Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitgclg Structured version   Visualization version   GIF version

Theorem sitgclg 34323
Description: Closure of the Bochner integral on simple functions, generic version. See sitgclbn 34324 for the version for Banach spaces. (Contributed by Thierry Arnoux, 24-Feb-2018.) (Proof shortened by AV, 12-Dec-2019.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibfmbl.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
sitgclg.g 𝐺 = (Scalar‘𝑊)
sitgclg.d 𝐷 = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))
sitgclg.1 (𝜑𝑊 ∈ TopSp)
sitgclg.2 (𝜑𝑊 ∈ CMnd)
sitgclg.3 (𝜑 → (Scalar‘𝑊) ∈ ℝExt )
sitgclg.4 ((𝜑𝑚 ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → (𝑚 · 𝑥) ∈ 𝐵)
Assertion
Ref Expression
sitgclg (𝜑 → ((𝑊sitg𝑀)‘𝐹) ∈ 𝐵)
Distinct variable groups:   𝐵,𝑚   𝑥,𝐹   𝑚,𝐻   𝑥,𝑚,𝑀   𝑆,𝑚   𝑚,𝑊,𝑥   0 ,𝑚,𝑥   · ,𝑚   𝜑,𝑥   𝑥,𝐵   𝑚,𝐹   𝑚,𝐺   𝜑,𝑚
Allowed substitution hints:   𝐷(𝑥,𝑚)   𝑆(𝑥)   · (𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝐽(𝑥,𝑚)   𝑉(𝑥,𝑚)

Proof of Theorem sitgclg
StepHypRef Expression
1 sitgval.b . . 3 𝐵 = (Base‘𝑊)
2 sitgval.j . . 3 𝐽 = (TopOpen‘𝑊)
3 sitgval.s . . 3 𝑆 = (sigaGen‘𝐽)
4 sitgval.0 . . 3 0 = (0g𝑊)
5 sitgval.x . . 3 · = ( ·𝑠𝑊)
6 sitgval.h . . 3 𝐻 = (ℝHom‘(Scalar‘𝑊))
7 sitgval.1 . . 3 (𝜑𝑊𝑉)
8 sitgval.2 . . 3 (𝜑𝑀 ran measures)
9 sibfmbl.1 . . 3 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
101, 2, 3, 4, 5, 6, 7, 8, 9sitgfval 34322 . 2 (𝜑 → ((𝑊sitg𝑀)‘𝐹) = (𝑊 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))))
11 sitgclg.2 . . 3 (𝜑𝑊 ∈ CMnd)
12 rnexg 7924 . . . 4 (𝐹 ∈ dom (𝑊sitg𝑀) → ran 𝐹 ∈ V)
13 difexg 5334 . . . 4 (ran 𝐹 ∈ V → (ran 𝐹 ∖ { 0 }) ∈ V)
149, 12, 133syl 18 . . 3 (𝜑 → (ran 𝐹 ∖ { 0 }) ∈ V)
15 simpl 482 . . . . 5 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → 𝜑)
161, 2, 3, 4, 5, 6, 7, 8, 9sibfima 34319 . . . . . 6 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → (𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))
17 sitgclg.d . . . . . . . . . . 11 𝐷 = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))
18 sitgclg.g . . . . . . . . . . . . 13 𝐺 = (Scalar‘𝑊)
1918fveq2i 6909 . . . . . . . . . . . 12 (dist‘𝐺) = (dist‘(Scalar‘𝑊))
2018fveq2i 6909 . . . . . . . . . . . . 13 (Base‘𝐺) = (Base‘(Scalar‘𝑊))
2120, 20xpeq12i 5716 . . . . . . . . . . . 12 ((Base‘𝐺) × (Base‘𝐺)) = ((Base‘(Scalar‘𝑊)) × (Base‘(Scalar‘𝑊)))
2219, 21reseq12i 5997 . . . . . . . . . . 11 ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) = ((dist‘(Scalar‘𝑊)) ↾ ((Base‘(Scalar‘𝑊)) × (Base‘(Scalar‘𝑊))))
2317, 22eqtri 2762 . . . . . . . . . 10 𝐷 = ((dist‘(Scalar‘𝑊)) ↾ ((Base‘(Scalar‘𝑊)) × (Base‘(Scalar‘𝑊))))
24 eqid 2734 . . . . . . . . . 10 (topGen‘ran (,)) = (topGen‘ran (,))
25 eqid 2734 . . . . . . . . . 10 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2618fveq2i 6909 . . . . . . . . . 10 (TopOpen‘𝐺) = (TopOpen‘(Scalar‘𝑊))
2718fveq2i 6909 . . . . . . . . . 10 (ℤMod‘𝐺) = (ℤMod‘(Scalar‘𝑊))
28 sitgclg.3 . . . . . . . . . . . . 13 (𝜑 → (Scalar‘𝑊) ∈ ℝExt )
2918, 28eqeltrid 2842 . . . . . . . . . . . 12 (𝜑𝐺 ∈ ℝExt )
30 rrextdrg 33964 . . . . . . . . . . . 12 (𝐺 ∈ ℝExt → 𝐺 ∈ DivRing)
3129, 30syl 17 . . . . . . . . . . 11 (𝜑𝐺 ∈ DivRing)
3218, 31eqeltrrid 2843 . . . . . . . . . 10 (𝜑 → (Scalar‘𝑊) ∈ DivRing)
33 rrextnrg 33963 . . . . . . . . . . . 12 (𝐺 ∈ ℝExt → 𝐺 ∈ NrmRing)
3429, 33syl 17 . . . . . . . . . . 11 (𝜑𝐺 ∈ NrmRing)
3518, 34eqeltrrid 2843 . . . . . . . . . 10 (𝜑 → (Scalar‘𝑊) ∈ NrmRing)
36 eqid 2734 . . . . . . . . . . . 12 (ℤMod‘𝐺) = (ℤMod‘𝐺)
3736rrextnlm 33965 . . . . . . . . . . 11 (𝐺 ∈ ℝExt → (ℤMod‘𝐺) ∈ NrmMod)
3829, 37syl 17 . . . . . . . . . 10 (𝜑 → (ℤMod‘𝐺) ∈ NrmMod)
3918fveq2i 6909 . . . . . . . . . . 11 (chr‘𝐺) = (chr‘(Scalar‘𝑊))
40 rrextchr 33966 . . . . . . . . . . . 12 (𝐺 ∈ ℝExt → (chr‘𝐺) = 0)
4129, 40syl 17 . . . . . . . . . . 11 (𝜑 → (chr‘𝐺) = 0)
4239, 41eqtr3id 2788 . . . . . . . . . 10 (𝜑 → (chr‘(Scalar‘𝑊)) = 0)
43 rrextcusp 33967 . . . . . . . . . . . 12 (𝐺 ∈ ℝExt → 𝐺 ∈ CUnifSp)
4429, 43syl 17 . . . . . . . . . . 11 (𝜑𝐺 ∈ CUnifSp)
4518, 44eqeltrrid 2843 . . . . . . . . . 10 (𝜑 → (Scalar‘𝑊) ∈ CUnifSp)
4618fveq2i 6909 . . . . . . . . . . 11 (UnifSt‘𝐺) = (UnifSt‘(Scalar‘𝑊))
47 eqid 2734 . . . . . . . . . . . . 13 (Base‘𝐺) = (Base‘𝐺)
4847, 17rrextust 33970 . . . . . . . . . . . 12 (𝐺 ∈ ℝExt → (UnifSt‘𝐺) = (metUnif‘𝐷))
4929, 48syl 17 . . . . . . . . . . 11 (𝜑 → (UnifSt‘𝐺) = (metUnif‘𝐷))
5046, 49eqtr3id 2788 . . . . . . . . . 10 (𝜑 → (UnifSt‘(Scalar‘𝑊)) = (metUnif‘𝐷))
5123, 24, 25, 26, 27, 32, 35, 38, 42, 45, 50rrhf 33960 . . . . . . . . 9 (𝜑 → (ℝHom‘(Scalar‘𝑊)):ℝ⟶(Base‘(Scalar‘𝑊)))
526feq1i 6727 . . . . . . . . 9 (𝐻:ℝ⟶(Base‘(Scalar‘𝑊)) ↔ (ℝHom‘(Scalar‘𝑊)):ℝ⟶(Base‘(Scalar‘𝑊)))
5351, 52sylibr 234 . . . . . . . 8 (𝜑𝐻:ℝ⟶(Base‘(Scalar‘𝑊)))
5453ffund 6740 . . . . . . 7 (𝜑 → Fun 𝐻)
55 rge0ssre 13492 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
5653fdmd 6746 . . . . . . . 8 (𝜑 → dom 𝐻 = ℝ)
5755, 56sseqtrrid 4048 . . . . . . 7 (𝜑 → (0[,)+∞) ⊆ dom 𝐻)
58 funfvima2 7250 . . . . . . 7 ((Fun 𝐻 ∧ (0[,)+∞) ⊆ dom 𝐻) → ((𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞) → (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞))))
5954, 57, 58syl2anc 584 . . . . . 6 (𝜑 → ((𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞) → (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞))))
6015, 16, 59sylc 65 . . . . 5 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)))
61 dmmeas 34181 . . . . . . . . . . . 12 (𝑀 ran measures → dom 𝑀 ran sigAlgebra)
628, 61syl 17 . . . . . . . . . . 11 (𝜑 → dom 𝑀 ran sigAlgebra)
632fvexi 6920 . . . . . . . . . . . . . 14 𝐽 ∈ V
6463a1i 11 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ V)
6564sgsiga 34122 . . . . . . . . . . . 12 (𝜑 → (sigaGen‘𝐽) ∈ ran sigAlgebra)
663, 65eqeltrid 2842 . . . . . . . . . . 11 (𝜑𝑆 ran sigAlgebra)
671, 2, 3, 4, 5, 6, 7, 8, 9sibfmbl 34316 . . . . . . . . . . 11 (𝜑𝐹 ∈ (dom 𝑀MblFnM𝑆))
6862, 66, 67mbfmf 34234 . . . . . . . . . 10 (𝜑𝐹: dom 𝑀 𝑆)
6968frnd 6744 . . . . . . . . 9 (𝜑 → ran 𝐹 𝑆)
703unieqi 4923 . . . . . . . . . . 11 𝑆 = (sigaGen‘𝐽)
71 unisg 34123 . . . . . . . . . . . 12 (𝐽 ∈ V → (sigaGen‘𝐽) = 𝐽)
7263, 71mp1i 13 . . . . . . . . . . 11 (𝜑 (sigaGen‘𝐽) = 𝐽)
7370, 72eqtrid 2786 . . . . . . . . . 10 (𝜑 𝑆 = 𝐽)
74 sitgclg.1 . . . . . . . . . . 11 (𝜑𝑊 ∈ TopSp)
751, 2tpsuni 22957 . . . . . . . . . . 11 (𝑊 ∈ TopSp → 𝐵 = 𝐽)
7674, 75syl 17 . . . . . . . . . 10 (𝜑𝐵 = 𝐽)
7773, 76eqtr4d 2777 . . . . . . . . 9 (𝜑 𝑆 = 𝐵)
7869, 77sseqtrd 4035 . . . . . . . 8 (𝜑 → ran 𝐹𝐵)
7978ssdifd 4154 . . . . . . 7 (𝜑 → (ran 𝐹 ∖ { 0 }) ⊆ (𝐵 ∖ { 0 }))
8079sselda 3994 . . . . . 6 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → 𝑥 ∈ (𝐵 ∖ { 0 }))
8180eldifad 3974 . . . . 5 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → 𝑥𝐵)
82 simp2 1136 . . . . . 6 ((𝜑 ∧ (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)))
83 eleq1 2826 . . . . . . . . 9 (𝑚 = (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) → (𝑚 ∈ (𝐻 “ (0[,)+∞)) ↔ (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞))))
84833anbi2d 1440 . . . . . . . 8 (𝑚 = (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) → ((𝜑𝑚 ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) ↔ (𝜑 ∧ (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵)))
85 oveq1 7437 . . . . . . . . 9 (𝑚 = (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) → (𝑚 · 𝑥) = ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))
8685eleq1d 2823 . . . . . . . 8 (𝑚 = (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) → ((𝑚 · 𝑥) ∈ 𝐵 ↔ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥) ∈ 𝐵))
8784, 86imbi12d 344 . . . . . . 7 (𝑚 = (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) → (((𝜑𝑚 ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → (𝑚 · 𝑥) ∈ 𝐵) ↔ ((𝜑 ∧ (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥) ∈ 𝐵)))
88 sitgclg.4 . . . . . . 7 ((𝜑𝑚 ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → (𝑚 · 𝑥) ∈ 𝐵)
8987, 88vtoclg 3553 . . . . . 6 ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)) → ((𝜑 ∧ (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥) ∈ 𝐵))
9082, 89mpcom 38 . . . . 5 ((𝜑 ∧ (𝐻‘(𝑀‘(𝐹 “ {𝑥}))) ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥) ∈ 𝐵)
9115, 60, 81, 90syl3anc 1370 . . . 4 ((𝜑𝑥 ∈ (ran 𝐹 ∖ { 0 })) → ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥) ∈ 𝐵)
9291fmpttd 7134 . . 3 (𝜑 → (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)):(ran 𝐹 ∖ { 0 })⟶𝐵)
93 mptexg 7240 . . . . . 6 ((ran 𝐹 ∖ { 0 }) ∈ V → (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) ∈ V)
9414, 93syl 17 . . . . 5 (𝜑 → (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) ∈ V)
954fvexi 6920 . . . . 5 0 ∈ V
96 suppimacnv 8197 . . . . 5 (((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) ∈ V ∧ 0 ∈ V) → ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) supp 0 ) = ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })))
9794, 95, 96sylancl 586 . . . 4 (𝜑 → ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) supp 0 ) = ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })))
981, 2, 3, 4, 5, 6, 7, 8, 9sibfrn 34318 . . . . 5 (𝜑 → ran 𝐹 ∈ Fin)
99 cnvimass 6101 . . . . . . 7 ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })) ⊆ dom (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))
100 eqid 2734 . . . . . . . 8 (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) = (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))
101100dmmptss 6262 . . . . . . 7 dom (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) ⊆ (ran 𝐹 ∖ { 0 })
10299, 101sstri 4004 . . . . . 6 ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })) ⊆ (ran 𝐹 ∖ { 0 })
103 difss 4145 . . . . . 6 (ran 𝐹 ∖ { 0 }) ⊆ ran 𝐹
104102, 103sstri 4004 . . . . 5 ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })) ⊆ ran 𝐹
105 ssfi 9211 . . . . 5 ((ran 𝐹 ∈ Fin ∧ ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })) ⊆ ran 𝐹) → ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })) ∈ Fin)
10698, 104, 105sylancl 586 . . . 4 (𝜑 → ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) “ (V ∖ { 0 })) ∈ Fin)
10797, 106eqeltrd 2838 . . 3 (𝜑 → ((𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥)) supp 0 ) ∈ Fin)
1081, 4, 11, 14, 92, 107gsumcl2 19946 . 2 (𝜑 → (𝑊 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝐹 “ {𝑥}))) · 𝑥))) ∈ 𝐵)
10910, 108eqeltrd 2838 1 (𝜑 → ((𝑊sitg𝑀)‘𝐹) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  Vcvv 3477  cdif 3959  wss 3962  {csn 4630   cuni 4911  cmpt 5230   × cxp 5686  ccnv 5687  dom cdm 5688  ran crn 5689  cres 5690  cima 5691  Fun wfun 6556  wf 6558  cfv 6562  (class class class)co 7430   supp csupp 8183  Fincfn 8983  cr 11151  0cc0 11152  +∞cpnf 11289  (,)cioo 13383  [,)cico 13385  Basecbs 17244  Scalarcsca 17300   ·𝑠 cvsca 17301  distcds 17306  TopOpenctopn 17467  topGenctg 17483  0gc0g 17485   Σg cgsu 17486  CMndccmn 19812  DivRingcdr 20745  metUnifcmetu 21372  ℤModczlm 21528  chrcchr 21529  TopSpctps 22953  UnifStcuss 24277  CUnifSpccusp 24321  NrmRingcnrg 24607  NrmModcnlm 24608  ℝHomcrrh 33955   ℝExt crrext 33956  sigAlgebracsiga 34088  sigaGencsigagen 34118  measurescmeas 34175  sitgcsitg 34310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231  ax-mulf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-dvds 16287  df-gcd 16528  df-numer 16768  df-denom 16769  df-gz 16963  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mhm 18808  df-submnd 18809  df-grp 18966  df-minusg 18967  df-sbg 18968  df-mulg 19098  df-subg 19153  df-ghm 19243  df-cntz 19347  df-od 19560  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-cring 20253  df-oppr 20350  df-dvdsr 20373  df-unit 20374  df-invr 20404  df-dvr 20417  df-rhm 20488  df-nzr 20529  df-subrng 20562  df-subrg 20586  df-drng 20747  df-abv 20826  df-lmod 20876  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-metu 21380  df-cnfld 21382  df-zring 21475  df-zrh 21531  df-zlm 21532  df-chr 21533  df-refld 21640  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-cn 23250  df-cnp 23251  df-haus 23338  df-reg 23339  df-cmp 23410  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-fcls 23964  df-cnext 24083  df-ust 24224  df-utop 24255  df-uss 24280  df-usp 24281  df-ucn 24300  df-cfilu 24311  df-cusp 24322  df-xms 24345  df-ms 24346  df-tms 24347  df-nm 24610  df-ngp 24611  df-nrg 24613  df-nlm 24614  df-cncf 24917  df-cfil 25302  df-cmet 25304  df-cms 25382  df-qqh 33933  df-rrh 33957  df-rrext 33961  df-esum 34008  df-siga 34089  df-sigagen 34119  df-meas 34176  df-mbfm 34230  df-sitg 34311
This theorem is referenced by:  sitgclbn  34324  sitmcl  34332
  Copyright terms: Public domain W3C validator