MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvlog2 Structured version   Visualization version   GIF version

Theorem dvlog2 25244
Description: The derivative of the complex logarithm function on the open unit ball centered at 1, a sometimes easier region to work with than the ℂ ∖ (-∞, 0] of dvlog 25242. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypothesis
Ref Expression
dvlog2.s 𝑆 = (1(ball‘(abs ∘ − ))1)
Assertion
Ref Expression
dvlog2 (ℂ D (log ↾ 𝑆)) = (𝑥𝑆 ↦ (1 / 𝑥))
Distinct variable group:   𝑥,𝑆

Proof of Theorem dvlog2
StepHypRef Expression
1 ssid 3937 . . . 4 ℂ ⊆ ℂ
2 logf1o 25156 . . . . . . 7 log:(ℂ ∖ {0})–1-1-onto→ran log
3 f1of 6590 . . . . . . 7 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
42, 3ax-mp 5 . . . . . 6 log:(ℂ ∖ {0})⟶ran log
5 logrncn 25154 . . . . . . 7 (𝑥 ∈ ran log → 𝑥 ∈ ℂ)
65ssriv 3919 . . . . . 6 ran log ⊆ ℂ
7 fss 6501 . . . . . 6 ((log:(ℂ ∖ {0})⟶ran log ∧ ran log ⊆ ℂ) → log:(ℂ ∖ {0})⟶ℂ)
84, 6, 7mp2an 691 . . . . 5 log:(ℂ ∖ {0})⟶ℂ
9 eqid 2798 . . . . . 6 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
109logdmss 25233 . . . . 5 (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖ {0})
11 fssres 6518 . . . . 5 ((log:(ℂ ∖ {0})⟶ℂ ∧ (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖ {0})) → (log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))⟶ℂ)
128, 10, 11mp2an 691 . . . 4 (log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))⟶ℂ
13 difss 4059 . . . 4 (ℂ ∖ (-∞(,]0)) ⊆ ℂ
14 dvlog2.s . . . . 5 𝑆 = (1(ball‘(abs ∘ − ))1)
15 cnxmet 23378 . . . . . 6 (abs ∘ − ) ∈ (∞Met‘ℂ)
16 ax-1cn 10584 . . . . . 6 1 ∈ ℂ
17 1xr 10689 . . . . . 6 1 ∈ ℝ*
18 blssm 23025 . . . . . 6 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ*) → (1(ball‘(abs ∘ − ))1) ⊆ ℂ)
1915, 16, 17, 18mp3an 1458 . . . . 5 (1(ball‘(abs ∘ − ))1) ⊆ ℂ
2014, 19eqsstri 3949 . . . 4 𝑆 ⊆ ℂ
21 eqid 2798 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2221cnfldtopon 23388 . . . . . 6 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
2322toponrestid 21526 . . . . 5 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
2421, 23dvres 24514 . . . 4 (((ℂ ⊆ ℂ ∧ (log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))⟶ℂ) ∧ ((ℂ ∖ (-∞(,]0)) ⊆ ℂ ∧ 𝑆 ⊆ ℂ)) → (ℂ D ((log ↾ (ℂ ∖ (-∞(,]0))) ↾ 𝑆)) = ((ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) ↾ ((int‘(TopOpen‘ℂfld))‘𝑆)))
251, 12, 13, 20, 24mp4an 692 . . 3 (ℂ D ((log ↾ (ℂ ∖ (-∞(,]0))) ↾ 𝑆)) = ((ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) ↾ ((int‘(TopOpen‘ℂfld))‘𝑆))
2614dvlog2lem 25243 . . . . 5 𝑆 ⊆ (ℂ ∖ (-∞(,]0))
27 resabs1 5848 . . . . 5 (𝑆 ⊆ (ℂ ∖ (-∞(,]0)) → ((log ↾ (ℂ ∖ (-∞(,]0))) ↾ 𝑆) = (log ↾ 𝑆))
2826, 27ax-mp 5 . . . 4 ((log ↾ (ℂ ∖ (-∞(,]0))) ↾ 𝑆) = (log ↾ 𝑆)
2928oveq2i 7146 . . 3 (ℂ D ((log ↾ (ℂ ∖ (-∞(,]0))) ↾ 𝑆)) = (ℂ D (log ↾ 𝑆))
309dvlog 25242 . . . 4 (ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) = (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑥))
3121cnfldtop 23389 . . . . 5 (TopOpen‘ℂfld) ∈ Top
3221cnfldtopn 23387 . . . . . . . 8 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
3332blopn 23107 . . . . . . 7 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ*) → (1(ball‘(abs ∘ − ))1) ∈ (TopOpen‘ℂfld))
3415, 16, 17, 33mp3an 1458 . . . . . 6 (1(ball‘(abs ∘ − ))1) ∈ (TopOpen‘ℂfld)
3514, 34eqeltri 2886 . . . . 5 𝑆 ∈ (TopOpen‘ℂfld)
36 isopn3i 21687 . . . . 5 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ∈ (TopOpen‘ℂfld)) → ((int‘(TopOpen‘ℂfld))‘𝑆) = 𝑆)
3731, 35, 36mp2an 691 . . . 4 ((int‘(TopOpen‘ℂfld))‘𝑆) = 𝑆
3830, 37reseq12i 5816 . . 3 ((ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) ↾ ((int‘(TopOpen‘ℂfld))‘𝑆)) = ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑥)) ↾ 𝑆)
3925, 29, 383eqtr3i 2829 . 2 (ℂ D (log ↾ 𝑆)) = ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑥)) ↾ 𝑆)
40 resmpt 5872 . . 3 (𝑆 ⊆ (ℂ ∖ (-∞(,]0)) → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑥)) ↾ 𝑆) = (𝑥𝑆 ↦ (1 / 𝑥)))
4126, 40ax-mp 5 . 2 ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑥)) ↾ 𝑆) = (𝑥𝑆 ↦ (1 / 𝑥))
4239, 41eqtri 2821 1 (ℂ D (log ↾ 𝑆)) = (𝑥𝑆 ↦ (1 / 𝑥))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2111  cdif 3878  wss 3881  {csn 4525  cmpt 5110  ran crn 5520  cres 5521  ccom 5523  wf 6320  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527  -∞cmnf 10662  *cxr 10663  cmin 10859   / cdiv 11286  (,]cioc 12727  abscabs 14585  TopOpenctopn 16687  ∞Metcxmet 20076  ballcbl 20078  fldccnfld 20091  Topctop 21498  intcnt 21622   D cdv 24466  logclog 25146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-tan 15417  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-log 25148
This theorem is referenced by:  logtayl  25251  efrlim  25555
  Copyright terms: Public domain W3C validator