Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitgclg Structured version   Visualization version   GIF version

Theorem sitgclg 34355
Description: Closure of the Bochner integral on simple functions, generic version. See sitgclbn 34356 for the version for Banach spaces. (Contributed by Thierry Arnoux, 24-Feb-2018.) (Proof shortened by AV, 12-Dec-2019.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibfmbl.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
sitgclg.g 𝐺 = (Scalar‘𝑊)
sitgclg.d 𝐷 = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))
sitgclg.1 (𝜑𝑊 ∈ TopSp)
sitgclg.2 (𝜑𝑊 ∈ CMnd)
sitgclg.3 (𝜑 → (Scalar‘𝑊) ∈ ℝExt )
sitgclg.4 ((𝜑𝑚 ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → (𝑚 · 𝑥) ∈ 𝐵)
Assertion
Ref Expression
sitgclg (𝜑 → ((𝑊sitg𝑀)‘𝐹) ∈ 𝐵)
Distinct variable groups:   𝐵,𝑚   𝑥,𝐹   𝑚,𝐻   𝑥,𝑚,𝑀   𝑆,𝑚   𝑚,𝑊,𝑥   0 ,𝑚,𝑥   · ,𝑚   𝜑,𝑥   𝑥,𝐵   𝑚,𝐹   𝑚,𝐺   𝜑,𝑚
Allowed substitution hints:   𝐷(𝑥,𝑚)   𝑆(𝑥)   · (𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝐽(𝑥,𝑚)   𝑉(𝑥,𝑚)

Proof of Theorem sitgclg
StepHypRef Expression
1 sitgval.b . . 3 𝐵 = (Base‘𝑊)
2 sitgval.j . . 3 𝐽 = (TopOpen‘𝑊)
3 sitgval.s . . 3 𝑆 = (sigaGen‘𝐽)
4 sitgval.0 . . 3 0 = (0g𝑊)
5 sitgval.x . . 3 · = ( ·𝑠𝑊)
6 sitgval.h . . 3 𝐻 = (ℝHom‘(Scalar‘𝑊))
7 sitgval.1 . . 3 (𝜑𝑊𝑉)
8 sitgval.2 . . 3 (𝜑𝑀 ran measures)
9 sibfmbl.1 . . 3 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
101, 2, 3, 4, 5, 6, 7, 8, 9sitgfval 34354 . 2 (𝜑 → ((𝑊sitg𝑀)‘𝐹) = (𝑊 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))))
11 sitgclg.2 . . 3 (𝜑𝑊 ∈ CMnd)
12 rnexg 7832 . . . 4 (𝐹 ∈ dom (𝑊sitg𝑀) → ran 𝐹 ∈ V)
13 difexg 5265 . . . 4 (ran 𝐹 ∈ V → (ran 𝐹 ∖ { 0 }) ∈ V)
149, 12, 133syl 18 . . 3 (𝜑 → (ran 𝐹 ∖ { 0 }) ∈ V)
15 simpl 482 . . . . 5 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → 𝜑)
161, 2, 3, 4, 5, 6, 7, 8, 9sibfima 34351 . . . . . 6 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → (𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))
17 sitgclg.d . . . . . . . . . . 11 𝐷 = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))
18 sitgclg.g . . . . . . . . . . . . 13 𝐺 = (Scalar‘𝑊)
1918fveq2i 6825 . . . . . . . . . . . 12 (dist‘𝐺) = (dist‘(Scalar‘𝑊))
2018fveq2i 6825 . . . . . . . . . . . . 13 (Base‘𝐺) = (Base‘(Scalar‘𝑊))
2120, 20xpeq12i 5642 . . . . . . . . . . . 12 ((Base‘𝐺) × (Base‘𝐺)) = ((Base‘(Scalar‘𝑊)) × (Base‘(Scalar‘𝑊)))
2219, 21reseq12i 5925 . . . . . . . . . . 11 ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) = ((dist‘(Scalar‘𝑊)) ↾ ((Base‘(Scalar‘𝑊)) × (Base‘(Scalar‘𝑊))))
2317, 22eqtri 2754 . . . . . . . . . 10 𝐷 = ((dist‘(Scalar‘𝑊)) ↾ ((Base‘(Scalar‘𝑊)) × (Base‘(Scalar‘𝑊))))
24 eqid 2731 . . . . . . . . . 10 (topGen‘ran (,)) = (topGen‘ran (,))
25 eqid 2731 . . . . . . . . . 10 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2618fveq2i 6825 . . . . . . . . . 10 (TopOpen‘𝐺) = (TopOpen‘(Scalar‘𝑊))
2718fveq2i 6825 . . . . . . . . . 10 (ℤMod‘𝐺) = (ℤMod‘(Scalar‘𝑊))
28 sitgclg.3 . . . . . . . . . . . . 13 (𝜑 → (Scalar‘𝑊) ∈ ℝExt )
2918, 28eqeltrid 2835 . . . . . . . . . . . 12 (𝜑𝐺 ∈ ℝExt )
30 rrextdrg 34015 . . . . . . . . . . . 12 (𝐺 ∈ ℝExt → 𝐺 ∈ DivRing)
3129, 30syl 17 . . . . . . . . . . 11 (𝜑𝐺 ∈ DivRing)
3218, 31eqeltrrid 2836 . . . . . . . . . 10 (𝜑 → (Scalar‘𝑊) ∈ DivRing)
33 rrextnrg 34014 . . . . . . . . . . . 12 (𝐺 ∈ ℝExt → 𝐺 ∈ NrmRing)
3429, 33syl 17 . . . . . . . . . . 11 (𝜑𝐺 ∈ NrmRing)
3518, 34eqeltrrid 2836 . . . . . . . . . 10 (𝜑 → (Scalar‘𝑊) ∈ NrmRing)
36 eqid 2731 . . . . . . . . . . . 12 (ℤMod‘𝐺) = (ℤMod‘𝐺)
3736rrextnlm 34016 . . . . . . . . . . 11 (𝐺 ∈ ℝExt → (ℤMod‘𝐺) ∈ NrmMod)
3829, 37syl 17 . . . . . . . . . 10 (𝜑 → (ℤMod‘𝐺) ∈ NrmMod)
3918fveq2i 6825 . . . . . . . . . . 11 (chr‘𝐺) = (chr‘(Scalar‘𝑊))
40 rrextchr 34017 . . . . . . . . . . . 12 (𝐺 ∈ ℝExt → (chr‘𝐺) = 0)
4129, 40syl 17 . . . . . . . . . . 11 (𝜑 → (chr‘𝐺) = 0)
4239, 41eqtr3id 2780 . . . . . . . . . 10 (𝜑 → (chr‘(Scalar‘𝑊)) = 0)
43 rrextcusp 34018 . . . . . . . . . . . 12 (𝐺 ∈ ℝExt → 𝐺 ∈ CUnifSp)
4429, 43syl 17 . . . . . . . . . . 11 (𝜑𝐺 ∈ CUnifSp)
4518, 44eqeltrrid 2836 . . . . . . . . . 10 (𝜑 → (Scalar‘𝑊) ∈ CUnifSp)
4618fveq2i 6825 . . . . . . . . . . 11 (UnifSt‘𝐺) = (UnifSt‘(Scalar‘𝑊))
47 eqid 2731 . . . . . . . . . . . . 13 (Base‘𝐺) = (Base‘𝐺)
4847, 17rrextust 34021 . . . . . . . . . . . 12 (𝐺 ∈ ℝExt → (UnifSt‘𝐺) = (metUnif‘𝐷))
4929, 48syl 17 . . . . . . . . . . 11 (𝜑 → (UnifSt‘𝐺) = (metUnif‘𝐷))
5046, 49eqtr3id 2780 . . . . . . . . . 10 (𝜑 → (UnifSt‘(Scalar‘𝑊)) = (metUnif‘𝐷))
5123, 24, 25, 26, 27, 32, 35, 38, 42, 45, 50rrhf 34011 . . . . . . . . 9 (𝜑 → (ℝHom‘(Scalar‘𝑊)):ℝ⟶(Base‘(Scalar‘𝑊)))
526feq1i 6642 . . . . . . . . 9 (𝐻:ℝ⟶(Base‘(Scalar‘𝑊)) ↔ (ℝHom‘(Scalar‘𝑊)):ℝ⟶(Base‘(Scalar‘𝑊)))
5351, 52sylibr 234 . . . . . . . 8 (𝜑𝐻:ℝ⟶(Base‘(Scalar‘𝑊)))
5453ffund 6655 . . . . . . 7 (𝜑 → Fun 𝐻)
55 rge0ssre 13356 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
5653fdmd 6661 . . . . . . . 8 (𝜑 → dom 𝐻 = ℝ)
5755, 56sseqtrrid 3973 . . . . . . 7 (𝜑 → (0[,)+∞) ⊆ dom 𝐻)
58 funfvima2 7165 . . . . . . 7 ((Fun 𝐻 ∧ (0[,)+∞) ⊆ dom 𝐻) → ((𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞) → (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞))))
5954, 57, 58syl2anc 584 . . . . . 6 (𝜑 → ((𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞) → (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞))))
6015, 16, 59sylc 65 . . . . 5 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)))
61 dmmeas 34214 . . . . . . . . . . . 12 (𝑀 ran measures → dom 𝑀 ran sigAlgebra)
628, 61syl 17 . . . . . . . . . . 11 (𝜑 → dom 𝑀 ran sigAlgebra)
632fvexi 6836 . . . . . . . . . . . . . 14 𝐽 ∈ V
6463a1i 11 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ V)
6564sgsiga 34155 . . . . . . . . . . . 12 (𝜑 → (sigaGen‘𝐽) ∈ ran sigAlgebra)
663, 65eqeltrid 2835 . . . . . . . . . . 11 (𝜑𝑆 ran sigAlgebra)
671, 2, 3, 4, 5, 6, 7, 8, 9sibfmbl 34348 . . . . . . . . . . 11 (𝜑𝐹 ∈ (dom 𝑀MblFnM𝑆))
6862, 66, 67mbfmf 34267 . . . . . . . . . 10 (𝜑𝐹: dom 𝑀 𝑆)
6968frnd 6659 . . . . . . . . 9 (𝜑 → ran 𝐹 𝑆)
703unieqi 4868 . . . . . . . . . . 11 𝑆 = (sigaGen‘𝐽)
71 unisg 34156 . . . . . . . . . . . 12 (𝐽 ∈ V → (sigaGen‘𝐽) = 𝐽)
7263, 71mp1i 13 . . . . . . . . . . 11 (𝜑 (sigaGen‘𝐽) = 𝐽)
7370, 72eqtrid 2778 . . . . . . . . . 10 (𝜑 𝑆 = 𝐽)
74 sitgclg.1 . . . . . . . . . . 11 (𝜑𝑊 ∈ TopSp)
751, 2tpsuni 22851 . . . . . . . . . . 11 (𝑊 ∈ TopSp → 𝐵 = 𝐽)
7674, 75syl 17 . . . . . . . . . 10 (𝜑𝐵 = 𝐽)
7773, 76eqtr4d 2769 . . . . . . . . 9 (𝜑 𝑆 = 𝐵)
7869, 77sseqtrd 3966 . . . . . . . 8 (𝜑 → ran 𝐹𝐵)
7978ssdifd 4092 . . . . . . 7 (𝜑 → (ran 𝐹 ∖ { 0 }) ⊆ (𝐵 ∖ { 0 }))
8079sselda 3929 . . . . . 6 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → 𝑥 ∈ (𝐵 ∖ { 0 }))
8180eldifad 3909 . . . . 5 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → 𝑥𝐵)
82 simp2 1137 . . . . . 6 ((𝜑 ∧ (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)))
83 eleq1 2819 . . . . . . . . 9 (𝑚 = (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) → (𝑚 ∈ (𝐻 “ (0[,)+∞)) ↔ (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞))))
84833anbi2d 1443 . . . . . . . 8 (𝑚 = (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) → ((𝜑𝑚 ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) ↔ (𝜑 ∧ (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵)))
85 oveq1 7353 . . . . . . . . 9 (𝑚 = (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) → (𝑚 · 𝑥) = ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))
8685eleq1d 2816 . . . . . . . 8 (𝑚 = (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) → ((𝑚 · 𝑥) ∈ 𝐵 ↔ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥) ∈ 𝐵))
8784, 86imbi12d 344 . . . . . . 7 (𝑚 = (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) → (((𝜑𝑚 ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → (𝑚 · 𝑥) ∈ 𝐵) ↔ ((𝜑 ∧ (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥) ∈ 𝐵)))
88 sitgclg.4 . . . . . . 7 ((𝜑𝑚 ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → (𝑚 · 𝑥) ∈ 𝐵)
8987, 88vtoclg 3507 . . . . . 6 ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)) → ((𝜑 ∧ (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥) ∈ 𝐵))
9082, 89mpcom 38 . . . . 5 ((𝜑 ∧ (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥) ∈ 𝐵)
9115, 60, 81, 90syl3anc 1373 . . . 4 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥) ∈ 𝐵)
9291fmpttd 7048 . . 3 (𝜑 → (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)):(ran 𝐹 ∖ { 0 })⟶𝐵)
93 mptexg 7155 . . . . . 6 ((ran 𝐹 ∖ { 0 }) ∈ V → (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) ∈ V)
9414, 93syl 17 . . . . 5 (𝜑 → (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) ∈ V)
954fvexi 6836 . . . . 5 0 ∈ V
96 suppimacnv 8104 . . . . 5 (((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) ∈ V ∧ 0 ∈ V) → ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) supp 0 ) = ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })))
9794, 95, 96sylancl 586 . . . 4 (𝜑 → ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) supp 0 ) = ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })))
981, 2, 3, 4, 5, 6, 7, 8, 9sibfrn 34350 . . . . 5 (𝜑 → ran 𝐹 ∈ Fin)
99 cnvimass 6030 . . . . . . 7 ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })) ⊆ dom (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))
100 eqid 2731 . . . . . . . 8 (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) = (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))
101100dmmptss 6188 . . . . . . 7 dom (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) ⊆ (ran 𝐹 ∖ { 0 })
10299, 101sstri 3939 . . . . . 6 ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })) ⊆ (ran 𝐹 ∖ { 0 })
103 difss 4083 . . . . . 6 (ran 𝐹 ∖ { 0 }) ⊆ ran 𝐹
104102, 103sstri 3939 . . . . 5 ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })) ⊆ ran 𝐹
105 ssfi 9082 . . . . 5 ((ran 𝐹 ∈ Fin ∧ ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })) ⊆ ran 𝐹) → ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })) ∈ Fin)
10698, 104, 105sylancl 586 . . . 4 (𝜑 → ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })) ∈ Fin)
10797, 106eqeltrd 2831 . . 3 (𝜑 → ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) supp 0 ) ∈ Fin)
1081, 4, 11, 14, 92, 107gsumcl2 19826 . 2 (𝜑 → (𝑊 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))) ∈ 𝐵)
10910, 108eqeltrd 2831 1 (𝜑 → ((𝑊sitg𝑀)‘𝐹) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3894  wss 3897  {csn 4573   cuni 4856  cmpt 5170   × cxp 5612  ccnv 5613  dom cdm 5614  ran crn 5615  cres 5616  cima 5617  Fun wfun 6475  wf 6477  cfv 6481  (class class class)co 7346   supp csupp 8090  Fincfn 8869  cr 11005  0cc0 11006  +∞cpnf 11143  (,)cioo 13245  [,)cico 13247  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  distcds 17170  TopOpenctopn 17325  topGenctg 17341  0gc0g 17343   Σg cgsu 17344  CMndccmn 19692  DivRingcdr 20644  metUnifcmetu 21282  ℤModczlm 21437  chrcchr 21438  TopSpctps 22847  UnifStcuss 24168  CUnifSpccusp 24211  NrmRingcnrg 24494  NrmModcnlm 24495  ℝHomcrrh 34006   ℝExt crrext 34007  sigAlgebracsiga 34121  sigaGencsigagen 34151  measurescmeas 34208  sitgcsitg 34342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-numer 16646  df-denom 16647  df-gz 16842  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19125  df-cntz 19229  df-od 19440  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-rhm 20390  df-nzr 20428  df-subrng 20461  df-subrg 20485  df-drng 20646  df-abv 20724  df-lmod 20795  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-metu 21290  df-cnfld 21292  df-zring 21384  df-zrh 21440  df-zlm 21441  df-chr 21442  df-refld 21542  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-cn 23142  df-cnp 23143  df-haus 23230  df-reg 23231  df-cmp 23302  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-fcls 23856  df-cnext 23975  df-ust 24116  df-utop 24146  df-uss 24171  df-usp 24172  df-ucn 24190  df-cfilu 24201  df-cusp 24212  df-xms 24235  df-ms 24236  df-tms 24237  df-nm 24497  df-ngp 24498  df-nrg 24500  df-nlm 24501  df-cncf 24798  df-cfil 25182  df-cmet 25184  df-cms 25262  df-qqh 33984  df-rrh 34008  df-rrext 34012  df-esum 34041  df-siga 34122  df-sigagen 34152  df-meas 34209  df-mbfm 34263  df-sitg 34343
This theorem is referenced by:  sitgclbn  34356  sitmcl  34364
  Copyright terms: Public domain W3C validator