Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitgclg Structured version   Visualization version   GIF version

Theorem sitgclg 34176
Description: Closure of the Bochner integral on simple functions, generic version. See sitgclbn 34177 for the version for Banach spaces. (Contributed by Thierry Arnoux, 24-Feb-2018.) (Proof shortened by AV, 12-Dec-2019.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibfmbl.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
sitgclg.g 𝐺 = (Scalar‘𝑊)
sitgclg.d 𝐷 = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))
sitgclg.1 (𝜑𝑊 ∈ TopSp)
sitgclg.2 (𝜑𝑊 ∈ CMnd)
sitgclg.3 (𝜑 → (Scalar‘𝑊) ∈ ℝExt )
sitgclg.4 ((𝜑𝑚 ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → (𝑚 · 𝑥) ∈ 𝐵)
Assertion
Ref Expression
sitgclg (𝜑 → ((𝑊sitg𝑀)‘𝐹) ∈ 𝐵)
Distinct variable groups:   𝐵,𝑚   𝑥,𝐹   𝑚,𝐻   𝑥,𝑚,𝑀   𝑆,𝑚   𝑚,𝑊,𝑥   0 ,𝑚,𝑥   · ,𝑚   𝜑,𝑥   𝑥,𝐵   𝑚,𝐹   𝑚,𝐺   𝜑,𝑚
Allowed substitution hints:   𝐷(𝑥,𝑚)   𝑆(𝑥)   · (𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝐽(𝑥,𝑚)   𝑉(𝑥,𝑚)

Proof of Theorem sitgclg
StepHypRef Expression
1 sitgval.b . . 3 𝐵 = (Base‘𝑊)
2 sitgval.j . . 3 𝐽 = (TopOpen‘𝑊)
3 sitgval.s . . 3 𝑆 = (sigaGen‘𝐽)
4 sitgval.0 . . 3 0 = (0g𝑊)
5 sitgval.x . . 3 · = ( ·𝑠𝑊)
6 sitgval.h . . 3 𝐻 = (ℝHom‘(Scalar‘𝑊))
7 sitgval.1 . . 3 (𝜑𝑊𝑉)
8 sitgval.2 . . 3 (𝜑𝑀 ran measures)
9 sibfmbl.1 . . 3 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
101, 2, 3, 4, 5, 6, 7, 8, 9sitgfval 34175 . 2 (𝜑 → ((𝑊sitg𝑀)‘𝐹) = (𝑊 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))))
11 sitgclg.2 . . 3 (𝜑𝑊 ∈ CMnd)
12 rnexg 7915 . . . 4 (𝐹 ∈ dom (𝑊sitg𝑀) → ran 𝐹 ∈ V)
13 difexg 5334 . . . 4 (ran 𝐹 ∈ V → (ran 𝐹 ∖ { 0 }) ∈ V)
149, 12, 133syl 18 . . 3 (𝜑 → (ran 𝐹 ∖ { 0 }) ∈ V)
15 simpl 481 . . . . 5 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → 𝜑)
161, 2, 3, 4, 5, 6, 7, 8, 9sibfima 34172 . . . . . 6 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → (𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))
17 sitgclg.d . . . . . . . . . . 11 𝐷 = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))
18 sitgclg.g . . . . . . . . . . . . 13 𝐺 = (Scalar‘𝑊)
1918fveq2i 6904 . . . . . . . . . . . 12 (dist‘𝐺) = (dist‘(Scalar‘𝑊))
2018fveq2i 6904 . . . . . . . . . . . . 13 (Base‘𝐺) = (Base‘(Scalar‘𝑊))
2120, 20xpeq12i 5710 . . . . . . . . . . . 12 ((Base‘𝐺) × (Base‘𝐺)) = ((Base‘(Scalar‘𝑊)) × (Base‘(Scalar‘𝑊)))
2219, 21reseq12i 5987 . . . . . . . . . . 11 ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) = ((dist‘(Scalar‘𝑊)) ↾ ((Base‘(Scalar‘𝑊)) × (Base‘(Scalar‘𝑊))))
2317, 22eqtri 2754 . . . . . . . . . 10 𝐷 = ((dist‘(Scalar‘𝑊)) ↾ ((Base‘(Scalar‘𝑊)) × (Base‘(Scalar‘𝑊))))
24 eqid 2726 . . . . . . . . . 10 (topGen‘ran (,)) = (topGen‘ran (,))
25 eqid 2726 . . . . . . . . . 10 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2618fveq2i 6904 . . . . . . . . . 10 (TopOpen‘𝐺) = (TopOpen‘(Scalar‘𝑊))
2718fveq2i 6904 . . . . . . . . . 10 (ℤMod‘𝐺) = (ℤMod‘(Scalar‘𝑊))
28 sitgclg.3 . . . . . . . . . . . . 13 (𝜑 → (Scalar‘𝑊) ∈ ℝExt )
2918, 28eqeltrid 2830 . . . . . . . . . . . 12 (𝜑𝐺 ∈ ℝExt )
30 rrextdrg 33817 . . . . . . . . . . . 12 (𝐺 ∈ ℝExt → 𝐺 ∈ DivRing)
3129, 30syl 17 . . . . . . . . . . 11 (𝜑𝐺 ∈ DivRing)
3218, 31eqeltrrid 2831 . . . . . . . . . 10 (𝜑 → (Scalar‘𝑊) ∈ DivRing)
33 rrextnrg 33816 . . . . . . . . . . . 12 (𝐺 ∈ ℝExt → 𝐺 ∈ NrmRing)
3429, 33syl 17 . . . . . . . . . . 11 (𝜑𝐺 ∈ NrmRing)
3518, 34eqeltrrid 2831 . . . . . . . . . 10 (𝜑 → (Scalar‘𝑊) ∈ NrmRing)
36 eqid 2726 . . . . . . . . . . . 12 (ℤMod‘𝐺) = (ℤMod‘𝐺)
3736rrextnlm 33818 . . . . . . . . . . 11 (𝐺 ∈ ℝExt → (ℤMod‘𝐺) ∈ NrmMod)
3829, 37syl 17 . . . . . . . . . 10 (𝜑 → (ℤMod‘𝐺) ∈ NrmMod)
3918fveq2i 6904 . . . . . . . . . . 11 (chr‘𝐺) = (chr‘(Scalar‘𝑊))
40 rrextchr 33819 . . . . . . . . . . . 12 (𝐺 ∈ ℝExt → (chr‘𝐺) = 0)
4129, 40syl 17 . . . . . . . . . . 11 (𝜑 → (chr‘𝐺) = 0)
4239, 41eqtr3id 2780 . . . . . . . . . 10 (𝜑 → (chr‘(Scalar‘𝑊)) = 0)
43 rrextcusp 33820 . . . . . . . . . . . 12 (𝐺 ∈ ℝExt → 𝐺 ∈ CUnifSp)
4429, 43syl 17 . . . . . . . . . . 11 (𝜑𝐺 ∈ CUnifSp)
4518, 44eqeltrrid 2831 . . . . . . . . . 10 (𝜑 → (Scalar‘𝑊) ∈ CUnifSp)
4618fveq2i 6904 . . . . . . . . . . 11 (UnifSt‘𝐺) = (UnifSt‘(Scalar‘𝑊))
47 eqid 2726 . . . . . . . . . . . . 13 (Base‘𝐺) = (Base‘𝐺)
4847, 17rrextust 33823 . . . . . . . . . . . 12 (𝐺 ∈ ℝExt → (UnifSt‘𝐺) = (metUnif‘𝐷))
4929, 48syl 17 . . . . . . . . . . 11 (𝜑 → (UnifSt‘𝐺) = (metUnif‘𝐷))
5046, 49eqtr3id 2780 . . . . . . . . . 10 (𝜑 → (UnifSt‘(Scalar‘𝑊)) = (metUnif‘𝐷))
5123, 24, 25, 26, 27, 32, 35, 38, 42, 45, 50rrhf 33813 . . . . . . . . 9 (𝜑 → (ℝHom‘(Scalar‘𝑊)):ℝ⟶(Base‘(Scalar‘𝑊)))
526feq1i 6719 . . . . . . . . 9 (𝐻:ℝ⟶(Base‘(Scalar‘𝑊)) ↔ (ℝHom‘(Scalar‘𝑊)):ℝ⟶(Base‘(Scalar‘𝑊)))
5351, 52sylibr 233 . . . . . . . 8 (𝜑𝐻:ℝ⟶(Base‘(Scalar‘𝑊)))
5453ffund 6732 . . . . . . 7 (𝜑 → Fun 𝐻)
55 rge0ssre 13487 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
5653fdmd 6738 . . . . . . . 8 (𝜑 → dom 𝐻 = ℝ)
5755, 56sseqtrrid 4033 . . . . . . 7 (𝜑 → (0[,)+∞) ⊆ dom 𝐻)
58 funfvima2 7248 . . . . . . 7 ((Fun 𝐻 ∧ (0[,)+∞) ⊆ dom 𝐻) → ((𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞) → (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞))))
5954, 57, 58syl2anc 582 . . . . . 6 (𝜑 → ((𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞) → (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞))))
6015, 16, 59sylc 65 . . . . 5 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)))
61 dmmeas 34034 . . . . . . . . . . . 12 (𝑀 ran measures → dom 𝑀 ran sigAlgebra)
628, 61syl 17 . . . . . . . . . . 11 (𝜑 → dom 𝑀 ran sigAlgebra)
632fvexi 6915 . . . . . . . . . . . . . 14 𝐽 ∈ V
6463a1i 11 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ V)
6564sgsiga 33975 . . . . . . . . . . . 12 (𝜑 → (sigaGen‘𝐽) ∈ ran sigAlgebra)
663, 65eqeltrid 2830 . . . . . . . . . . 11 (𝜑𝑆 ran sigAlgebra)
671, 2, 3, 4, 5, 6, 7, 8, 9sibfmbl 34169 . . . . . . . . . . 11 (𝜑𝐹 ∈ (dom 𝑀MblFnM𝑆))
6862, 66, 67mbfmf 34087 . . . . . . . . . 10 (𝜑𝐹: dom 𝑀 𝑆)
6968frnd 6736 . . . . . . . . 9 (𝜑 → ran 𝐹 𝑆)
703unieqi 4925 . . . . . . . . . . 11 𝑆 = (sigaGen‘𝐽)
71 unisg 33976 . . . . . . . . . . . 12 (𝐽 ∈ V → (sigaGen‘𝐽) = 𝐽)
7263, 71mp1i 13 . . . . . . . . . . 11 (𝜑 (sigaGen‘𝐽) = 𝐽)
7370, 72eqtrid 2778 . . . . . . . . . 10 (𝜑 𝑆 = 𝐽)
74 sitgclg.1 . . . . . . . . . . 11 (𝜑𝑊 ∈ TopSp)
751, 2tpsuni 22929 . . . . . . . . . . 11 (𝑊 ∈ TopSp → 𝐵 = 𝐽)
7674, 75syl 17 . . . . . . . . . 10 (𝜑𝐵 = 𝐽)
7773, 76eqtr4d 2769 . . . . . . . . 9 (𝜑 𝑆 = 𝐵)
7869, 77sseqtrd 4020 . . . . . . . 8 (𝜑 → ran 𝐹𝐵)
7978ssdifd 4140 . . . . . . 7 (𝜑 → (ran 𝐹 ∖ { 0 }) ⊆ (𝐵 ∖ { 0 }))
8079sselda 3979 . . . . . 6 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → 𝑥 ∈ (𝐵 ∖ { 0 }))
8180eldifad 3959 . . . . 5 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → 𝑥𝐵)
82 simp2 1134 . . . . . 6 ((𝜑 ∧ (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)))
83 eleq1 2814 . . . . . . . . 9 (𝑚 = (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) → (𝑚 ∈ (𝐻 “ (0[,)+∞)) ↔ (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞))))
84833anbi2d 1438 . . . . . . . 8 (𝑚 = (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) → ((𝜑𝑚 ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) ↔ (𝜑 ∧ (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵)))
85 oveq1 7431 . . . . . . . . 9 (𝑚 = (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) → (𝑚 · 𝑥) = ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))
8685eleq1d 2811 . . . . . . . 8 (𝑚 = (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) → ((𝑚 · 𝑥) ∈ 𝐵 ↔ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥) ∈ 𝐵))
8784, 86imbi12d 343 . . . . . . 7 (𝑚 = (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) → (((𝜑𝑚 ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → (𝑚 · 𝑥) ∈ 𝐵) ↔ ((𝜑 ∧ (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥) ∈ 𝐵)))
88 sitgclg.4 . . . . . . 7 ((𝜑𝑚 ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → (𝑚 · 𝑥) ∈ 𝐵)
8987, 88vtoclg 3534 . . . . . 6 ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)) → ((𝜑 ∧ (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥) ∈ 𝐵))
9082, 89mpcom 38 . . . . 5 ((𝜑 ∧ (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥) ∈ 𝐵)
9115, 60, 81, 90syl3anc 1368 . . . 4 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥) ∈ 𝐵)
9291fmpttd 7129 . . 3 (𝜑 → (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)):(ran 𝐹 ∖ { 0 })⟶𝐵)
93 mptexg 7238 . . . . . 6 ((ran 𝐹 ∖ { 0 }) ∈ V → (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) ∈ V)
9414, 93syl 17 . . . . 5 (𝜑 → (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) ∈ V)
954fvexi 6915 . . . . 5 0 ∈ V
96 suppimacnv 8188 . . . . 5 (((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) ∈ V ∧ 0 ∈ V) → ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) supp 0 ) = ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })))
9794, 95, 96sylancl 584 . . . 4 (𝜑 → ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) supp 0 ) = ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })))
981, 2, 3, 4, 5, 6, 7, 8, 9sibfrn 34171 . . . . 5 (𝜑 → ran 𝐹 ∈ Fin)
99 cnvimass 6091 . . . . . . 7 ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })) ⊆ dom (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))
100 eqid 2726 . . . . . . . 8 (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) = (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))
101100dmmptss 6252 . . . . . . 7 dom (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) ⊆ (ran 𝐹 ∖ { 0 })
10299, 101sstri 3989 . . . . . 6 ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })) ⊆ (ran 𝐹 ∖ { 0 })
103 difss 4131 . . . . . 6 (ran 𝐹 ∖ { 0 }) ⊆ ran 𝐹
104102, 103sstri 3989 . . . . 5 ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })) ⊆ ran 𝐹
105 ssfi 9211 . . . . 5 ((ran 𝐹 ∈ Fin ∧ ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })) ⊆ ran 𝐹) → ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })) ∈ Fin)
10698, 104, 105sylancl 584 . . . 4 (𝜑 → ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })) ∈ Fin)
10797, 106eqeltrd 2826 . . 3 (𝜑 → ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) supp 0 ) ∈ Fin)
1081, 4, 11, 14, 92, 107gsumcl2 19912 . 2 (𝜑 → (𝑊 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))) ∈ 𝐵)
10910, 108eqeltrd 2826 1 (𝜑 → ((𝑊sitg𝑀)‘𝐹) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  Vcvv 3462  cdif 3944  wss 3947  {csn 4633   cuni 4913  cmpt 5236   × cxp 5680  ccnv 5681  dom cdm 5682  ran crn 5683  cres 5684  cima 5685  Fun wfun 6548  wf 6550  cfv 6554  (class class class)co 7424   supp csupp 8174  Fincfn 8974  cr 11157  0cc0 11158  +∞cpnf 11295  (,)cioo 13378  [,)cico 13380  Basecbs 17213  Scalarcsca 17269   ·𝑠 cvsca 17270  distcds 17275  TopOpenctopn 17436  topGenctg 17452  0gc0g 17454   Σg cgsu 17455  CMndccmn 19778  DivRingcdr 20707  metUnifcmetu 21334  ℤModczlm 21490  chrcchr 21491  TopSpctps 22925  UnifStcuss 24249  CUnifSpccusp 24293  NrmRingcnrg 24579  NrmModcnlm 24580  ℝHomcrrh 33808   ℝExt crrext 33809  sigAlgebracsiga 33941  sigaGencsigagen 33971  measurescmeas 34028  sitgcsitg 34163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236  ax-addf 11237  ax-mulf 11238
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-tpos 8241  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-map 8857  df-pm 8858  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-fi 9454  df-sup 9485  df-inf 9486  df-oi 9553  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-q 12985  df-rp 13029  df-xneg 13146  df-xadd 13147  df-xmul 13148  df-ioo 13382  df-ico 13384  df-icc 13385  df-fz 13539  df-fzo 13682  df-fl 13812  df-mod 13890  df-seq 14022  df-exp 14082  df-hash 14348  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-dvds 16257  df-gcd 16495  df-numer 16737  df-denom 16738  df-gz 16932  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-starv 17281  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-unif 17289  df-hom 17290  df-cco 17291  df-rest 17437  df-topn 17438  df-0g 17456  df-gsum 17457  df-topgen 17458  df-pt 17459  df-prds 17462  df-xrs 17517  df-qtop 17522  df-imas 17523  df-xps 17525  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-mhm 18773  df-submnd 18774  df-grp 18931  df-minusg 18932  df-sbg 18933  df-mulg 19062  df-subg 19117  df-ghm 19207  df-cntz 19311  df-od 19526  df-cmn 19780  df-abl 19781  df-mgp 20118  df-rng 20136  df-ur 20165  df-ring 20218  df-cring 20219  df-oppr 20316  df-dvdsr 20339  df-unit 20340  df-invr 20370  df-dvr 20383  df-rhm 20454  df-nzr 20495  df-subrng 20528  df-subrg 20553  df-drng 20709  df-abv 20788  df-lmod 20838  df-psmet 21335  df-xmet 21336  df-met 21337  df-bl 21338  df-mopn 21339  df-fbas 21340  df-fg 21341  df-metu 21342  df-cnfld 21344  df-zring 21437  df-zrh 21493  df-zlm 21494  df-chr 21495  df-refld 21601  df-top 22887  df-topon 22904  df-topsp 22926  df-bases 22940  df-cld 23014  df-ntr 23015  df-cls 23016  df-nei 23093  df-cn 23222  df-cnp 23223  df-haus 23310  df-reg 23311  df-cmp 23382  df-tx 23557  df-hmeo 23750  df-fil 23841  df-fm 23933  df-flim 23934  df-flf 23935  df-fcls 23936  df-cnext 24055  df-ust 24196  df-utop 24227  df-uss 24252  df-usp 24253  df-ucn 24272  df-cfilu 24283  df-cusp 24294  df-xms 24317  df-ms 24318  df-tms 24319  df-nm 24582  df-ngp 24583  df-nrg 24585  df-nlm 24586  df-cncf 24889  df-cfil 25274  df-cmet 25276  df-cms 25354  df-qqh 33788  df-rrh 33810  df-rrext 33814  df-esum 33861  df-siga 33942  df-sigagen 33972  df-meas 34029  df-mbfm 34083  df-sitg 34164
This theorem is referenced by:  sitgclbn  34177  sitmcl  34185
  Copyright terms: Public domain W3C validator