Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upeu2 Structured version   Visualization version   GIF version

Theorem upeu2 49145
Description: Generate new universal morphism through isomorphism from existing universal object. (Contributed by Zhi Wang, 20-Sep-2025.)
Hypotheses
Ref Expression
upcic.b 𝐵 = (Base‘𝐷)
upcic.c 𝐶 = (Base‘𝐸)
upcic.h 𝐻 = (Hom ‘𝐷)
upcic.j 𝐽 = (Hom ‘𝐸)
upcic.o 𝑂 = (comp‘𝐸)
upcic.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
upcic.x (𝜑𝑋𝐵)
upcic.y (𝜑𝑌𝐵)
upcic.z (𝜑𝑍𝐶)
upcic.m (𝜑𝑀 ∈ (𝑍𝐽(𝐹𝑋)))
upcic.1 (𝜑 → ∀𝑤𝐵𝑓 ∈ (𝑍𝐽(𝐹𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑤))𝑀))
upeu2.i 𝐼 = (Iso‘𝐷)
upeu2.k (𝜑𝐾 ∈ (𝑋𝐼𝑌))
upeu2.n (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
Assertion
Ref Expression
upeu2 (𝜑 → (𝑁 ∈ (𝑍𝐽(𝐹𝑌)) ∧ ∀𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁)))
Distinct variable groups:   𝐵,𝑔,𝑙   𝑤,𝐵   𝐷,𝑙   𝑓,𝐹,𝑘,𝑤   𝐹,𝑙   𝑓,𝐺,𝑘,𝑤   𝐺,𝑙   𝑓,𝐻,𝑘,𝑤   𝐻,𝑙   𝑓,𝐽,𝑤   𝐽,𝑙   𝐾,𝑙   𝑓,𝑀,𝑘,𝑤   𝑀,𝑙   𝑓,𝑂,𝑘,𝑤   𝑂,𝑙   𝑓,𝑋,𝑘,𝑤   𝑋,𝑙   𝑌,𝑙   𝑓,𝑍,𝑘,𝑤   𝑍,𝑙   𝑓,𝑔,𝑣,𝑘   𝜑,𝑔,𝑙,𝑣   𝑤,𝑣
Allowed substitution hints:   𝜑(𝑤,𝑓,𝑘)   𝐵(𝑣,𝑓,𝑘)   𝐶(𝑤,𝑣,𝑓,𝑔,𝑘,𝑙)   𝐷(𝑤,𝑣,𝑓,𝑔,𝑘)   𝐸(𝑤,𝑣,𝑓,𝑔,𝑘,𝑙)   𝐹(𝑣,𝑔)   𝐺(𝑣,𝑔)   𝐻(𝑣,𝑔)   𝐼(𝑤,𝑣,𝑓,𝑔,𝑘,𝑙)   𝐽(𝑣,𝑔,𝑘)   𝐾(𝑤,𝑣,𝑓,𝑔,𝑘)   𝑀(𝑣,𝑔)   𝑁(𝑤,𝑣,𝑓,𝑔,𝑘,𝑙)   𝑂(𝑣,𝑔)   𝑋(𝑣,𝑔)   𝑌(𝑤,𝑣,𝑓,𝑔,𝑘)   𝑍(𝑣,𝑔)

Proof of Theorem upeu2
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 upeu2.n . . 3 (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
2 upcic.c . . . 4 𝐶 = (Base‘𝐸)
3 upcic.j . . . 4 𝐽 = (Hom ‘𝐸)
4 upcic.o . . . 4 𝑂 = (comp‘𝐸)
5 upcic.f . . . . 5 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
65funcrcl3 49057 . . . 4 (𝜑𝐸 ∈ Cat)
7 upcic.z . . . 4 (𝜑𝑍𝐶)
8 upcic.b . . . . . 6 𝐵 = (Base‘𝐷)
98, 2, 5funcf1 17834 . . . . 5 (𝜑𝐹:𝐵𝐶)
10 upcic.x . . . . 5 (𝜑𝑋𝐵)
119, 10ffvelcdmd 7059 . . . 4 (𝜑 → (𝐹𝑋) ∈ 𝐶)
12 upcic.y . . . . 5 (𝜑𝑌𝐵)
139, 12ffvelcdmd 7059 . . . 4 (𝜑 → (𝐹𝑌) ∈ 𝐶)
14 upcic.m . . . 4 (𝜑𝑀 ∈ (𝑍𝐽(𝐹𝑋)))
15 upcic.h . . . . . 6 𝐻 = (Hom ‘𝐷)
168, 15, 3, 5, 10, 12funcf2 17836 . . . . 5 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹𝑋)𝐽(𝐹𝑌)))
17 upeu2.i . . . . . . 7 𝐼 = (Iso‘𝐷)
185funcrcl2 49056 . . . . . . 7 (𝜑𝐷 ∈ Cat)
198, 15, 17, 18, 10, 12isohom 17744 . . . . . 6 (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋𝐻𝑌))
20 upeu2.k . . . . . 6 (𝜑𝐾 ∈ (𝑋𝐼𝑌))
2119, 20sseldd 3949 . . . . 5 (𝜑𝐾 ∈ (𝑋𝐻𝑌))
2216, 21ffvelcdmd 7059 . . . 4 (𝜑 → ((𝑋𝐺𝑌)‘𝐾) ∈ ((𝐹𝑋)𝐽(𝐹𝑌)))
232, 3, 4, 6, 7, 11, 13, 14, 22catcocl 17652 . . 3 (𝜑 → (((𝑋𝐺𝑌)‘𝐾)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀) ∈ (𝑍𝐽(𝐹𝑌)))
241, 23eqeltrd 2829 . 2 (𝜑𝑁 ∈ (𝑍𝐽(𝐹𝑌)))
25 upcic.1 . . . . . 6 (𝜑 → ∀𝑤𝐵𝑓 ∈ (𝑍𝐽(𝐹𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑤))𝑀))
2625adantr 480 . . . . 5 ((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) → ∀𝑤𝐵𝑓 ∈ (𝑍𝐽(𝐹𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑤))𝑀))
27 simprl 770 . . . . 5 ((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) → 𝑣𝐵)
28 simprr 772 . . . . 5 ((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) → 𝑔 ∈ (𝑍𝐽(𝐹𝑣)))
2926, 27, 28upciclem1 49139 . . . 4 ((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) → ∃!𝑝 ∈ (𝑋𝐻𝑣)𝑔 = (((𝑋𝐺𝑣)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑣))𝑀))
30 eqid 2730 . . . . . 6 (comp‘𝐷) = (comp‘𝐷)
3118ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → 𝐷 ∈ Cat)
3210ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → 𝑋𝐵)
3312ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → 𝑌𝐵)
3427adantr 480 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → 𝑣𝐵)
3521ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → 𝐾 ∈ (𝑋𝐻𝑌))
36 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → 𝑙 ∈ (𝑌𝐻𝑣))
378, 15, 30, 31, 32, 33, 34, 35, 36catcocl 17652 . . . . 5 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾) ∈ (𝑋𝐻𝑣))
3818ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → 𝐷 ∈ Cat)
3910ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → 𝑋𝐵)
4012ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → 𝑌𝐵)
4127adantr 480 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → 𝑣𝐵)
4220ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → 𝐾 ∈ (𝑋𝐼𝑌))
43 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → 𝑝 ∈ (𝑋𝐻𝑣))
448, 15, 30, 17, 38, 39, 40, 41, 42, 43upeu2lem 49005 . . . . 5 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → ∃!𝑙 ∈ (𝑌𝐻𝑣)𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))
45 simprr 772 . . . . . . . . 9 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))
4645fveq2d 6864 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → ((𝑋𝐺𝑣)‘𝑝) = ((𝑋𝐺𝑣)‘(𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾)))
4746oveq1d 7404 . . . . . . 7 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → (((𝑋𝐺𝑣)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑣))𝑀) = (((𝑋𝐺𝑣)‘(𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑣))𝑀))
485ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝐹(𝐷 Func 𝐸)𝐺)
4910ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝑋𝐵)
5012ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝑌𝐵)
5127adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝑣𝐵)
527ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝑍𝐶)
5314ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝑀 ∈ (𝑍𝐽(𝐹𝑋)))
5421ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝐾 ∈ (𝑋𝐻𝑌))
55 simprl 770 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝑙 ∈ (𝑌𝐻𝑣))
561ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
578, 2, 15, 3, 4, 48, 49, 50, 51, 52, 53, 30, 54, 55, 56upciclem2 49140 . . . . . . 7 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → (((𝑋𝐺𝑣)‘(𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑣))𝑀) = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁))
5847, 57eqtrd 2765 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → (((𝑋𝐺𝑣)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑣))𝑀) = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁))
5958eqeq2d 2741 . . . . 5 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → (𝑔 = (((𝑋𝐺𝑣)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑣))𝑀) ↔ 𝑔 = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁)))
6037, 44, 59reuxfr1dd 48785 . . . 4 ((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) → (∃!𝑝 ∈ (𝑋𝐻𝑣)𝑔 = (((𝑋𝐺𝑣)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑣))𝑀) ↔ ∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁)))
6129, 60mpbid 232 . . 3 ((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) → ∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁))
6261ralrimivva 3181 . 2 (𝜑 → ∀𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁))
6324, 62jca 511 1 (𝜑 → (𝑁 ∈ (𝑍𝐽(𝐹𝑌)) ∧ ∀𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  ∃!wreu 3354  cop 4597   class class class wbr 5109  cfv 6513  (class class class)co 7389  Basecbs 17185  Hom chom 17237  compcco 17238  Catccat 17631  Isociso 17714   Func cfunc 17822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-map 8803  df-ixp 8873  df-cat 17635  df-cid 17636  df-sect 17715  df-inv 17716  df-iso 17717  df-func 17826
This theorem is referenced by:  upeu4  49169
  Copyright terms: Public domain W3C validator