![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvlog2 | Structured version Visualization version GIF version |
Description: The derivative of the complex logarithm function on the open unit ball centered at 1, a sometimes easier region to work with than the ℂ ∖ (-∞, 0] of dvlog 26006. (Contributed by Mario Carneiro, 1-Mar-2015.) |
Ref | Expression |
---|---|
dvlog2.s | ⊢ 𝑆 = (1(ball‘(abs ∘ − ))1) |
Ref | Expression |
---|---|
dvlog2 | ⊢ (ℂ D (log ↾ 𝑆)) = (𝑥 ∈ 𝑆 ↦ (1 / 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3966 | . . . 4 ⊢ ℂ ⊆ ℂ | |
2 | logf1o 25920 | . . . . . . 7 ⊢ log:(ℂ ∖ {0})–1-1-onto→ran log | |
3 | f1of 6784 | . . . . . . 7 ⊢ (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log) | |
4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ log:(ℂ ∖ {0})⟶ran log |
5 | logrncn 25918 | . . . . . . 7 ⊢ (𝑥 ∈ ran log → 𝑥 ∈ ℂ) | |
6 | 5 | ssriv 3948 | . . . . . 6 ⊢ ran log ⊆ ℂ |
7 | fss 6685 | . . . . . 6 ⊢ ((log:(ℂ ∖ {0})⟶ran log ∧ ran log ⊆ ℂ) → log:(ℂ ∖ {0})⟶ℂ) | |
8 | 4, 6, 7 | mp2an 690 | . . . . 5 ⊢ log:(ℂ ∖ {0})⟶ℂ |
9 | eqid 2736 | . . . . . 6 ⊢ (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0)) | |
10 | 9 | logdmss 25997 | . . . . 5 ⊢ (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖ {0}) |
11 | fssres 6708 | . . . . 5 ⊢ ((log:(ℂ ∖ {0})⟶ℂ ∧ (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖ {0})) → (log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))⟶ℂ) | |
12 | 8, 10, 11 | mp2an 690 | . . . 4 ⊢ (log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))⟶ℂ |
13 | difss 4091 | . . . 4 ⊢ (ℂ ∖ (-∞(,]0)) ⊆ ℂ | |
14 | dvlog2.s | . . . . 5 ⊢ 𝑆 = (1(ball‘(abs ∘ − ))1) | |
15 | cnxmet 24136 | . . . . . 6 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
16 | ax-1cn 11109 | . . . . . 6 ⊢ 1 ∈ ℂ | |
17 | 1xr 11214 | . . . . . 6 ⊢ 1 ∈ ℝ* | |
18 | blssm 23771 | . . . . . 6 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ*) → (1(ball‘(abs ∘ − ))1) ⊆ ℂ) | |
19 | 15, 16, 17, 18 | mp3an 1461 | . . . . 5 ⊢ (1(ball‘(abs ∘ − ))1) ⊆ ℂ |
20 | 14, 19 | eqsstri 3978 | . . . 4 ⊢ 𝑆 ⊆ ℂ |
21 | eqid 2736 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
22 | 21 | cnfldtopon 24146 | . . . . . 6 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
23 | 22 | toponrestid 22270 | . . . . 5 ⊢ (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ) |
24 | 21, 23 | dvres 25275 | . . . 4 ⊢ (((ℂ ⊆ ℂ ∧ (log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))⟶ℂ) ∧ ((ℂ ∖ (-∞(,]0)) ⊆ ℂ ∧ 𝑆 ⊆ ℂ)) → (ℂ D ((log ↾ (ℂ ∖ (-∞(,]0))) ↾ 𝑆)) = ((ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) ↾ ((int‘(TopOpen‘ℂfld))‘𝑆))) |
25 | 1, 12, 13, 20, 24 | mp4an 691 | . . 3 ⊢ (ℂ D ((log ↾ (ℂ ∖ (-∞(,]0))) ↾ 𝑆)) = ((ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) ↾ ((int‘(TopOpen‘ℂfld))‘𝑆)) |
26 | 14 | dvlog2lem 26007 | . . . . 5 ⊢ 𝑆 ⊆ (ℂ ∖ (-∞(,]0)) |
27 | resabs1 5967 | . . . . 5 ⊢ (𝑆 ⊆ (ℂ ∖ (-∞(,]0)) → ((log ↾ (ℂ ∖ (-∞(,]0))) ↾ 𝑆) = (log ↾ 𝑆)) | |
28 | 26, 27 | ax-mp 5 | . . . 4 ⊢ ((log ↾ (ℂ ∖ (-∞(,]0))) ↾ 𝑆) = (log ↾ 𝑆) |
29 | 28 | oveq2i 7368 | . . 3 ⊢ (ℂ D ((log ↾ (ℂ ∖ (-∞(,]0))) ↾ 𝑆)) = (ℂ D (log ↾ 𝑆)) |
30 | 9 | dvlog 26006 | . . . 4 ⊢ (ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) = (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑥)) |
31 | 21 | cnfldtop 24147 | . . . . 5 ⊢ (TopOpen‘ℂfld) ∈ Top |
32 | 21 | cnfldtopn 24145 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − )) |
33 | 32 | blopn 23856 | . . . . . . 7 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ*) → (1(ball‘(abs ∘ − ))1) ∈ (TopOpen‘ℂfld)) |
34 | 15, 16, 17, 33 | mp3an 1461 | . . . . . 6 ⊢ (1(ball‘(abs ∘ − ))1) ∈ (TopOpen‘ℂfld) |
35 | 14, 34 | eqeltri 2834 | . . . . 5 ⊢ 𝑆 ∈ (TopOpen‘ℂfld) |
36 | isopn3i 22433 | . . . . 5 ⊢ (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ∈ (TopOpen‘ℂfld)) → ((int‘(TopOpen‘ℂfld))‘𝑆) = 𝑆) | |
37 | 31, 35, 36 | mp2an 690 | . . . 4 ⊢ ((int‘(TopOpen‘ℂfld))‘𝑆) = 𝑆 |
38 | 30, 37 | reseq12i 5935 | . . 3 ⊢ ((ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) ↾ ((int‘(TopOpen‘ℂfld))‘𝑆)) = ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑥)) ↾ 𝑆) |
39 | 25, 29, 38 | 3eqtr3i 2772 | . 2 ⊢ (ℂ D (log ↾ 𝑆)) = ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑥)) ↾ 𝑆) |
40 | resmpt 5991 | . . 3 ⊢ (𝑆 ⊆ (ℂ ∖ (-∞(,]0)) → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑥)) ↾ 𝑆) = (𝑥 ∈ 𝑆 ↦ (1 / 𝑥))) | |
41 | 26, 40 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑥)) ↾ 𝑆) = (𝑥 ∈ 𝑆 ↦ (1 / 𝑥)) |
42 | 39, 41 | eqtri 2764 | 1 ⊢ (ℂ D (log ↾ 𝑆)) = (𝑥 ∈ 𝑆 ↦ (1 / 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 ∖ cdif 3907 ⊆ wss 3910 {csn 4586 ↦ cmpt 5188 ran crn 5634 ↾ cres 5635 ∘ ccom 5637 ⟶wf 6492 –1-1-onto→wf1o 6495 ‘cfv 6496 (class class class)co 7357 ℂcc 11049 0cc0 11051 1c1 11052 -∞cmnf 11187 ℝ*cxr 11188 − cmin 11385 / cdiv 11812 (,]cioc 13265 abscabs 15119 TopOpenctopn 17303 ∞Metcxmet 20781 ballcbl 20783 ℂfldccnfld 20796 Topctop 22242 intcnt 22368 D cdv 25227 logclog 25910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 ax-addf 11130 ax-mulf 11131 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8648 df-map 8767 df-pm 8768 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-fi 9347 df-sup 9378 df-inf 9379 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-q 12874 df-rp 12916 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ioo 13268 df-ioc 13269 df-ico 13270 df-icc 13271 df-fz 13425 df-fzo 13568 df-fl 13697 df-mod 13775 df-seq 13907 df-exp 13968 df-fac 14174 df-bc 14203 df-hash 14231 df-shft 14952 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-limsup 15353 df-clim 15370 df-rlim 15371 df-sum 15571 df-ef 15950 df-sin 15952 df-cos 15953 df-tan 15954 df-pi 15955 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-hom 17157 df-cco 17158 df-rest 17304 df-topn 17305 df-0g 17323 df-gsum 17324 df-topgen 17325 df-pt 17326 df-prds 17329 df-xrs 17384 df-qtop 17389 df-imas 17390 df-xps 17392 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-submnd 18602 df-mulg 18873 df-cntz 19097 df-cmn 19564 df-psmet 20788 df-xmet 20789 df-met 20790 df-bl 20791 df-mopn 20792 df-fbas 20793 df-fg 20794 df-cnfld 20797 df-top 22243 df-topon 22260 df-topsp 22282 df-bases 22296 df-cld 22370 df-ntr 22371 df-cls 22372 df-nei 22449 df-lp 22487 df-perf 22488 df-cn 22578 df-cnp 22579 df-haus 22666 df-cmp 22738 df-tx 22913 df-hmeo 23106 df-fil 23197 df-fm 23289 df-flim 23290 df-flf 23291 df-xms 23673 df-ms 23674 df-tms 23675 df-cncf 24241 df-limc 25230 df-dv 25231 df-log 25912 |
This theorem is referenced by: logtayl 26015 efrlim 26319 |
Copyright terms: Public domain | W3C validator |