Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitgclg Structured version   Visualization version   GIF version

Theorem sitgclg 34344
Description: Closure of the Bochner integral on simple functions, generic version. See sitgclbn 34345 for the version for Banach spaces. (Contributed by Thierry Arnoux, 24-Feb-2018.) (Proof shortened by AV, 12-Dec-2019.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibfmbl.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
sitgclg.g 𝐺 = (Scalar‘𝑊)
sitgclg.d 𝐷 = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))
sitgclg.1 (𝜑𝑊 ∈ TopSp)
sitgclg.2 (𝜑𝑊 ∈ CMnd)
sitgclg.3 (𝜑 → (Scalar‘𝑊) ∈ ℝExt )
sitgclg.4 ((𝜑𝑚 ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → (𝑚 · 𝑥) ∈ 𝐵)
Assertion
Ref Expression
sitgclg (𝜑 → ((𝑊sitg𝑀)‘𝐹) ∈ 𝐵)
Distinct variable groups:   𝐵,𝑚   𝑥,𝐹   𝑚,𝐻   𝑥,𝑚,𝑀   𝑆,𝑚   𝑚,𝑊,𝑥   0 ,𝑚,𝑥   · ,𝑚   𝜑,𝑥   𝑥,𝐵   𝑚,𝐹   𝑚,𝐺   𝜑,𝑚
Allowed substitution hints:   𝐷(𝑥,𝑚)   𝑆(𝑥)   · (𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝐽(𝑥,𝑚)   𝑉(𝑥,𝑚)

Proof of Theorem sitgclg
StepHypRef Expression
1 sitgval.b . . 3 𝐵 = (Base‘𝑊)
2 sitgval.j . . 3 𝐽 = (TopOpen‘𝑊)
3 sitgval.s . . 3 𝑆 = (sigaGen‘𝐽)
4 sitgval.0 . . 3 0 = (0g𝑊)
5 sitgval.x . . 3 · = ( ·𝑠𝑊)
6 sitgval.h . . 3 𝐻 = (ℝHom‘(Scalar‘𝑊))
7 sitgval.1 . . 3 (𝜑𝑊𝑉)
8 sitgval.2 . . 3 (𝜑𝑀 ran measures)
9 sibfmbl.1 . . 3 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
101, 2, 3, 4, 5, 6, 7, 8, 9sitgfval 34343 . 2 (𝜑 → ((𝑊sitg𝑀)‘𝐹) = (𝑊 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))))
11 sitgclg.2 . . 3 (𝜑𝑊 ∈ CMnd)
12 rnexg 7924 . . . 4 (𝐹 ∈ dom (𝑊sitg𝑀) → ran 𝐹 ∈ V)
13 difexg 5329 . . . 4 (ran 𝐹 ∈ V → (ran 𝐹 ∖ { 0 }) ∈ V)
149, 12, 133syl 18 . . 3 (𝜑 → (ran 𝐹 ∖ { 0 }) ∈ V)
15 simpl 482 . . . . 5 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → 𝜑)
161, 2, 3, 4, 5, 6, 7, 8, 9sibfima 34340 . . . . . 6 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → (𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))
17 sitgclg.d . . . . . . . . . . 11 𝐷 = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))
18 sitgclg.g . . . . . . . . . . . . 13 𝐺 = (Scalar‘𝑊)
1918fveq2i 6909 . . . . . . . . . . . 12 (dist‘𝐺) = (dist‘(Scalar‘𝑊))
2018fveq2i 6909 . . . . . . . . . . . . 13 (Base‘𝐺) = (Base‘(Scalar‘𝑊))
2120, 20xpeq12i 5713 . . . . . . . . . . . 12 ((Base‘𝐺) × (Base‘𝐺)) = ((Base‘(Scalar‘𝑊)) × (Base‘(Scalar‘𝑊)))
2219, 21reseq12i 5995 . . . . . . . . . . 11 ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) = ((dist‘(Scalar‘𝑊)) ↾ ((Base‘(Scalar‘𝑊)) × (Base‘(Scalar‘𝑊))))
2317, 22eqtri 2765 . . . . . . . . . 10 𝐷 = ((dist‘(Scalar‘𝑊)) ↾ ((Base‘(Scalar‘𝑊)) × (Base‘(Scalar‘𝑊))))
24 eqid 2737 . . . . . . . . . 10 (topGen‘ran (,)) = (topGen‘ran (,))
25 eqid 2737 . . . . . . . . . 10 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2618fveq2i 6909 . . . . . . . . . 10 (TopOpen‘𝐺) = (TopOpen‘(Scalar‘𝑊))
2718fveq2i 6909 . . . . . . . . . 10 (ℤMod‘𝐺) = (ℤMod‘(Scalar‘𝑊))
28 sitgclg.3 . . . . . . . . . . . . 13 (𝜑 → (Scalar‘𝑊) ∈ ℝExt )
2918, 28eqeltrid 2845 . . . . . . . . . . . 12 (𝜑𝐺 ∈ ℝExt )
30 rrextdrg 34003 . . . . . . . . . . . 12 (𝐺 ∈ ℝExt → 𝐺 ∈ DivRing)
3129, 30syl 17 . . . . . . . . . . 11 (𝜑𝐺 ∈ DivRing)
3218, 31eqeltrrid 2846 . . . . . . . . . 10 (𝜑 → (Scalar‘𝑊) ∈ DivRing)
33 rrextnrg 34002 . . . . . . . . . . . 12 (𝐺 ∈ ℝExt → 𝐺 ∈ NrmRing)
3429, 33syl 17 . . . . . . . . . . 11 (𝜑𝐺 ∈ NrmRing)
3518, 34eqeltrrid 2846 . . . . . . . . . 10 (𝜑 → (Scalar‘𝑊) ∈ NrmRing)
36 eqid 2737 . . . . . . . . . . . 12 (ℤMod‘𝐺) = (ℤMod‘𝐺)
3736rrextnlm 34004 . . . . . . . . . . 11 (𝐺 ∈ ℝExt → (ℤMod‘𝐺) ∈ NrmMod)
3829, 37syl 17 . . . . . . . . . 10 (𝜑 → (ℤMod‘𝐺) ∈ NrmMod)
3918fveq2i 6909 . . . . . . . . . . 11 (chr‘𝐺) = (chr‘(Scalar‘𝑊))
40 rrextchr 34005 . . . . . . . . . . . 12 (𝐺 ∈ ℝExt → (chr‘𝐺) = 0)
4129, 40syl 17 . . . . . . . . . . 11 (𝜑 → (chr‘𝐺) = 0)
4239, 41eqtr3id 2791 . . . . . . . . . 10 (𝜑 → (chr‘(Scalar‘𝑊)) = 0)
43 rrextcusp 34006 . . . . . . . . . . . 12 (𝐺 ∈ ℝExt → 𝐺 ∈ CUnifSp)
4429, 43syl 17 . . . . . . . . . . 11 (𝜑𝐺 ∈ CUnifSp)
4518, 44eqeltrrid 2846 . . . . . . . . . 10 (𝜑 → (Scalar‘𝑊) ∈ CUnifSp)
4618fveq2i 6909 . . . . . . . . . . 11 (UnifSt‘𝐺) = (UnifSt‘(Scalar‘𝑊))
47 eqid 2737 . . . . . . . . . . . . 13 (Base‘𝐺) = (Base‘𝐺)
4847, 17rrextust 34009 . . . . . . . . . . . 12 (𝐺 ∈ ℝExt → (UnifSt‘𝐺) = (metUnif‘𝐷))
4929, 48syl 17 . . . . . . . . . . 11 (𝜑 → (UnifSt‘𝐺) = (metUnif‘𝐷))
5046, 49eqtr3id 2791 . . . . . . . . . 10 (𝜑 → (UnifSt‘(Scalar‘𝑊)) = (metUnif‘𝐷))
5123, 24, 25, 26, 27, 32, 35, 38, 42, 45, 50rrhf 33999 . . . . . . . . 9 (𝜑 → (ℝHom‘(Scalar‘𝑊)):ℝ⟶(Base‘(Scalar‘𝑊)))
526feq1i 6727 . . . . . . . . 9 (𝐻:ℝ⟶(Base‘(Scalar‘𝑊)) ↔ (ℝHom‘(Scalar‘𝑊)):ℝ⟶(Base‘(Scalar‘𝑊)))
5351, 52sylibr 234 . . . . . . . 8 (𝜑𝐻:ℝ⟶(Base‘(Scalar‘𝑊)))
5453ffund 6740 . . . . . . 7 (𝜑 → Fun 𝐻)
55 rge0ssre 13496 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
5653fdmd 6746 . . . . . . . 8 (𝜑 → dom 𝐻 = ℝ)
5755, 56sseqtrrid 4027 . . . . . . 7 (𝜑 → (0[,)+∞) ⊆ dom 𝐻)
58 funfvima2 7251 . . . . . . 7 ((Fun 𝐻 ∧ (0[,)+∞) ⊆ dom 𝐻) → ((𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞) → (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞))))
5954, 57, 58syl2anc 584 . . . . . 6 (𝜑 → ((𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞) → (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞))))
6015, 16, 59sylc 65 . . . . 5 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)))
61 dmmeas 34202 . . . . . . . . . . . 12 (𝑀 ran measures → dom 𝑀 ran sigAlgebra)
628, 61syl 17 . . . . . . . . . . 11 (𝜑 → dom 𝑀 ran sigAlgebra)
632fvexi 6920 . . . . . . . . . . . . . 14 𝐽 ∈ V
6463a1i 11 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ V)
6564sgsiga 34143 . . . . . . . . . . . 12 (𝜑 → (sigaGen‘𝐽) ∈ ran sigAlgebra)
663, 65eqeltrid 2845 . . . . . . . . . . 11 (𝜑𝑆 ran sigAlgebra)
671, 2, 3, 4, 5, 6, 7, 8, 9sibfmbl 34337 . . . . . . . . . . 11 (𝜑𝐹 ∈ (dom 𝑀MblFnM𝑆))
6862, 66, 67mbfmf 34255 . . . . . . . . . 10 (𝜑𝐹: dom 𝑀 𝑆)
6968frnd 6744 . . . . . . . . 9 (𝜑 → ran 𝐹 𝑆)
703unieqi 4919 . . . . . . . . . . 11 𝑆 = (sigaGen‘𝐽)
71 unisg 34144 . . . . . . . . . . . 12 (𝐽 ∈ V → (sigaGen‘𝐽) = 𝐽)
7263, 71mp1i 13 . . . . . . . . . . 11 (𝜑 (sigaGen‘𝐽) = 𝐽)
7370, 72eqtrid 2789 . . . . . . . . . 10 (𝜑 𝑆 = 𝐽)
74 sitgclg.1 . . . . . . . . . . 11 (𝜑𝑊 ∈ TopSp)
751, 2tpsuni 22942 . . . . . . . . . . 11 (𝑊 ∈ TopSp → 𝐵 = 𝐽)
7674, 75syl 17 . . . . . . . . . 10 (𝜑𝐵 = 𝐽)
7773, 76eqtr4d 2780 . . . . . . . . 9 (𝜑 𝑆 = 𝐵)
7869, 77sseqtrd 4020 . . . . . . . 8 (𝜑 → ran 𝐹𝐵)
7978ssdifd 4145 . . . . . . 7 (𝜑 → (ran 𝐹 ∖ { 0 }) ⊆ (𝐵 ∖ { 0 }))
8079sselda 3983 . . . . . 6 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → 𝑥 ∈ (𝐵 ∖ { 0 }))
8180eldifad 3963 . . . . 5 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → 𝑥𝐵)
82 simp2 1138 . . . . . 6 ((𝜑 ∧ (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)))
83 eleq1 2829 . . . . . . . . 9 (𝑚 = (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) → (𝑚 ∈ (𝐻 “ (0[,)+∞)) ↔ (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞))))
84833anbi2d 1443 . . . . . . . 8 (𝑚 = (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) → ((𝜑𝑚 ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) ↔ (𝜑 ∧ (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵)))
85 oveq1 7438 . . . . . . . . 9 (𝑚 = (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) → (𝑚 · 𝑥) = ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))
8685eleq1d 2826 . . . . . . . 8 (𝑚 = (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) → ((𝑚 · 𝑥) ∈ 𝐵 ↔ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥) ∈ 𝐵))
8784, 86imbi12d 344 . . . . . . 7 (𝑚 = (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) → (((𝜑𝑚 ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → (𝑚 · 𝑥) ∈ 𝐵) ↔ ((𝜑 ∧ (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥) ∈ 𝐵)))
88 sitgclg.4 . . . . . . 7 ((𝜑𝑚 ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → (𝑚 · 𝑥) ∈ 𝐵)
8987, 88vtoclg 3554 . . . . . 6 ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)) → ((𝜑 ∧ (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥) ∈ 𝐵))
9082, 89mpcom 38 . . . . 5 ((𝜑 ∧ (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥) ∈ 𝐵)
9115, 60, 81, 90syl3anc 1373 . . . 4 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥) ∈ 𝐵)
9291fmpttd 7135 . . 3 (𝜑 → (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)):(ran 𝐹 ∖ { 0 })⟶𝐵)
93 mptexg 7241 . . . . . 6 ((ran 𝐹 ∖ { 0 }) ∈ V → (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) ∈ V)
9414, 93syl 17 . . . . 5 (𝜑 → (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) ∈ V)
954fvexi 6920 . . . . 5 0 ∈ V
96 suppimacnv 8199 . . . . 5 (((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) ∈ V ∧ 0 ∈ V) → ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) supp 0 ) = ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })))
9794, 95, 96sylancl 586 . . . 4 (𝜑 → ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) supp 0 ) = ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })))
981, 2, 3, 4, 5, 6, 7, 8, 9sibfrn 34339 . . . . 5 (𝜑 → ran 𝐹 ∈ Fin)
99 cnvimass 6100 . . . . . . 7 ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })) ⊆ dom (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))
100 eqid 2737 . . . . . . . 8 (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) = (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))
101100dmmptss 6261 . . . . . . 7 dom (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) ⊆ (ran 𝐹 ∖ { 0 })
10299, 101sstri 3993 . . . . . 6 ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })) ⊆ (ran 𝐹 ∖ { 0 })
103 difss 4136 . . . . . 6 (ran 𝐹 ∖ { 0 }) ⊆ ran 𝐹
104102, 103sstri 3993 . . . . 5 ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })) ⊆ ran 𝐹
105 ssfi 9213 . . . . 5 ((ran 𝐹 ∈ Fin ∧ ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })) ⊆ ran 𝐹) → ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })) ∈ Fin)
10698, 104, 105sylancl 586 . . . 4 (𝜑 → ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })) ∈ Fin)
10797, 106eqeltrd 2841 . . 3 (𝜑 → ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) supp 0 ) ∈ Fin)
1081, 4, 11, 14, 92, 107gsumcl2 19932 . 2 (𝜑 → (𝑊 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))) ∈ 𝐵)
10910, 108eqeltrd 2841 1 (𝜑 → ((𝑊sitg𝑀)‘𝐹) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  cdif 3948  wss 3951  {csn 4626   cuni 4907  cmpt 5225   × cxp 5683  ccnv 5684  dom cdm 5685  ran crn 5686  cres 5687  cima 5688  Fun wfun 6555  wf 6557  cfv 6561  (class class class)co 7431   supp csupp 8185  Fincfn 8985  cr 11154  0cc0 11155  +∞cpnf 11292  (,)cioo 13387  [,)cico 13389  Basecbs 17247  Scalarcsca 17300   ·𝑠 cvsca 17301  distcds 17306  TopOpenctopn 17466  topGenctg 17482  0gc0g 17484   Σg cgsu 17485  CMndccmn 19798  DivRingcdr 20729  metUnifcmetu 21355  ℤModczlm 21511  chrcchr 21512  TopSpctps 22938  UnifStcuss 24262  CUnifSpccusp 24306  NrmRingcnrg 24592  NrmModcnlm 24593  ℝHomcrrh 33994   ℝExt crrext 33995  sigAlgebracsiga 34109  sigaGencsigagen 34139  measurescmeas 34196  sitgcsitg 34331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-gcd 16532  df-numer 16772  df-denom 16773  df-gz 16968  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-od 19546  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-rhm 20472  df-nzr 20513  df-subrng 20546  df-subrg 20570  df-drng 20731  df-abv 20810  df-lmod 20860  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-metu 21363  df-cnfld 21365  df-zring 21458  df-zrh 21514  df-zlm 21515  df-chr 21516  df-refld 21623  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-cn 23235  df-cnp 23236  df-haus 23323  df-reg 23324  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-fcls 23949  df-cnext 24068  df-ust 24209  df-utop 24240  df-uss 24265  df-usp 24266  df-ucn 24285  df-cfilu 24296  df-cusp 24307  df-xms 24330  df-ms 24331  df-tms 24332  df-nm 24595  df-ngp 24596  df-nrg 24598  df-nlm 24599  df-cncf 24904  df-cfil 25289  df-cmet 25291  df-cms 25369  df-qqh 33972  df-rrh 33996  df-rrext 34000  df-esum 34029  df-siga 34110  df-sigagen 34140  df-meas 34197  df-mbfm 34251  df-sitg 34332
This theorem is referenced by:  sitgclbn  34345  sitmcl  34353
  Copyright terms: Public domain W3C validator