Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upeu2 Structured version   Visualization version   GIF version

Theorem upeu2 49177
Description: Generate new universal morphism through isomorphism from existing universal object. (Contributed by Zhi Wang, 20-Sep-2025.)
Hypotheses
Ref Expression
upcic.b 𝐵 = (Base‘𝐷)
upcic.c 𝐶 = (Base‘𝐸)
upcic.h 𝐻 = (Hom ‘𝐷)
upcic.j 𝐽 = (Hom ‘𝐸)
upcic.o 𝑂 = (comp‘𝐸)
upcic.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
upcic.x (𝜑𝑋𝐵)
upcic.y (𝜑𝑌𝐵)
upcic.z (𝜑𝑍𝐶)
upcic.m (𝜑𝑀 ∈ (𝑍𝐽(𝐹𝑋)))
upcic.1 (𝜑 → ∀𝑤𝐵𝑓 ∈ (𝑍𝐽(𝐹𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑤))𝑀))
upeu2.i 𝐼 = (Iso‘𝐷)
upeu2.k (𝜑𝐾 ∈ (𝑋𝐼𝑌))
upeu2.n (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
Assertion
Ref Expression
upeu2 (𝜑 → (𝑁 ∈ (𝑍𝐽(𝐹𝑌)) ∧ ∀𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁)))
Distinct variable groups:   𝐵,𝑔,𝑙   𝑤,𝐵   𝐷,𝑙   𝑓,𝐹,𝑘,𝑤   𝐹,𝑙   𝑓,𝐺,𝑘,𝑤   𝐺,𝑙   𝑓,𝐻,𝑘,𝑤   𝐻,𝑙   𝑓,𝐽,𝑤   𝐽,𝑙   𝐾,𝑙   𝑓,𝑀,𝑘,𝑤   𝑀,𝑙   𝑓,𝑂,𝑘,𝑤   𝑂,𝑙   𝑓,𝑋,𝑘,𝑤   𝑋,𝑙   𝑌,𝑙   𝑓,𝑍,𝑘,𝑤   𝑍,𝑙   𝑓,𝑔,𝑣,𝑘   𝜑,𝑔,𝑙,𝑣   𝑤,𝑣
Allowed substitution hints:   𝜑(𝑤,𝑓,𝑘)   𝐵(𝑣,𝑓,𝑘)   𝐶(𝑤,𝑣,𝑓,𝑔,𝑘,𝑙)   𝐷(𝑤,𝑣,𝑓,𝑔,𝑘)   𝐸(𝑤,𝑣,𝑓,𝑔,𝑘,𝑙)   𝐹(𝑣,𝑔)   𝐺(𝑣,𝑔)   𝐻(𝑣,𝑔)   𝐼(𝑤,𝑣,𝑓,𝑔,𝑘,𝑙)   𝐽(𝑣,𝑔,𝑘)   𝐾(𝑤,𝑣,𝑓,𝑔,𝑘)   𝑀(𝑣,𝑔)   𝑁(𝑤,𝑣,𝑓,𝑔,𝑘,𝑙)   𝑂(𝑣,𝑔)   𝑋(𝑣,𝑔)   𝑌(𝑤,𝑣,𝑓,𝑔,𝑘)   𝑍(𝑣,𝑔)

Proof of Theorem upeu2
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 upeu2.n . . 3 (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
2 upcic.c . . . 4 𝐶 = (Base‘𝐸)
3 upcic.j . . . 4 𝐽 = (Hom ‘𝐸)
4 upcic.o . . . 4 𝑂 = (comp‘𝐸)
5 upcic.f . . . . 5 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
65funcrcl3 49085 . . . 4 (𝜑𝐸 ∈ Cat)
7 upcic.z . . . 4 (𝜑𝑍𝐶)
8 upcic.b . . . . . 6 𝐵 = (Base‘𝐷)
98, 2, 5funcf1 17792 . . . . 5 (𝜑𝐹:𝐵𝐶)
10 upcic.x . . . . 5 (𝜑𝑋𝐵)
119, 10ffvelcdmd 7023 . . . 4 (𝜑 → (𝐹𝑋) ∈ 𝐶)
12 upcic.y . . . . 5 (𝜑𝑌𝐵)
139, 12ffvelcdmd 7023 . . . 4 (𝜑 → (𝐹𝑌) ∈ 𝐶)
14 upcic.m . . . 4 (𝜑𝑀 ∈ (𝑍𝐽(𝐹𝑋)))
15 upcic.h . . . . . 6 𝐻 = (Hom ‘𝐷)
168, 15, 3, 5, 10, 12funcf2 17794 . . . . 5 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹𝑋)𝐽(𝐹𝑌)))
17 upeu2.i . . . . . . 7 𝐼 = (Iso‘𝐷)
185funcrcl2 49084 . . . . . . 7 (𝜑𝐷 ∈ Cat)
198, 15, 17, 18, 10, 12isohom 17702 . . . . . 6 (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋𝐻𝑌))
20 upeu2.k . . . . . 6 (𝜑𝐾 ∈ (𝑋𝐼𝑌))
2119, 20sseldd 3938 . . . . 5 (𝜑𝐾 ∈ (𝑋𝐻𝑌))
2216, 21ffvelcdmd 7023 . . . 4 (𝜑 → ((𝑋𝐺𝑌)‘𝐾) ∈ ((𝐹𝑋)𝐽(𝐹𝑌)))
232, 3, 4, 6, 7, 11, 13, 14, 22catcocl 17610 . . 3 (𝜑 → (((𝑋𝐺𝑌)‘𝐾)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀) ∈ (𝑍𝐽(𝐹𝑌)))
241, 23eqeltrd 2828 . 2 (𝜑𝑁 ∈ (𝑍𝐽(𝐹𝑌)))
25 upcic.1 . . . . . 6 (𝜑 → ∀𝑤𝐵𝑓 ∈ (𝑍𝐽(𝐹𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑤))𝑀))
2625adantr 480 . . . . 5 ((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) → ∀𝑤𝐵𝑓 ∈ (𝑍𝐽(𝐹𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑤))𝑀))
27 simprl 770 . . . . 5 ((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) → 𝑣𝐵)
28 simprr 772 . . . . 5 ((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) → 𝑔 ∈ (𝑍𝐽(𝐹𝑣)))
2926, 27, 28upciclem1 49171 . . . 4 ((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) → ∃!𝑝 ∈ (𝑋𝐻𝑣)𝑔 = (((𝑋𝐺𝑣)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑣))𝑀))
30 eqid 2729 . . . . . 6 (comp‘𝐷) = (comp‘𝐷)
3118ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → 𝐷 ∈ Cat)
3210ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → 𝑋𝐵)
3312ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → 𝑌𝐵)
3427adantr 480 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → 𝑣𝐵)
3521ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → 𝐾 ∈ (𝑋𝐻𝑌))
36 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → 𝑙 ∈ (𝑌𝐻𝑣))
378, 15, 30, 31, 32, 33, 34, 35, 36catcocl 17610 . . . . 5 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾) ∈ (𝑋𝐻𝑣))
3818ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → 𝐷 ∈ Cat)
3910ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → 𝑋𝐵)
4012ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → 𝑌𝐵)
4127adantr 480 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → 𝑣𝐵)
4220ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → 𝐾 ∈ (𝑋𝐼𝑌))
43 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → 𝑝 ∈ (𝑋𝐻𝑣))
448, 15, 30, 17, 38, 39, 40, 41, 42, 43upeu2lem 49033 . . . . 5 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → ∃!𝑙 ∈ (𝑌𝐻𝑣)𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))
45 simprr 772 . . . . . . . . 9 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))
4645fveq2d 6830 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → ((𝑋𝐺𝑣)‘𝑝) = ((𝑋𝐺𝑣)‘(𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾)))
4746oveq1d 7368 . . . . . . 7 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → (((𝑋𝐺𝑣)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑣))𝑀) = (((𝑋𝐺𝑣)‘(𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑣))𝑀))
485ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝐹(𝐷 Func 𝐸)𝐺)
4910ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝑋𝐵)
5012ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝑌𝐵)
5127adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝑣𝐵)
527ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝑍𝐶)
5314ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝑀 ∈ (𝑍𝐽(𝐹𝑋)))
5421ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝐾 ∈ (𝑋𝐻𝑌))
55 simprl 770 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝑙 ∈ (𝑌𝐻𝑣))
561ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
578, 2, 15, 3, 4, 48, 49, 50, 51, 52, 53, 30, 54, 55, 56upciclem2 49172 . . . . . . 7 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → (((𝑋𝐺𝑣)‘(𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑣))𝑀) = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁))
5847, 57eqtrd 2764 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → (((𝑋𝐺𝑣)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑣))𝑀) = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁))
5958eqeq2d 2740 . . . . 5 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → (𝑔 = (((𝑋𝐺𝑣)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑣))𝑀) ↔ 𝑔 = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁)))
6037, 44, 59reuxfr1dd 48811 . . . 4 ((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) → (∃!𝑝 ∈ (𝑋𝐻𝑣)𝑔 = (((𝑋𝐺𝑣)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑣))𝑀) ↔ ∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁)))
6129, 60mpbid 232 . . 3 ((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) → ∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁))
6261ralrimivva 3172 . 2 (𝜑 → ∀𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁))
6324, 62jca 511 1 (𝜑 → (𝑁 ∈ (𝑍𝐽(𝐹𝑌)) ∧ ∀𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  ∃!wreu 3343  cop 4585   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17139  Hom chom 17191  compcco 17192  Catccat 17589  Isociso 17672   Func cfunc 17780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-map 8762  df-ixp 8832  df-cat 17593  df-cid 17594  df-sect 17673  df-inv 17674  df-iso 17675  df-func 17784
This theorem is referenced by:  upeu4  49201
  Copyright terms: Public domain W3C validator