Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvlog2 | Structured version Visualization version GIF version |
Description: The derivative of the complex logarithm function on the open unit ball centered at 1, a sometimes easier region to work with than the ℂ ∖ (-∞, 0] of dvlog 25804. (Contributed by Mario Carneiro, 1-Mar-2015.) |
Ref | Expression |
---|---|
dvlog2.s | ⊢ 𝑆 = (1(ball‘(abs ∘ − ))1) |
Ref | Expression |
---|---|
dvlog2 | ⊢ (ℂ D (log ↾ 𝑆)) = (𝑥 ∈ 𝑆 ↦ (1 / 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3948 | . . . 4 ⊢ ℂ ⊆ ℂ | |
2 | logf1o 25718 | . . . . . . 7 ⊢ log:(ℂ ∖ {0})–1-1-onto→ran log | |
3 | f1of 6714 | . . . . . . 7 ⊢ (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log) | |
4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ log:(ℂ ∖ {0})⟶ran log |
5 | logrncn 25716 | . . . . . . 7 ⊢ (𝑥 ∈ ran log → 𝑥 ∈ ℂ) | |
6 | 5 | ssriv 3930 | . . . . . 6 ⊢ ran log ⊆ ℂ |
7 | fss 6615 | . . . . . 6 ⊢ ((log:(ℂ ∖ {0})⟶ran log ∧ ran log ⊆ ℂ) → log:(ℂ ∖ {0})⟶ℂ) | |
8 | 4, 6, 7 | mp2an 689 | . . . . 5 ⊢ log:(ℂ ∖ {0})⟶ℂ |
9 | eqid 2740 | . . . . . 6 ⊢ (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0)) | |
10 | 9 | logdmss 25795 | . . . . 5 ⊢ (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖ {0}) |
11 | fssres 6638 | . . . . 5 ⊢ ((log:(ℂ ∖ {0})⟶ℂ ∧ (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖ {0})) → (log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))⟶ℂ) | |
12 | 8, 10, 11 | mp2an 689 | . . . 4 ⊢ (log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))⟶ℂ |
13 | difss 4071 | . . . 4 ⊢ (ℂ ∖ (-∞(,]0)) ⊆ ℂ | |
14 | dvlog2.s | . . . . 5 ⊢ 𝑆 = (1(ball‘(abs ∘ − ))1) | |
15 | cnxmet 23934 | . . . . . 6 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
16 | ax-1cn 10930 | . . . . . 6 ⊢ 1 ∈ ℂ | |
17 | 1xr 11035 | . . . . . 6 ⊢ 1 ∈ ℝ* | |
18 | blssm 23569 | . . . . . 6 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ*) → (1(ball‘(abs ∘ − ))1) ⊆ ℂ) | |
19 | 15, 16, 17, 18 | mp3an 1460 | . . . . 5 ⊢ (1(ball‘(abs ∘ − ))1) ⊆ ℂ |
20 | 14, 19 | eqsstri 3960 | . . . 4 ⊢ 𝑆 ⊆ ℂ |
21 | eqid 2740 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
22 | 21 | cnfldtopon 23944 | . . . . . 6 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
23 | 22 | toponrestid 22068 | . . . . 5 ⊢ (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ) |
24 | 21, 23 | dvres 25073 | . . . 4 ⊢ (((ℂ ⊆ ℂ ∧ (log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))⟶ℂ) ∧ ((ℂ ∖ (-∞(,]0)) ⊆ ℂ ∧ 𝑆 ⊆ ℂ)) → (ℂ D ((log ↾ (ℂ ∖ (-∞(,]0))) ↾ 𝑆)) = ((ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) ↾ ((int‘(TopOpen‘ℂfld))‘𝑆))) |
25 | 1, 12, 13, 20, 24 | mp4an 690 | . . 3 ⊢ (ℂ D ((log ↾ (ℂ ∖ (-∞(,]0))) ↾ 𝑆)) = ((ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) ↾ ((int‘(TopOpen‘ℂfld))‘𝑆)) |
26 | 14 | dvlog2lem 25805 | . . . . 5 ⊢ 𝑆 ⊆ (ℂ ∖ (-∞(,]0)) |
27 | resabs1 5920 | . . . . 5 ⊢ (𝑆 ⊆ (ℂ ∖ (-∞(,]0)) → ((log ↾ (ℂ ∖ (-∞(,]0))) ↾ 𝑆) = (log ↾ 𝑆)) | |
28 | 26, 27 | ax-mp 5 | . . . 4 ⊢ ((log ↾ (ℂ ∖ (-∞(,]0))) ↾ 𝑆) = (log ↾ 𝑆) |
29 | 28 | oveq2i 7282 | . . 3 ⊢ (ℂ D ((log ↾ (ℂ ∖ (-∞(,]0))) ↾ 𝑆)) = (ℂ D (log ↾ 𝑆)) |
30 | 9 | dvlog 25804 | . . . 4 ⊢ (ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) = (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑥)) |
31 | 21 | cnfldtop 23945 | . . . . 5 ⊢ (TopOpen‘ℂfld) ∈ Top |
32 | 21 | cnfldtopn 23943 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − )) |
33 | 32 | blopn 23654 | . . . . . . 7 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ*) → (1(ball‘(abs ∘ − ))1) ∈ (TopOpen‘ℂfld)) |
34 | 15, 16, 17, 33 | mp3an 1460 | . . . . . 6 ⊢ (1(ball‘(abs ∘ − ))1) ∈ (TopOpen‘ℂfld) |
35 | 14, 34 | eqeltri 2837 | . . . . 5 ⊢ 𝑆 ∈ (TopOpen‘ℂfld) |
36 | isopn3i 22231 | . . . . 5 ⊢ (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ∈ (TopOpen‘ℂfld)) → ((int‘(TopOpen‘ℂfld))‘𝑆) = 𝑆) | |
37 | 31, 35, 36 | mp2an 689 | . . . 4 ⊢ ((int‘(TopOpen‘ℂfld))‘𝑆) = 𝑆 |
38 | 30, 37 | reseq12i 5888 | . . 3 ⊢ ((ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) ↾ ((int‘(TopOpen‘ℂfld))‘𝑆)) = ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑥)) ↾ 𝑆) |
39 | 25, 29, 38 | 3eqtr3i 2776 | . 2 ⊢ (ℂ D (log ↾ 𝑆)) = ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑥)) ↾ 𝑆) |
40 | resmpt 5944 | . . 3 ⊢ (𝑆 ⊆ (ℂ ∖ (-∞(,]0)) → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑥)) ↾ 𝑆) = (𝑥 ∈ 𝑆 ↦ (1 / 𝑥))) | |
41 | 26, 40 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑥)) ↾ 𝑆) = (𝑥 ∈ 𝑆 ↦ (1 / 𝑥)) |
42 | 39, 41 | eqtri 2768 | 1 ⊢ (ℂ D (log ↾ 𝑆)) = (𝑥 ∈ 𝑆 ↦ (1 / 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2110 ∖ cdif 3889 ⊆ wss 3892 {csn 4567 ↦ cmpt 5162 ran crn 5591 ↾ cres 5592 ∘ ccom 5594 ⟶wf 6428 –1-1-onto→wf1o 6431 ‘cfv 6432 (class class class)co 7271 ℂcc 10870 0cc0 10872 1c1 10873 -∞cmnf 11008 ℝ*cxr 11009 − cmin 11205 / cdiv 11632 (,]cioc 13079 abscabs 14943 TopOpenctopn 17130 ∞Metcxmet 20580 ballcbl 20582 ℂfldccnfld 20595 Topctop 22040 intcnt 22166 D cdv 25025 logclog 25708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-inf2 9377 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 ax-addf 10951 ax-mulf 10952 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-of 7527 df-om 7707 df-1st 7824 df-2nd 7825 df-supp 7969 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-2o 8289 df-er 8481 df-map 8600 df-pm 8601 df-ixp 8669 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-fsupp 9107 df-fi 9148 df-sup 9179 df-inf 9180 df-oi 9247 df-card 9698 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12437 df-uz 12582 df-q 12688 df-rp 12730 df-xneg 12847 df-xadd 12848 df-xmul 12849 df-ioo 13082 df-ioc 13083 df-ico 13084 df-icc 13085 df-fz 13239 df-fzo 13382 df-fl 13510 df-mod 13588 df-seq 13720 df-exp 13781 df-fac 13986 df-bc 14015 df-hash 14043 df-shft 14776 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-limsup 15178 df-clim 15195 df-rlim 15196 df-sum 15396 df-ef 15775 df-sin 15777 df-cos 15778 df-tan 15779 df-pi 15780 df-struct 16846 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-mulr 16974 df-starv 16975 df-sca 16976 df-vsca 16977 df-ip 16978 df-tset 16979 df-ple 16980 df-ds 16982 df-unif 16983 df-hom 16984 df-cco 16985 df-rest 17131 df-topn 17132 df-0g 17150 df-gsum 17151 df-topgen 17152 df-pt 17153 df-prds 17156 df-xrs 17211 df-qtop 17216 df-imas 17217 df-xps 17219 df-mre 17293 df-mrc 17294 df-acs 17296 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-submnd 18429 df-mulg 18699 df-cntz 18921 df-cmn 19386 df-psmet 20587 df-xmet 20588 df-met 20589 df-bl 20590 df-mopn 20591 df-fbas 20592 df-fg 20593 df-cnfld 20596 df-top 22041 df-topon 22058 df-topsp 22080 df-bases 22094 df-cld 22168 df-ntr 22169 df-cls 22170 df-nei 22247 df-lp 22285 df-perf 22286 df-cn 22376 df-cnp 22377 df-haus 22464 df-cmp 22536 df-tx 22711 df-hmeo 22904 df-fil 22995 df-fm 23087 df-flim 23088 df-flf 23089 df-xms 23471 df-ms 23472 df-tms 23473 df-cncf 24039 df-limc 25028 df-dv 25029 df-log 25710 |
This theorem is referenced by: logtayl 25813 efrlim 26117 |
Copyright terms: Public domain | W3C validator |