lim (𝑄‘(𝑖 + 1))))
369368adantr 472 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → 𝑌 ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑌) lim (𝑄‘(𝑖 + 1))))
3705ad2antrr 717 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → 𝑋 ∈ ℝ)
371161adantr 472 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → (𝑉‘(𝑖 + 1)) ∈ ℝ)
372 simpr 477 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → 𝑋 < (𝑉‘(𝑖 + 1)))
373370, 371, 372ltnsymd 10440 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → ¬ (𝑉‘(𝑖 + 1)) < 𝑋)
374373iffalsed 4254 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌) = 𝑌)
375 0red 10297 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 0 ∈ ℝ)
376240ad2antrr 717 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ∈ ℝ)
377209adantl 473 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ℝ)
378190eqcomd 2771 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 = (𝑋𝑋))
379378ad2antrr 717 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → 0 = (𝑋𝑋))
38017adantr 472 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → (𝑉𝑖) ∈ ℝ)
38141ad2antrr 717 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) ∧ ¬ 𝑋 ≤ (𝑉𝑖)) → (𝑉𝑖) ∈ ℝ*)
382296ad2antrr 717 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) ∧ ¬ 𝑋 ≤ (𝑉𝑖)) → (𝑉‘(𝑖 + 1)) ∈ ℝ*)
383162ad2antrr 717 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) ∧ ¬ 𝑋 ≤ (𝑉𝑖)) → 𝑋 ∈ ℝ)
384 simpr 477 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ¬ 𝑋 ≤ (𝑉𝑖)) → ¬ 𝑋 ≤ (𝑉𝑖))
38517adantr 472 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ¬ 𝑋 ≤ (𝑉𝑖)) → (𝑉𝑖) ∈ ℝ)
3865ad2antrr 717 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ¬ 𝑋 ≤ (𝑉𝑖)) → 𝑋 ∈ ℝ)
387385, 386ltnled 10438 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ¬ 𝑋 ≤ (𝑉𝑖)) → ((𝑉𝑖) < 𝑋 ↔ ¬ 𝑋 ≤ (𝑉𝑖)))
388384, 387mpbird 248 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ¬ 𝑋 ≤ (𝑉𝑖)) → (𝑉𝑖) < 𝑋)
389388adantlr 706 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) ∧ ¬ 𝑋 ≤ (𝑉𝑖)) → (𝑉𝑖) < 𝑋)
390 simplr 785 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) ∧ ¬ 𝑋 ≤ (𝑉𝑖)) → 𝑋 < (𝑉‘(𝑖 + 1)))
391381, 382, 383, 389, 390eliood 40362 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) ∧ ¬ 𝑋 ≤ (𝑉𝑖)) → 𝑋 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
39211, 12, 13, 179fourierdlem12 40973 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → ¬ 𝑋 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
393392ad2antrr 717 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) ∧ ¬ 𝑋 ≤ (𝑉𝑖)) → ¬ 𝑋 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
394391, 393condan 852 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → 𝑋 ≤ (𝑉𝑖))
395370, 380, 370, 394lesub1dd 10897 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → (𝑋𝑋) ≤ ((𝑉𝑖) − 𝑋))
396379, 395eqbrtrd 4831 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → 0 ≤ ((𝑉𝑖) − 𝑋))
397145eqcomd 2771 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉𝑖) − 𝑋) = (𝑄𝑖))
398397adantr 472 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → ((𝑉𝑖) − 𝑋) = (𝑄𝑖))
399396, 398breqtrd 4835 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → 0 ≤ (𝑄𝑖))
400399adantr 472 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 0 ≤ (𝑄𝑖))
401244adantl 473 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < 𝑠)
402375, 376, 377, 400, 401lelttrd 10449 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 0 < 𝑠)
403402iftrued 4251 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑌)
404403mpteq2dva 4903 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ if(0 < 𝑠, 𝑌, 𝑊)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑌))
405404oveq1d 6857 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ if(0 < 𝑠, 𝑌, 𝑊)) lim (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑌) lim (𝑄‘(𝑖 + 1))))
406369, 374, 4053eltr4d 2859 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ if(0 < 𝑠, 𝑌, 𝑊)) lim (𝑄‘(𝑖 + 1))))
407288, 362, 263, 363, 364, 365, 406sublimc 40522 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑋 < (𝑉‘(𝑖 + 1))) → (𝑅 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) lim (𝑄‘(𝑖 + 1))))
408350, 351, 361, 407syl21anc 866 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ ¬ (𝑉‘(𝑖 + 1)) < 𝑋) → (𝑅 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) lim (𝑄‘(𝑖 + 1))))
409349, 408pm2.61dan 847 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝑅 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) lim (𝑄‘(𝑖 + 1))))
410321, 264, 318idlimc 40496 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑠) lim (𝑄‘(𝑖 + 1))))
4114103adant3 1162 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝑄‘(𝑖 + 1)) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑠) lim (𝑄‘(𝑖 + 1))))
4121643adant3 1162 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋))
4133053adant3 1162 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝑉‘(𝑖 + 1)) ∈ ℂ)
4142273adant3 1162 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) → 𝑋 ∈ ℂ)
4153563ad2ant3 1165 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝑉‘(𝑖 + 1)) ≠ 𝑋)
416413, 414, 415subne0d 10655 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) → ((𝑉‘(𝑖 + 1)) − 𝑋) ≠ 0)
417412, 416eqnetrd 3004 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝑄‘(𝑖 + 1)) ≠ 0)
4182063adantl3 1209 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ¬ 𝑠 = 0)
419418neqned 2944 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ≠ 0)
420263, 264, 265, 281, 287, 409, 411, 417, 419divlimc 40526 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) → ((𝑅 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) lim (𝑄‘(𝑖 + 1))))
421 iffalse 4252 . . . . . 6 (¬ (𝑉‘(𝑖 + 1)) = 𝑋 → if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐸, ((𝑅 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) = ((𝑅 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1))))
42298, 421syl5eq 2811 . . . . 5 (¬ (𝑉‘(𝑖 + 1)) = 𝑋𝐴 = ((𝑅 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1))))
4234223ad2ant3 1165 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) → 𝐴 = ((𝑅 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1))))
424 ioossre 12437 . . . . . . . . . . . . 13 (-∞(,)𝑋) ⊆ ℝ
425424a1i 11 . . . . . . . . . . . 12 (𝜑 → (-∞(,)𝑋) ⊆ ℝ)
42630, 425fssresd 6253 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (-∞(,)𝑋)):(-∞(,)𝑋)⟶ℝ)
427424, 52syl5ss 3772 . . . . . . . . . . 11 (𝜑 → (-∞(,)𝑋) ⊆ ℂ)
42839a1i 11 . . . . . . . . . . . 12 (𝜑 → -∞ ∈ ℝ*)
4295mnfltd 12158 . . . . . . . . . . . 12 (𝜑 → -∞ < 𝑋)
43056, 428, 5, 429lptioo2cn 40515 . . . . . . . . . . 11 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(-∞(,)𝑋)))
431426, 427, 430, 36limcrecl 40499 . . . . . . . . . 10 (𝜑𝑊 ∈ ℝ)
43230, 5, 274, 431, 102fourierdlem9 40970 . . . . . . . . 9 (𝜑𝐻:(-π[,]π)⟶ℝ)
433432adantr 472 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐻:(-π[,]π)⟶ℝ)
434433, 139feqresmpt 6439 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)))
435139sselda 3761 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ (-π[,]π))
436 0cnd 10286 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 0 ∈ ℂ)
437278ad2antrr 717 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℂ)
438272, 437subcld 10646 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℂ)
439282adantl 473 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ℂ)
440206neqned 2944 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ≠ 0)
441438, 439, 440divcld 11055 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) ∈ ℂ)
442436, 441ifcld 4288 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℂ)
443102fvmpt2 6480 . . . . . . . . . 10 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℂ) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
444435, 442, 443syl2anc 579 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
445206iffalsed 4254 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))
446444, 445eqtrd 2799 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐻𝑠) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))
447446mpteq2dva 4903 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
448434, 447eqtrd 2799 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
4494483adant3 1162 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
450449oveq1d 6857 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) → ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) lim (𝑄‘(𝑖 + 1))))
451420, 423, 4503eltr4d 2859 . . 3 ((𝜑𝑖 ∈ (0..^𝑀) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) → 𝐴 ∈ ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
4524513expa 1147 . 2 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ¬ (𝑉‘(𝑖 + 1)) = 𝑋) → 𝐴 ∈ ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
453262, 452pm2.61dan 847 1 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐴 ∈ ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056  {crab 3059  wss 3732  ifcif 4243  {csn 4334   class class class wbr 4809  cmpt 4888  dom cdm 5277  ran crn 5278  cres 5279   Fn wfn 6063  wf 6064  cfv 6068  (class class class)co 6842  𝑚 cmap 8060  cc 10187  cr 10188  0cc0 10189  1c1 10190   + caddc 10192  -∞cmnf 10326  *cxr 10327   < clt 10328  cle 10329  cmin 10520  -cneg 10521   / cdiv 10938  cn 11274  (,)cioo 12377  [,]cicc 12380  ...cfz 12533  ..^cfzo 12673  πcpi 15079  TopOpenctopn 16348  topGenctg 16364  fldccnfld 20019  intcnt 21101   lim climc 23917   D cdv 23918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ioc 12382  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14092  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-limsup 14487  df-clim 14504  df-rlim 14505  df-sum 14702  df-ef 15080  df-sin 15082  df-cos 15083  df-pi 15085  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-mulr 16228  df-starv 16229  df-sca 16230  df-vsca 16231  df-ip 16232  df-tset 16233  df-ple 16234  df-ds 16236  df-unif 16237  df-hom 16238  df-cco 16239  df-rest 16349  df-topn 16350  df-0g 16368  df-gsum 16369  df-topgen 16370  df-pt 16371  df-prds 16374  df-xrs 16428  df-qtop 16433  df-imas 16434  df-xps 16436  df-mre 16512  df-mrc 16513  df-acs 16515  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-submnd 17602  df-mulg 17808  df-cntz 18013  df-cmn 18461  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-fbas 20016  df-fg 20017  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cld 21103  df-ntr 21104  df-cls 21105  df-nei 21182  df-lp 21220  df-perf 21221  df-cn 21311  df-cnp 21312  df-haus 21399  df-cmp 21470  df-tx 21645  df-hmeo 21838  df-fil 21929  df-fm 22021  df-flim 22022  df-flf 22023  df-xms 22404  df-ms 22405  df-tms 22406  df-cncf 22960  df-limc 23921  df-dv 23922
This theorem is referenced by:  fourierdlem88  41048  fourierdlem103  41063  fourierdlem104  41064
  Copyright terms: Public domain W3C validator