| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvlog2 | Structured version Visualization version GIF version | ||
| Description: The derivative of the complex logarithm function on the open unit ball centered at 1, a sometimes easier region to work with than the ℂ ∖ (-∞, 0] of dvlog 26587. (Contributed by Mario Carneiro, 1-Mar-2015.) |
| Ref | Expression |
|---|---|
| dvlog2.s | ⊢ 𝑆 = (1(ball‘(abs ∘ − ))1) |
| Ref | Expression |
|---|---|
| dvlog2 | ⊢ (ℂ D (log ↾ 𝑆)) = (𝑥 ∈ 𝑆 ↦ (1 / 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3952 | . . . 4 ⊢ ℂ ⊆ ℂ | |
| 2 | logf1o 26500 | . . . . . . 7 ⊢ log:(ℂ ∖ {0})–1-1-onto→ran log | |
| 3 | f1of 6763 | . . . . . . 7 ⊢ (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ log:(ℂ ∖ {0})⟶ran log |
| 5 | logrncn 26498 | . . . . . . 7 ⊢ (𝑥 ∈ ran log → 𝑥 ∈ ℂ) | |
| 6 | 5 | ssriv 3933 | . . . . . 6 ⊢ ran log ⊆ ℂ |
| 7 | fss 6667 | . . . . . 6 ⊢ ((log:(ℂ ∖ {0})⟶ran log ∧ ran log ⊆ ℂ) → log:(ℂ ∖ {0})⟶ℂ) | |
| 8 | 4, 6, 7 | mp2an 692 | . . . . 5 ⊢ log:(ℂ ∖ {0})⟶ℂ |
| 9 | eqid 2731 | . . . . . 6 ⊢ (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0)) | |
| 10 | 9 | logdmss 26578 | . . . . 5 ⊢ (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖ {0}) |
| 11 | fssres 6689 | . . . . 5 ⊢ ((log:(ℂ ∖ {0})⟶ℂ ∧ (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖ {0})) → (log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))⟶ℂ) | |
| 12 | 8, 10, 11 | mp2an 692 | . . . 4 ⊢ (log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))⟶ℂ |
| 13 | difss 4083 | . . . 4 ⊢ (ℂ ∖ (-∞(,]0)) ⊆ ℂ | |
| 14 | dvlog2.s | . . . . 5 ⊢ 𝑆 = (1(ball‘(abs ∘ − ))1) | |
| 15 | cnxmet 24687 | . . . . . 6 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
| 16 | ax-1cn 11064 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 17 | 1xr 11171 | . . . . . 6 ⊢ 1 ∈ ℝ* | |
| 18 | blssm 24333 | . . . . . 6 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ*) → (1(ball‘(abs ∘ − ))1) ⊆ ℂ) | |
| 19 | 15, 16, 17, 18 | mp3an 1463 | . . . . 5 ⊢ (1(ball‘(abs ∘ − ))1) ⊆ ℂ |
| 20 | 14, 19 | eqsstri 3976 | . . . 4 ⊢ 𝑆 ⊆ ℂ |
| 21 | eqid 2731 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 22 | 21 | cnfldtopon 24697 | . . . . . 6 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
| 23 | 22 | toponrestid 22836 | . . . . 5 ⊢ (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ) |
| 24 | 21, 23 | dvres 25839 | . . . 4 ⊢ (((ℂ ⊆ ℂ ∧ (log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))⟶ℂ) ∧ ((ℂ ∖ (-∞(,]0)) ⊆ ℂ ∧ 𝑆 ⊆ ℂ)) → (ℂ D ((log ↾ (ℂ ∖ (-∞(,]0))) ↾ 𝑆)) = ((ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) ↾ ((int‘(TopOpen‘ℂfld))‘𝑆))) |
| 25 | 1, 12, 13, 20, 24 | mp4an 693 | . . 3 ⊢ (ℂ D ((log ↾ (ℂ ∖ (-∞(,]0))) ↾ 𝑆)) = ((ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) ↾ ((int‘(TopOpen‘ℂfld))‘𝑆)) |
| 26 | 14 | dvlog2lem 26588 | . . . . 5 ⊢ 𝑆 ⊆ (ℂ ∖ (-∞(,]0)) |
| 27 | resabs1 5954 | . . . . 5 ⊢ (𝑆 ⊆ (ℂ ∖ (-∞(,]0)) → ((log ↾ (ℂ ∖ (-∞(,]0))) ↾ 𝑆) = (log ↾ 𝑆)) | |
| 28 | 26, 27 | ax-mp 5 | . . . 4 ⊢ ((log ↾ (ℂ ∖ (-∞(,]0))) ↾ 𝑆) = (log ↾ 𝑆) |
| 29 | 28 | oveq2i 7357 | . . 3 ⊢ (ℂ D ((log ↾ (ℂ ∖ (-∞(,]0))) ↾ 𝑆)) = (ℂ D (log ↾ 𝑆)) |
| 30 | 9 | dvlog 26587 | . . . 4 ⊢ (ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) = (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑥)) |
| 31 | 21 | cnfldtop 24698 | . . . . 5 ⊢ (TopOpen‘ℂfld) ∈ Top |
| 32 | 21 | cnfldtopn 24696 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − )) |
| 33 | 32 | blopn 24415 | . . . . . . 7 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ*) → (1(ball‘(abs ∘ − ))1) ∈ (TopOpen‘ℂfld)) |
| 34 | 15, 16, 17, 33 | mp3an 1463 | . . . . . 6 ⊢ (1(ball‘(abs ∘ − ))1) ∈ (TopOpen‘ℂfld) |
| 35 | 14, 34 | eqeltri 2827 | . . . . 5 ⊢ 𝑆 ∈ (TopOpen‘ℂfld) |
| 36 | isopn3i 22997 | . . . . 5 ⊢ (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ∈ (TopOpen‘ℂfld)) → ((int‘(TopOpen‘ℂfld))‘𝑆) = 𝑆) | |
| 37 | 31, 35, 36 | mp2an 692 | . . . 4 ⊢ ((int‘(TopOpen‘ℂfld))‘𝑆) = 𝑆 |
| 38 | 30, 37 | reseq12i 5925 | . . 3 ⊢ ((ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) ↾ ((int‘(TopOpen‘ℂfld))‘𝑆)) = ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑥)) ↾ 𝑆) |
| 39 | 25, 29, 38 | 3eqtr3i 2762 | . 2 ⊢ (ℂ D (log ↾ 𝑆)) = ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑥)) ↾ 𝑆) |
| 40 | resmpt 5985 | . . 3 ⊢ (𝑆 ⊆ (ℂ ∖ (-∞(,]0)) → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑥)) ↾ 𝑆) = (𝑥 ∈ 𝑆 ↦ (1 / 𝑥))) | |
| 41 | 26, 40 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑥)) ↾ 𝑆) = (𝑥 ∈ 𝑆 ↦ (1 / 𝑥)) |
| 42 | 39, 41 | eqtri 2754 | 1 ⊢ (ℂ D (log ↾ 𝑆)) = (𝑥 ∈ 𝑆 ↦ (1 / 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 ⊆ wss 3897 {csn 4573 ↦ cmpt 5170 ran crn 5615 ↾ cres 5616 ∘ ccom 5618 ⟶wf 6477 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 0cc0 11006 1c1 11007 -∞cmnf 11144 ℝ*cxr 11145 − cmin 11344 / cdiv 11774 (,]cioc 13246 abscabs 15141 TopOpenctopn 17325 ∞Metcxmet 21276 ballcbl 21278 ℂfldccnfld 21291 Topctop 22808 intcnt 22932 D cdv 25791 logclog 26490 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ioc 13250 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-sin 15976 df-cos 15977 df-tan 15978 df-pi 15979 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19229 df-cmn 19694 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-fbas 21288 df-fg 21289 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-ntr 22935 df-cls 22936 df-nei 23013 df-lp 23051 df-perf 23052 df-cn 23142 df-cnp 23143 df-haus 23230 df-cmp 23302 df-tx 23477 df-hmeo 23670 df-fil 23761 df-fm 23853 df-flim 23854 df-flf 23855 df-xms 24235 df-ms 24236 df-tms 24237 df-cncf 24798 df-limc 25794 df-dv 25795 df-log 26492 |
| This theorem is referenced by: logtayl 26596 efrlim 26906 efrlimOLD 26907 |
| Copyright terms: Public domain | W3C validator |