![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvlog2 | Structured version Visualization version GIF version |
Description: The derivative of the complex logarithm function on the open unit ball centered at 1, a sometimes easier region to work with than the β β (-β, 0] of dvlog 26499. (Contributed by Mario Carneiro, 1-Mar-2015.) |
Ref | Expression |
---|---|
dvlog2.s | β’ π = (1(ballβ(abs β β ))1) |
Ref | Expression |
---|---|
dvlog2 | β’ (β D (log βΎ π)) = (π₯ β π β¦ (1 / π₯)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4004 | . . . 4 β’ β β β | |
2 | logf1o 26413 | . . . . . . 7 β’ log:(β β {0})β1-1-ontoβran log | |
3 | f1of 6833 | . . . . . . 7 β’ (log:(β β {0})β1-1-ontoβran log β log:(β β {0})βΆran log) | |
4 | 2, 3 | ax-mp 5 | . . . . . 6 β’ log:(β β {0})βΆran log |
5 | logrncn 26411 | . . . . . . 7 β’ (π₯ β ran log β π₯ β β) | |
6 | 5 | ssriv 3986 | . . . . . 6 β’ ran log β β |
7 | fss 6734 | . . . . . 6 β’ ((log:(β β {0})βΆran log β§ ran log β β) β log:(β β {0})βΆβ) | |
8 | 4, 6, 7 | mp2an 689 | . . . . 5 β’ log:(β β {0})βΆβ |
9 | eqid 2731 | . . . . . 6 β’ (β β (-β(,]0)) = (β β (-β(,]0)) | |
10 | 9 | logdmss 26490 | . . . . 5 β’ (β β (-β(,]0)) β (β β {0}) |
11 | fssres 6757 | . . . . 5 β’ ((log:(β β {0})βΆβ β§ (β β (-β(,]0)) β (β β {0})) β (log βΎ (β β (-β(,]0))):(β β (-β(,]0))βΆβ) | |
12 | 8, 10, 11 | mp2an 689 | . . . 4 β’ (log βΎ (β β (-β(,]0))):(β β (-β(,]0))βΆβ |
13 | difss 4131 | . . . 4 β’ (β β (-β(,]0)) β β | |
14 | dvlog2.s | . . . . 5 β’ π = (1(ballβ(abs β β ))1) | |
15 | cnxmet 24609 | . . . . . 6 β’ (abs β β ) β (βMetββ) | |
16 | ax-1cn 11174 | . . . . . 6 β’ 1 β β | |
17 | 1xr 11280 | . . . . . 6 β’ 1 β β* | |
18 | blssm 24244 | . . . . . 6 β’ (((abs β β ) β (βMetββ) β§ 1 β β β§ 1 β β*) β (1(ballβ(abs β β ))1) β β) | |
19 | 15, 16, 17, 18 | mp3an 1460 | . . . . 5 β’ (1(ballβ(abs β β ))1) β β |
20 | 14, 19 | eqsstri 4016 | . . . 4 β’ π β β |
21 | eqid 2731 | . . . . 5 β’ (TopOpenββfld) = (TopOpenββfld) | |
22 | 21 | cnfldtopon 24619 | . . . . . 6 β’ (TopOpenββfld) β (TopOnββ) |
23 | 22 | toponrestid 22743 | . . . . 5 β’ (TopOpenββfld) = ((TopOpenββfld) βΎt β) |
24 | 21, 23 | dvres 25760 | . . . 4 β’ (((β β β β§ (log βΎ (β β (-β(,]0))):(β β (-β(,]0))βΆβ) β§ ((β β (-β(,]0)) β β β§ π β β)) β (β D ((log βΎ (β β (-β(,]0))) βΎ π)) = ((β D (log βΎ (β β (-β(,]0)))) βΎ ((intβ(TopOpenββfld))βπ))) |
25 | 1, 12, 13, 20, 24 | mp4an 690 | . . 3 β’ (β D ((log βΎ (β β (-β(,]0))) βΎ π)) = ((β D (log βΎ (β β (-β(,]0)))) βΎ ((intβ(TopOpenββfld))βπ)) |
26 | 14 | dvlog2lem 26500 | . . . . 5 β’ π β (β β (-β(,]0)) |
27 | resabs1 6011 | . . . . 5 β’ (π β (β β (-β(,]0)) β ((log βΎ (β β (-β(,]0))) βΎ π) = (log βΎ π)) | |
28 | 26, 27 | ax-mp 5 | . . . 4 β’ ((log βΎ (β β (-β(,]0))) βΎ π) = (log βΎ π) |
29 | 28 | oveq2i 7423 | . . 3 β’ (β D ((log βΎ (β β (-β(,]0))) βΎ π)) = (β D (log βΎ π)) |
30 | 9 | dvlog 26499 | . . . 4 β’ (β D (log βΎ (β β (-β(,]0)))) = (π₯ β (β β (-β(,]0)) β¦ (1 / π₯)) |
31 | 21 | cnfldtop 24620 | . . . . 5 β’ (TopOpenββfld) β Top |
32 | 21 | cnfldtopn 24618 | . . . . . . . 8 β’ (TopOpenββfld) = (MetOpenβ(abs β β )) |
33 | 32 | blopn 24329 | . . . . . . 7 β’ (((abs β β ) β (βMetββ) β§ 1 β β β§ 1 β β*) β (1(ballβ(abs β β ))1) β (TopOpenββfld)) |
34 | 15, 16, 17, 33 | mp3an 1460 | . . . . . 6 β’ (1(ballβ(abs β β ))1) β (TopOpenββfld) |
35 | 14, 34 | eqeltri 2828 | . . . . 5 β’ π β (TopOpenββfld) |
36 | isopn3i 22906 | . . . . 5 β’ (((TopOpenββfld) β Top β§ π β (TopOpenββfld)) β ((intβ(TopOpenββfld))βπ) = π) | |
37 | 31, 35, 36 | mp2an 689 | . . . 4 β’ ((intβ(TopOpenββfld))βπ) = π |
38 | 30, 37 | reseq12i 5979 | . . 3 β’ ((β D (log βΎ (β β (-β(,]0)))) βΎ ((intβ(TopOpenββfld))βπ)) = ((π₯ β (β β (-β(,]0)) β¦ (1 / π₯)) βΎ π) |
39 | 25, 29, 38 | 3eqtr3i 2767 | . 2 β’ (β D (log βΎ π)) = ((π₯ β (β β (-β(,]0)) β¦ (1 / π₯)) βΎ π) |
40 | resmpt 6037 | . . 3 β’ (π β (β β (-β(,]0)) β ((π₯ β (β β (-β(,]0)) β¦ (1 / π₯)) βΎ π) = (π₯ β π β¦ (1 / π₯))) | |
41 | 26, 40 | ax-mp 5 | . 2 β’ ((π₯ β (β β (-β(,]0)) β¦ (1 / π₯)) βΎ π) = (π₯ β π β¦ (1 / π₯)) |
42 | 39, 41 | eqtri 2759 | 1 β’ (β D (log βΎ π)) = (π₯ β π β¦ (1 / π₯)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 β wcel 2105 β cdif 3945 β wss 3948 {csn 4628 β¦ cmpt 5231 ran crn 5677 βΎ cres 5678 β ccom 5680 βΆwf 6539 β1-1-ontoβwf1o 6542 βcfv 6543 (class class class)co 7412 βcc 11114 0cc0 11116 1c1 11117 -βcmnf 11253 β*cxr 11254 β cmin 11451 / cdiv 11878 (,]cioc 13332 abscabs 15188 TopOpenctopn 17374 βMetcxmet 21218 ballcbl 21220 βfldccnfld 21233 Topctop 22715 intcnt 22841 D cdv 25712 logclog 26403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 ax-addf 11195 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8152 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-2o 8473 df-er 8709 df-map 8828 df-pm 8829 df-ixp 8898 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-fsupp 9368 df-fi 9412 df-sup 9443 df-inf 9444 df-oi 9511 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-q 12940 df-rp 12982 df-xneg 13099 df-xadd 13100 df-xmul 13101 df-ioo 13335 df-ioc 13336 df-ico 13337 df-icc 13338 df-fz 13492 df-fzo 13635 df-fl 13764 df-mod 13842 df-seq 13974 df-exp 14035 df-fac 14241 df-bc 14270 df-hash 14298 df-shft 15021 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-limsup 15422 df-clim 15439 df-rlim 15440 df-sum 15640 df-ef 16018 df-sin 16020 df-cos 16021 df-tan 16022 df-pi 16023 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-hom 17228 df-cco 17229 df-rest 17375 df-topn 17376 df-0g 17394 df-gsum 17395 df-topgen 17396 df-pt 17397 df-prds 17400 df-xrs 17455 df-qtop 17460 df-imas 17461 df-xps 17463 df-mre 17537 df-mrc 17538 df-acs 17540 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-submnd 18712 df-mulg 18994 df-cntz 19229 df-cmn 19698 df-psmet 21225 df-xmet 21226 df-met 21227 df-bl 21228 df-mopn 21229 df-fbas 21230 df-fg 21231 df-cnfld 21234 df-top 22716 df-topon 22733 df-topsp 22755 df-bases 22769 df-cld 22843 df-ntr 22844 df-cls 22845 df-nei 22922 df-lp 22960 df-perf 22961 df-cn 23051 df-cnp 23052 df-haus 23139 df-cmp 23211 df-tx 23386 df-hmeo 23579 df-fil 23670 df-fm 23762 df-flim 23763 df-flf 23764 df-xms 24146 df-ms 24147 df-tms 24148 df-cncf 24718 df-limc 25715 df-dv 25716 df-log 26405 |
This theorem is referenced by: logtayl 26508 efrlim 26815 |
Copyright terms: Public domain | W3C validator |