Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitgclg Structured version   Visualization version   GIF version

Theorem sitgclg 34307
Description: Closure of the Bochner integral on simple functions, generic version. See sitgclbn 34308 for the version for Banach spaces. (Contributed by Thierry Arnoux, 24-Feb-2018.) (Proof shortened by AV, 12-Dec-2019.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibfmbl.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
sitgclg.g 𝐺 = (Scalar‘𝑊)
sitgclg.d 𝐷 = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))
sitgclg.1 (𝜑𝑊 ∈ TopSp)
sitgclg.2 (𝜑𝑊 ∈ CMnd)
sitgclg.3 (𝜑 → (Scalar‘𝑊) ∈ ℝExt )
sitgclg.4 ((𝜑𝑚 ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → (𝑚 · 𝑥) ∈ 𝐵)
Assertion
Ref Expression
sitgclg (𝜑 → ((𝑊sitg𝑀)‘𝐹) ∈ 𝐵)
Distinct variable groups:   𝐵,𝑚   𝑥,𝐹   𝑚,𝐻   𝑥,𝑚,𝑀   𝑆,𝑚   𝑚,𝑊,𝑥   0 ,𝑚,𝑥   · ,𝑚   𝜑,𝑥   𝑥,𝐵   𝑚,𝐹   𝑚,𝐺   𝜑,𝑚
Allowed substitution hints:   𝐷(𝑥,𝑚)   𝑆(𝑥)   · (𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝐽(𝑥,𝑚)   𝑉(𝑥,𝑚)

Proof of Theorem sitgclg
StepHypRef Expression
1 sitgval.b . . 3 𝐵 = (Base‘𝑊)
2 sitgval.j . . 3 𝐽 = (TopOpen‘𝑊)
3 sitgval.s . . 3 𝑆 = (sigaGen‘𝐽)
4 sitgval.0 . . 3 0 = (0g𝑊)
5 sitgval.x . . 3 · = ( ·𝑠𝑊)
6 sitgval.h . . 3 𝐻 = (ℝHom‘(Scalar‘𝑊))
7 sitgval.1 . . 3 (𝜑𝑊𝑉)
8 sitgval.2 . . 3 (𝜑𝑀 ran measures)
9 sibfmbl.1 . . 3 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
101, 2, 3, 4, 5, 6, 7, 8, 9sitgfval 34306 . 2 (𝜑 → ((𝑊sitg𝑀)‘𝐹) = (𝑊 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))))
11 sitgclg.2 . . 3 (𝜑𝑊 ∈ CMnd)
12 rnexg 7942 . . . 4 (𝐹 ∈ dom (𝑊sitg𝑀) → ran 𝐹 ∈ V)
13 difexg 5347 . . . 4 (ran 𝐹 ∈ V → (ran 𝐹 ∖ { 0 }) ∈ V)
149, 12, 133syl 18 . . 3 (𝜑 → (ran 𝐹 ∖ { 0 }) ∈ V)
15 simpl 482 . . . . 5 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → 𝜑)
161, 2, 3, 4, 5, 6, 7, 8, 9sibfima 34303 . . . . . 6 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → (𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))
17 sitgclg.d . . . . . . . . . . 11 𝐷 = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))
18 sitgclg.g . . . . . . . . . . . . 13 𝐺 = (Scalar‘𝑊)
1918fveq2i 6923 . . . . . . . . . . . 12 (dist‘𝐺) = (dist‘(Scalar‘𝑊))
2018fveq2i 6923 . . . . . . . . . . . . 13 (Base‘𝐺) = (Base‘(Scalar‘𝑊))
2120, 20xpeq12i 5728 . . . . . . . . . . . 12 ((Base‘𝐺) × (Base‘𝐺)) = ((Base‘(Scalar‘𝑊)) × (Base‘(Scalar‘𝑊)))
2219, 21reseq12i 6007 . . . . . . . . . . 11 ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) = ((dist‘(Scalar‘𝑊)) ↾ ((Base‘(Scalar‘𝑊)) × (Base‘(Scalar‘𝑊))))
2317, 22eqtri 2768 . . . . . . . . . 10 𝐷 = ((dist‘(Scalar‘𝑊)) ↾ ((Base‘(Scalar‘𝑊)) × (Base‘(Scalar‘𝑊))))
24 eqid 2740 . . . . . . . . . 10 (topGen‘ran (,)) = (topGen‘ran (,))
25 eqid 2740 . . . . . . . . . 10 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2618fveq2i 6923 . . . . . . . . . 10 (TopOpen‘𝐺) = (TopOpen‘(Scalar‘𝑊))
2718fveq2i 6923 . . . . . . . . . 10 (ℤMod‘𝐺) = (ℤMod‘(Scalar‘𝑊))
28 sitgclg.3 . . . . . . . . . . . . 13 (𝜑 → (Scalar‘𝑊) ∈ ℝExt )
2918, 28eqeltrid 2848 . . . . . . . . . . . 12 (𝜑𝐺 ∈ ℝExt )
30 rrextdrg 33948 . . . . . . . . . . . 12 (𝐺 ∈ ℝExt → 𝐺 ∈ DivRing)
3129, 30syl 17 . . . . . . . . . . 11 (𝜑𝐺 ∈ DivRing)
3218, 31eqeltrrid 2849 . . . . . . . . . 10 (𝜑 → (Scalar‘𝑊) ∈ DivRing)
33 rrextnrg 33947 . . . . . . . . . . . 12 (𝐺 ∈ ℝExt → 𝐺 ∈ NrmRing)
3429, 33syl 17 . . . . . . . . . . 11 (𝜑𝐺 ∈ NrmRing)
3518, 34eqeltrrid 2849 . . . . . . . . . 10 (𝜑 → (Scalar‘𝑊) ∈ NrmRing)
36 eqid 2740 . . . . . . . . . . . 12 (ℤMod‘𝐺) = (ℤMod‘𝐺)
3736rrextnlm 33949 . . . . . . . . . . 11 (𝐺 ∈ ℝExt → (ℤMod‘𝐺) ∈ NrmMod)
3829, 37syl 17 . . . . . . . . . 10 (𝜑 → (ℤMod‘𝐺) ∈ NrmMod)
3918fveq2i 6923 . . . . . . . . . . 11 (chr‘𝐺) = (chr‘(Scalar‘𝑊))
40 rrextchr 33950 . . . . . . . . . . . 12 (𝐺 ∈ ℝExt → (chr‘𝐺) = 0)
4129, 40syl 17 . . . . . . . . . . 11 (𝜑 → (chr‘𝐺) = 0)
4239, 41eqtr3id 2794 . . . . . . . . . 10 (𝜑 → (chr‘(Scalar‘𝑊)) = 0)
43 rrextcusp 33951 . . . . . . . . . . . 12 (𝐺 ∈ ℝExt → 𝐺 ∈ CUnifSp)
4429, 43syl 17 . . . . . . . . . . 11 (𝜑𝐺 ∈ CUnifSp)
4518, 44eqeltrrid 2849 . . . . . . . . . 10 (𝜑 → (Scalar‘𝑊) ∈ CUnifSp)
4618fveq2i 6923 . . . . . . . . . . 11 (UnifSt‘𝐺) = (UnifSt‘(Scalar‘𝑊))
47 eqid 2740 . . . . . . . . . . . . 13 (Base‘𝐺) = (Base‘𝐺)
4847, 17rrextust 33954 . . . . . . . . . . . 12 (𝐺 ∈ ℝExt → (UnifSt‘𝐺) = (metUnif‘𝐷))
4929, 48syl 17 . . . . . . . . . . 11 (𝜑 → (UnifSt‘𝐺) = (metUnif‘𝐷))
5046, 49eqtr3id 2794 . . . . . . . . . 10 (𝜑 → (UnifSt‘(Scalar‘𝑊)) = (metUnif‘𝐷))
5123, 24, 25, 26, 27, 32, 35, 38, 42, 45, 50rrhf 33944 . . . . . . . . 9 (𝜑 → (ℝHom‘(Scalar‘𝑊)):ℝ⟶(Base‘(Scalar‘𝑊)))
526feq1i 6738 . . . . . . . . 9 (𝐻:ℝ⟶(Base‘(Scalar‘𝑊)) ↔ (ℝHom‘(Scalar‘𝑊)):ℝ⟶(Base‘(Scalar‘𝑊)))
5351, 52sylibr 234 . . . . . . . 8 (𝜑𝐻:ℝ⟶(Base‘(Scalar‘𝑊)))
5453ffund 6751 . . . . . . 7 (𝜑 → Fun 𝐻)
55 rge0ssre 13516 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
5653fdmd 6757 . . . . . . . 8 (𝜑 → dom 𝐻 = ℝ)
5755, 56sseqtrrid 4062 . . . . . . 7 (𝜑 → (0[,)+∞) ⊆ dom 𝐻)
58 funfvima2 7268 . . . . . . 7 ((Fun 𝐻 ∧ (0[,)+∞) ⊆ dom 𝐻) → ((𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞) → (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞))))
5954, 57, 58syl2anc 583 . . . . . 6 (𝜑 → ((𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞) → (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞))))
6015, 16, 59sylc 65 . . . . 5 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)))
61 dmmeas 34165 . . . . . . . . . . . 12 (𝑀 ran measures → dom 𝑀 ran sigAlgebra)
628, 61syl 17 . . . . . . . . . . 11 (𝜑 → dom 𝑀 ran sigAlgebra)
632fvexi 6934 . . . . . . . . . . . . . 14 𝐽 ∈ V
6463a1i 11 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ V)
6564sgsiga 34106 . . . . . . . . . . . 12 (𝜑 → (sigaGen‘𝐽) ∈ ran sigAlgebra)
663, 65eqeltrid 2848 . . . . . . . . . . 11 (𝜑𝑆 ran sigAlgebra)
671, 2, 3, 4, 5, 6, 7, 8, 9sibfmbl 34300 . . . . . . . . . . 11 (𝜑𝐹 ∈ (dom 𝑀MblFnM𝑆))
6862, 66, 67mbfmf 34218 . . . . . . . . . 10 (𝜑𝐹: dom 𝑀 𝑆)
6968frnd 6755 . . . . . . . . 9 (𝜑 → ran 𝐹 𝑆)
703unieqi 4943 . . . . . . . . . . 11 𝑆 = (sigaGen‘𝐽)
71 unisg 34107 . . . . . . . . . . . 12 (𝐽 ∈ V → (sigaGen‘𝐽) = 𝐽)
7263, 71mp1i 13 . . . . . . . . . . 11 (𝜑 (sigaGen‘𝐽) = 𝐽)
7370, 72eqtrid 2792 . . . . . . . . . 10 (𝜑 𝑆 = 𝐽)
74 sitgclg.1 . . . . . . . . . . 11 (𝜑𝑊 ∈ TopSp)
751, 2tpsuni 22963 . . . . . . . . . . 11 (𝑊 ∈ TopSp → 𝐵 = 𝐽)
7674, 75syl 17 . . . . . . . . . 10 (𝜑𝐵 = 𝐽)
7773, 76eqtr4d 2783 . . . . . . . . 9 (𝜑 𝑆 = 𝐵)
7869, 77sseqtrd 4049 . . . . . . . 8 (𝜑 → ran 𝐹𝐵)
7978ssdifd 4168 . . . . . . 7 (𝜑 → (ran 𝐹 ∖ { 0 }) ⊆ (𝐵 ∖ { 0 }))
8079sselda 4008 . . . . . 6 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → 𝑥 ∈ (𝐵 ∖ { 0 }))
8180eldifad 3988 . . . . 5 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → 𝑥𝐵)
82 simp2 1137 . . . . . 6 ((𝜑 ∧ (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)))
83 eleq1 2832 . . . . . . . . 9 (𝑚 = (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) → (𝑚 ∈ (𝐻 “ (0[,)+∞)) ↔ (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞))))
84833anbi2d 1441 . . . . . . . 8 (𝑚 = (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) → ((𝜑𝑚 ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) ↔ (𝜑 ∧ (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵)))
85 oveq1 7455 . . . . . . . . 9 (𝑚 = (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) → (𝑚 · 𝑥) = ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))
8685eleq1d 2829 . . . . . . . 8 (𝑚 = (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) → ((𝑚 · 𝑥) ∈ 𝐵 ↔ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥) ∈ 𝐵))
8784, 86imbi12d 344 . . . . . . 7 (𝑚 = (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) → (((𝜑𝑚 ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → (𝑚 · 𝑥) ∈ 𝐵) ↔ ((𝜑 ∧ (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥) ∈ 𝐵)))
88 sitgclg.4 . . . . . . 7 ((𝜑𝑚 ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → (𝑚 · 𝑥) ∈ 𝐵)
8987, 88vtoclg 3566 . . . . . 6 ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)) → ((𝜑 ∧ (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥) ∈ 𝐵))
9082, 89mpcom 38 . . . . 5 ((𝜑 ∧ (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥) ∈ 𝐵)
9115, 60, 81, 90syl3anc 1371 . . . 4 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥) ∈ 𝐵)
9291fmpttd 7149 . . 3 (𝜑 → (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)):(ran 𝐹 ∖ { 0 })⟶𝐵)
93 mptexg 7258 . . . . . 6 ((ran 𝐹 ∖ { 0 }) ∈ V → (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) ∈ V)
9414, 93syl 17 . . . . 5 (𝜑 → (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) ∈ V)
954fvexi 6934 . . . . 5 0 ∈ V
96 suppimacnv 8215 . . . . 5 (((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) ∈ V ∧ 0 ∈ V) → ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) supp 0 ) = ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })))
9794, 95, 96sylancl 585 . . . 4 (𝜑 → ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) supp 0 ) = ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })))
981, 2, 3, 4, 5, 6, 7, 8, 9sibfrn 34302 . . . . 5 (𝜑 → ran 𝐹 ∈ Fin)
99 cnvimass 6111 . . . . . . 7 ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })) ⊆ dom (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))
100 eqid 2740 . . . . . . . 8 (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) = (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))
101100dmmptss 6272 . . . . . . 7 dom (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) ⊆ (ran 𝐹 ∖ { 0 })
10299, 101sstri 4018 . . . . . 6 ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })) ⊆ (ran 𝐹 ∖ { 0 })
103 difss 4159 . . . . . 6 (ran 𝐹 ∖ { 0 }) ⊆ ran 𝐹
104102, 103sstri 4018 . . . . 5 ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })) ⊆ ran 𝐹
105 ssfi 9240 . . . . 5 ((ran 𝐹 ∈ Fin ∧ ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })) ⊆ ran 𝐹) → ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })) ∈ Fin)
10698, 104, 105sylancl 585 . . . 4 (𝜑 → ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })) ∈ Fin)
10797, 106eqeltrd 2844 . . 3 (𝜑 → ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) supp 0 ) ∈ Fin)
1081, 4, 11, 14, 92, 107gsumcl2 19956 . 2 (𝜑 → (𝑊 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))) ∈ 𝐵)
10910, 108eqeltrd 2844 1 (𝜑 → ((𝑊sitg𝑀)‘𝐹) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  cdif 3973  wss 3976  {csn 4648   cuni 4931  cmpt 5249   × cxp 5698  ccnv 5699  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448   supp csupp 8201  Fincfn 9003  cr 11183  0cc0 11184  +∞cpnf 11321  (,)cioo 13407  [,)cico 13409  Basecbs 17258  Scalarcsca 17314   ·𝑠 cvsca 17315  distcds 17320  TopOpenctopn 17481  topGenctg 17497  0gc0g 17499   Σg cgsu 17500  CMndccmn 19822  DivRingcdr 20751  metUnifcmetu 21378  ℤModczlm 21534  chrcchr 21535  TopSpctps 22959  UnifStcuss 24283  CUnifSpccusp 24327  NrmRingcnrg 24613  NrmModcnlm 24614  ℝHomcrrh 33939   ℝExt crrext 33940  sigAlgebracsiga 34072  sigaGencsigagen 34102  measurescmeas 34159  sitgcsitg 34294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541  df-numer 16782  df-denom 16783  df-gz 16977  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-od 19570  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-nzr 20539  df-subrng 20572  df-subrg 20597  df-drng 20753  df-abv 20832  df-lmod 20882  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-metu 21386  df-cnfld 21388  df-zring 21481  df-zrh 21537  df-zlm 21538  df-chr 21539  df-refld 21646  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-cn 23256  df-cnp 23257  df-haus 23344  df-reg 23345  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-fcls 23970  df-cnext 24089  df-ust 24230  df-utop 24261  df-uss 24286  df-usp 24287  df-ucn 24306  df-cfilu 24317  df-cusp 24328  df-xms 24351  df-ms 24352  df-tms 24353  df-nm 24616  df-ngp 24617  df-nrg 24619  df-nlm 24620  df-cncf 24923  df-cfil 25308  df-cmet 25310  df-cms 25388  df-qqh 33919  df-rrh 33941  df-rrext 33945  df-esum 33992  df-siga 34073  df-sigagen 34103  df-meas 34160  df-mbfm 34214  df-sitg 34295
This theorem is referenced by:  sitgclbn  34308  sitmcl  34316
  Copyright terms: Public domain W3C validator