MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvlog2 Structured version   Visualization version   GIF version

Theorem dvlog2 26710
Description: The derivative of the complex logarithm function on the open unit ball centered at 1, a sometimes easier region to work with than the ℂ ∖ (-∞, 0] of dvlog 26708. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypothesis
Ref Expression
dvlog2.s 𝑆 = (1(ball‘(abs ∘ − ))1)
Assertion
Ref Expression
dvlog2 (ℂ D (log ↾ 𝑆)) = (𝑥𝑆 ↦ (1 / 𝑥))
Distinct variable group:   𝑥,𝑆

Proof of Theorem dvlog2
StepHypRef Expression
1 ssid 4018 . . . 4 ℂ ⊆ ℂ
2 logf1o 26621 . . . . . . 7 log:(ℂ ∖ {0})–1-1-onto→ran log
3 f1of 6849 . . . . . . 7 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
42, 3ax-mp 5 . . . . . 6 log:(ℂ ∖ {0})⟶ran log
5 logrncn 26619 . . . . . . 7 (𝑥 ∈ ran log → 𝑥 ∈ ℂ)
65ssriv 3999 . . . . . 6 ran log ⊆ ℂ
7 fss 6753 . . . . . 6 ((log:(ℂ ∖ {0})⟶ran log ∧ ran log ⊆ ℂ) → log:(ℂ ∖ {0})⟶ℂ)
84, 6, 7mp2an 692 . . . . 5 log:(ℂ ∖ {0})⟶ℂ
9 eqid 2735 . . . . . 6 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
109logdmss 26699 . . . . 5 (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖ {0})
11 fssres 6775 . . . . 5 ((log:(ℂ ∖ {0})⟶ℂ ∧ (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖ {0})) → (log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))⟶ℂ)
128, 10, 11mp2an 692 . . . 4 (log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))⟶ℂ
13 difss 4146 . . . 4 (ℂ ∖ (-∞(,]0)) ⊆ ℂ
14 dvlog2.s . . . . 5 𝑆 = (1(ball‘(abs ∘ − ))1)
15 cnxmet 24809 . . . . . 6 (abs ∘ − ) ∈ (∞Met‘ℂ)
16 ax-1cn 11211 . . . . . 6 1 ∈ ℂ
17 1xr 11318 . . . . . 6 1 ∈ ℝ*
18 blssm 24444 . . . . . 6 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ*) → (1(ball‘(abs ∘ − ))1) ⊆ ℂ)
1915, 16, 17, 18mp3an 1460 . . . . 5 (1(ball‘(abs ∘ − ))1) ⊆ ℂ
2014, 19eqsstri 4030 . . . 4 𝑆 ⊆ ℂ
21 eqid 2735 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2221cnfldtopon 24819 . . . . . 6 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
2322toponrestid 22943 . . . . 5 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
2421, 23dvres 25961 . . . 4 (((ℂ ⊆ ℂ ∧ (log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))⟶ℂ) ∧ ((ℂ ∖ (-∞(,]0)) ⊆ ℂ ∧ 𝑆 ⊆ ℂ)) → (ℂ D ((log ↾ (ℂ ∖ (-∞(,]0))) ↾ 𝑆)) = ((ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) ↾ ((int‘(TopOpen‘ℂfld))‘𝑆)))
251, 12, 13, 20, 24mp4an 693 . . 3 (ℂ D ((log ↾ (ℂ ∖ (-∞(,]0))) ↾ 𝑆)) = ((ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) ↾ ((int‘(TopOpen‘ℂfld))‘𝑆))
2614dvlog2lem 26709 . . . . 5 𝑆 ⊆ (ℂ ∖ (-∞(,]0))
27 resabs1 6027 . . . . 5 (𝑆 ⊆ (ℂ ∖ (-∞(,]0)) → ((log ↾ (ℂ ∖ (-∞(,]0))) ↾ 𝑆) = (log ↾ 𝑆))
2826, 27ax-mp 5 . . . 4 ((log ↾ (ℂ ∖ (-∞(,]0))) ↾ 𝑆) = (log ↾ 𝑆)
2928oveq2i 7442 . . 3 (ℂ D ((log ↾ (ℂ ∖ (-∞(,]0))) ↾ 𝑆)) = (ℂ D (log ↾ 𝑆))
309dvlog 26708 . . . 4 (ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) = (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑥))
3121cnfldtop 24820 . . . . 5 (TopOpen‘ℂfld) ∈ Top
3221cnfldtopn 24818 . . . . . . . 8 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
3332blopn 24529 . . . . . . 7 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ*) → (1(ball‘(abs ∘ − ))1) ∈ (TopOpen‘ℂfld))
3415, 16, 17, 33mp3an 1460 . . . . . 6 (1(ball‘(abs ∘ − ))1) ∈ (TopOpen‘ℂfld)
3514, 34eqeltri 2835 . . . . 5 𝑆 ∈ (TopOpen‘ℂfld)
36 isopn3i 23106 . . . . 5 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ∈ (TopOpen‘ℂfld)) → ((int‘(TopOpen‘ℂfld))‘𝑆) = 𝑆)
3731, 35, 36mp2an 692 . . . 4 ((int‘(TopOpen‘ℂfld))‘𝑆) = 𝑆
3830, 37reseq12i 5998 . . 3 ((ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) ↾ ((int‘(TopOpen‘ℂfld))‘𝑆)) = ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑥)) ↾ 𝑆)
3925, 29, 383eqtr3i 2771 . 2 (ℂ D (log ↾ 𝑆)) = ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑥)) ↾ 𝑆)
40 resmpt 6057 . . 3 (𝑆 ⊆ (ℂ ∖ (-∞(,]0)) → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑥)) ↾ 𝑆) = (𝑥𝑆 ↦ (1 / 𝑥)))
4126, 40ax-mp 5 . 2 ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑥)) ↾ 𝑆) = (𝑥𝑆 ↦ (1 / 𝑥))
4239, 41eqtri 2763 1 (ℂ D (log ↾ 𝑆)) = (𝑥𝑆 ↦ (1 / 𝑥))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2106  cdif 3960  wss 3963  {csn 4631  cmpt 5231  ran crn 5690  cres 5691  ccom 5693  wf 6559  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154  -∞cmnf 11291  *cxr 11292  cmin 11490   / cdiv 11918  (,]cioc 13385  abscabs 15270  TopOpenctopn 17468  ∞Metcxmet 21367  ballcbl 21369  fldccnfld 21382  Topctop 22915  intcnt 23041   D cdv 25913  logclog 26611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103  df-tan 16104  df-pi 16105  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-cmp 23411  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917  df-log 26613
This theorem is referenced by:  logtayl  26717  efrlim  27027  efrlimOLD  27028
  Copyright terms: Public domain W3C validator