Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvlog2 | Structured version Visualization version GIF version |
Description: The derivative of the complex logarithm function on the open unit ball centered at 1, a sometimes easier region to work with than the ℂ ∖ (-∞, 0] of dvlog 25711. (Contributed by Mario Carneiro, 1-Mar-2015.) |
Ref | Expression |
---|---|
dvlog2.s | ⊢ 𝑆 = (1(ball‘(abs ∘ − ))1) |
Ref | Expression |
---|---|
dvlog2 | ⊢ (ℂ D (log ↾ 𝑆)) = (𝑥 ∈ 𝑆 ↦ (1 / 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3939 | . . . 4 ⊢ ℂ ⊆ ℂ | |
2 | logf1o 25625 | . . . . . . 7 ⊢ log:(ℂ ∖ {0})–1-1-onto→ran log | |
3 | f1of 6700 | . . . . . . 7 ⊢ (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log) | |
4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ log:(ℂ ∖ {0})⟶ran log |
5 | logrncn 25623 | . . . . . . 7 ⊢ (𝑥 ∈ ran log → 𝑥 ∈ ℂ) | |
6 | 5 | ssriv 3921 | . . . . . 6 ⊢ ran log ⊆ ℂ |
7 | fss 6601 | . . . . . 6 ⊢ ((log:(ℂ ∖ {0})⟶ran log ∧ ran log ⊆ ℂ) → log:(ℂ ∖ {0})⟶ℂ) | |
8 | 4, 6, 7 | mp2an 688 | . . . . 5 ⊢ log:(ℂ ∖ {0})⟶ℂ |
9 | eqid 2738 | . . . . . 6 ⊢ (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0)) | |
10 | 9 | logdmss 25702 | . . . . 5 ⊢ (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖ {0}) |
11 | fssres 6624 | . . . . 5 ⊢ ((log:(ℂ ∖ {0})⟶ℂ ∧ (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖ {0})) → (log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))⟶ℂ) | |
12 | 8, 10, 11 | mp2an 688 | . . . 4 ⊢ (log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))⟶ℂ |
13 | difss 4062 | . . . 4 ⊢ (ℂ ∖ (-∞(,]0)) ⊆ ℂ | |
14 | dvlog2.s | . . . . 5 ⊢ 𝑆 = (1(ball‘(abs ∘ − ))1) | |
15 | cnxmet 23842 | . . . . . 6 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
16 | ax-1cn 10860 | . . . . . 6 ⊢ 1 ∈ ℂ | |
17 | 1xr 10965 | . . . . . 6 ⊢ 1 ∈ ℝ* | |
18 | blssm 23479 | . . . . . 6 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ*) → (1(ball‘(abs ∘ − ))1) ⊆ ℂ) | |
19 | 15, 16, 17, 18 | mp3an 1459 | . . . . 5 ⊢ (1(ball‘(abs ∘ − ))1) ⊆ ℂ |
20 | 14, 19 | eqsstri 3951 | . . . 4 ⊢ 𝑆 ⊆ ℂ |
21 | eqid 2738 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
22 | 21 | cnfldtopon 23852 | . . . . . 6 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
23 | 22 | toponrestid 21978 | . . . . 5 ⊢ (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ) |
24 | 21, 23 | dvres 24980 | . . . 4 ⊢ (((ℂ ⊆ ℂ ∧ (log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))⟶ℂ) ∧ ((ℂ ∖ (-∞(,]0)) ⊆ ℂ ∧ 𝑆 ⊆ ℂ)) → (ℂ D ((log ↾ (ℂ ∖ (-∞(,]0))) ↾ 𝑆)) = ((ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) ↾ ((int‘(TopOpen‘ℂfld))‘𝑆))) |
25 | 1, 12, 13, 20, 24 | mp4an 689 | . . 3 ⊢ (ℂ D ((log ↾ (ℂ ∖ (-∞(,]0))) ↾ 𝑆)) = ((ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) ↾ ((int‘(TopOpen‘ℂfld))‘𝑆)) |
26 | 14 | dvlog2lem 25712 | . . . . 5 ⊢ 𝑆 ⊆ (ℂ ∖ (-∞(,]0)) |
27 | resabs1 5910 | . . . . 5 ⊢ (𝑆 ⊆ (ℂ ∖ (-∞(,]0)) → ((log ↾ (ℂ ∖ (-∞(,]0))) ↾ 𝑆) = (log ↾ 𝑆)) | |
28 | 26, 27 | ax-mp 5 | . . . 4 ⊢ ((log ↾ (ℂ ∖ (-∞(,]0))) ↾ 𝑆) = (log ↾ 𝑆) |
29 | 28 | oveq2i 7266 | . . 3 ⊢ (ℂ D ((log ↾ (ℂ ∖ (-∞(,]0))) ↾ 𝑆)) = (ℂ D (log ↾ 𝑆)) |
30 | 9 | dvlog 25711 | . . . 4 ⊢ (ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) = (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑥)) |
31 | 21 | cnfldtop 23853 | . . . . 5 ⊢ (TopOpen‘ℂfld) ∈ Top |
32 | 21 | cnfldtopn 23851 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − )) |
33 | 32 | blopn 23562 | . . . . . . 7 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ*) → (1(ball‘(abs ∘ − ))1) ∈ (TopOpen‘ℂfld)) |
34 | 15, 16, 17, 33 | mp3an 1459 | . . . . . 6 ⊢ (1(ball‘(abs ∘ − ))1) ∈ (TopOpen‘ℂfld) |
35 | 14, 34 | eqeltri 2835 | . . . . 5 ⊢ 𝑆 ∈ (TopOpen‘ℂfld) |
36 | isopn3i 22141 | . . . . 5 ⊢ (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ∈ (TopOpen‘ℂfld)) → ((int‘(TopOpen‘ℂfld))‘𝑆) = 𝑆) | |
37 | 31, 35, 36 | mp2an 688 | . . . 4 ⊢ ((int‘(TopOpen‘ℂfld))‘𝑆) = 𝑆 |
38 | 30, 37 | reseq12i 5878 | . . 3 ⊢ ((ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) ↾ ((int‘(TopOpen‘ℂfld))‘𝑆)) = ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑥)) ↾ 𝑆) |
39 | 25, 29, 38 | 3eqtr3i 2774 | . 2 ⊢ (ℂ D (log ↾ 𝑆)) = ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑥)) ↾ 𝑆) |
40 | resmpt 5934 | . . 3 ⊢ (𝑆 ⊆ (ℂ ∖ (-∞(,]0)) → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑥)) ↾ 𝑆) = (𝑥 ∈ 𝑆 ↦ (1 / 𝑥))) | |
41 | 26, 40 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑥)) ↾ 𝑆) = (𝑥 ∈ 𝑆 ↦ (1 / 𝑥)) |
42 | 39, 41 | eqtri 2766 | 1 ⊢ (ℂ D (log ↾ 𝑆)) = (𝑥 ∈ 𝑆 ↦ (1 / 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ⊆ wss 3883 {csn 4558 ↦ cmpt 5153 ran crn 5581 ↾ cres 5582 ∘ ccom 5584 ⟶wf 6414 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 0cc0 10802 1c1 10803 -∞cmnf 10938 ℝ*cxr 10939 − cmin 11135 / cdiv 11562 (,]cioc 13009 abscabs 14873 TopOpenctopn 17049 ∞Metcxmet 20495 ballcbl 20497 ℂfldccnfld 20510 Topctop 21950 intcnt 22076 D cdv 24932 logclog 25615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-ef 15705 df-sin 15707 df-cos 15708 df-tan 15709 df-pi 15710 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-cmp 22446 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-limc 24935 df-dv 24936 df-log 25617 |
This theorem is referenced by: logtayl 25720 efrlim 26024 |
Copyright terms: Public domain | W3C validator |