Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upeu2 Structured version   Visualization version   GIF version

Theorem upeu2 49333
Description: Generate new universal morphism through isomorphism from existing universal object. (Contributed by Zhi Wang, 20-Sep-2025.)
Hypotheses
Ref Expression
upcic.b 𝐵 = (Base‘𝐷)
upcic.c 𝐶 = (Base‘𝐸)
upcic.h 𝐻 = (Hom ‘𝐷)
upcic.j 𝐽 = (Hom ‘𝐸)
upcic.o 𝑂 = (comp‘𝐸)
upcic.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
upcic.x (𝜑𝑋𝐵)
upcic.y (𝜑𝑌𝐵)
upcic.z (𝜑𝑍𝐶)
upcic.m (𝜑𝑀 ∈ (𝑍𝐽(𝐹𝑋)))
upcic.1 (𝜑 → ∀𝑤𝐵𝑓 ∈ (𝑍𝐽(𝐹𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑤))𝑀))
upeu2.i 𝐼 = (Iso‘𝐷)
upeu2.k (𝜑𝐾 ∈ (𝑋𝐼𝑌))
upeu2.n (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
Assertion
Ref Expression
upeu2 (𝜑 → (𝑁 ∈ (𝑍𝐽(𝐹𝑌)) ∧ ∀𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁)))
Distinct variable groups:   𝐵,𝑔,𝑙   𝑤,𝐵   𝐷,𝑙   𝑓,𝐹,𝑘,𝑤   𝐹,𝑙   𝑓,𝐺,𝑘,𝑤   𝐺,𝑙   𝑓,𝐻,𝑘,𝑤   𝐻,𝑙   𝑓,𝐽,𝑤   𝐽,𝑙   𝐾,𝑙   𝑓,𝑀,𝑘,𝑤   𝑀,𝑙   𝑓,𝑂,𝑘,𝑤   𝑂,𝑙   𝑓,𝑋,𝑘,𝑤   𝑋,𝑙   𝑌,𝑙   𝑓,𝑍,𝑘,𝑤   𝑍,𝑙   𝑓,𝑔,𝑣,𝑘   𝜑,𝑔,𝑙,𝑣   𝑤,𝑣
Allowed substitution hints:   𝜑(𝑤,𝑓,𝑘)   𝐵(𝑣,𝑓,𝑘)   𝐶(𝑤,𝑣,𝑓,𝑔,𝑘,𝑙)   𝐷(𝑤,𝑣,𝑓,𝑔,𝑘)   𝐸(𝑤,𝑣,𝑓,𝑔,𝑘,𝑙)   𝐹(𝑣,𝑔)   𝐺(𝑣,𝑔)   𝐻(𝑣,𝑔)   𝐼(𝑤,𝑣,𝑓,𝑔,𝑘,𝑙)   𝐽(𝑣,𝑔,𝑘)   𝐾(𝑤,𝑣,𝑓,𝑔,𝑘)   𝑀(𝑣,𝑔)   𝑁(𝑤,𝑣,𝑓,𝑔,𝑘,𝑙)   𝑂(𝑣,𝑔)   𝑋(𝑣,𝑔)   𝑌(𝑤,𝑣,𝑓,𝑔,𝑘)   𝑍(𝑣,𝑔)

Proof of Theorem upeu2
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 upeu2.n . . 3 (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
2 upcic.c . . . 4 𝐶 = (Base‘𝐸)
3 upcic.j . . . 4 𝐽 = (Hom ‘𝐸)
4 upcic.o . . . 4 𝑂 = (comp‘𝐸)
5 upcic.f . . . . 5 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
65funcrcl3 49241 . . . 4 (𝜑𝐸 ∈ Cat)
7 upcic.z . . . 4 (𝜑𝑍𝐶)
8 upcic.b . . . . . 6 𝐵 = (Base‘𝐷)
98, 2, 5funcf1 17781 . . . . 5 (𝜑𝐹:𝐵𝐶)
10 upcic.x . . . . 5 (𝜑𝑋𝐵)
119, 10ffvelcdmd 7027 . . . 4 (𝜑 → (𝐹𝑋) ∈ 𝐶)
12 upcic.y . . . . 5 (𝜑𝑌𝐵)
139, 12ffvelcdmd 7027 . . . 4 (𝜑 → (𝐹𝑌) ∈ 𝐶)
14 upcic.m . . . 4 (𝜑𝑀 ∈ (𝑍𝐽(𝐹𝑋)))
15 upcic.h . . . . . 6 𝐻 = (Hom ‘𝐷)
168, 15, 3, 5, 10, 12funcf2 17783 . . . . 5 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹𝑋)𝐽(𝐹𝑌)))
17 upeu2.i . . . . . . 7 𝐼 = (Iso‘𝐷)
185funcrcl2 49240 . . . . . . 7 (𝜑𝐷 ∈ Cat)
198, 15, 17, 18, 10, 12isohom 17691 . . . . . 6 (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋𝐻𝑌))
20 upeu2.k . . . . . 6 (𝜑𝐾 ∈ (𝑋𝐼𝑌))
2119, 20sseldd 3931 . . . . 5 (𝜑𝐾 ∈ (𝑋𝐻𝑌))
2216, 21ffvelcdmd 7027 . . . 4 (𝜑 → ((𝑋𝐺𝑌)‘𝐾) ∈ ((𝐹𝑋)𝐽(𝐹𝑌)))
232, 3, 4, 6, 7, 11, 13, 14, 22catcocl 17599 . . 3 (𝜑 → (((𝑋𝐺𝑌)‘𝐾)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀) ∈ (𝑍𝐽(𝐹𝑌)))
241, 23eqeltrd 2833 . 2 (𝜑𝑁 ∈ (𝑍𝐽(𝐹𝑌)))
25 upcic.1 . . . . . 6 (𝜑 → ∀𝑤𝐵𝑓 ∈ (𝑍𝐽(𝐹𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑤))𝑀))
2625adantr 480 . . . . 5 ((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) → ∀𝑤𝐵𝑓 ∈ (𝑍𝐽(𝐹𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑤))𝑀))
27 simprl 770 . . . . 5 ((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) → 𝑣𝐵)
28 simprr 772 . . . . 5 ((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) → 𝑔 ∈ (𝑍𝐽(𝐹𝑣)))
2926, 27, 28upciclem1 49327 . . . 4 ((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) → ∃!𝑝 ∈ (𝑋𝐻𝑣)𝑔 = (((𝑋𝐺𝑣)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑣))𝑀))
30 eqid 2733 . . . . . 6 (comp‘𝐷) = (comp‘𝐷)
3118ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → 𝐷 ∈ Cat)
3210ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → 𝑋𝐵)
3312ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → 𝑌𝐵)
3427adantr 480 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → 𝑣𝐵)
3521ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → 𝐾 ∈ (𝑋𝐻𝑌))
36 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → 𝑙 ∈ (𝑌𝐻𝑣))
378, 15, 30, 31, 32, 33, 34, 35, 36catcocl 17599 . . . . 5 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾) ∈ (𝑋𝐻𝑣))
3818ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → 𝐷 ∈ Cat)
3910ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → 𝑋𝐵)
4012ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → 𝑌𝐵)
4127adantr 480 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → 𝑣𝐵)
4220ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → 𝐾 ∈ (𝑋𝐼𝑌))
43 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → 𝑝 ∈ (𝑋𝐻𝑣))
448, 15, 30, 17, 38, 39, 40, 41, 42, 43upeu2lem 49189 . . . . 5 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → ∃!𝑙 ∈ (𝑌𝐻𝑣)𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))
45 simprr 772 . . . . . . . . 9 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))
4645fveq2d 6835 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → ((𝑋𝐺𝑣)‘𝑝) = ((𝑋𝐺𝑣)‘(𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾)))
4746oveq1d 7370 . . . . . . 7 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → (((𝑋𝐺𝑣)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑣))𝑀) = (((𝑋𝐺𝑣)‘(𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑣))𝑀))
485ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝐹(𝐷 Func 𝐸)𝐺)
4910ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝑋𝐵)
5012ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝑌𝐵)
5127adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝑣𝐵)
527ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝑍𝐶)
5314ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝑀 ∈ (𝑍𝐽(𝐹𝑋)))
5421ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝐾 ∈ (𝑋𝐻𝑌))
55 simprl 770 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝑙 ∈ (𝑌𝐻𝑣))
561ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
578, 2, 15, 3, 4, 48, 49, 50, 51, 52, 53, 30, 54, 55, 56upciclem2 49328 . . . . . . 7 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → (((𝑋𝐺𝑣)‘(𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑣))𝑀) = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁))
5847, 57eqtrd 2768 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → (((𝑋𝐺𝑣)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑣))𝑀) = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁))
5958eqeq2d 2744 . . . . 5 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → (𝑔 = (((𝑋𝐺𝑣)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑣))𝑀) ↔ 𝑔 = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁)))
6037, 44, 59reuxfr1dd 48968 . . . 4 ((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) → (∃!𝑝 ∈ (𝑋𝐻𝑣)𝑔 = (((𝑋𝐺𝑣)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑣))𝑀) ↔ ∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁)))
6129, 60mpbid 232 . . 3 ((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) → ∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁))
6261ralrimivva 3176 . 2 (𝜑 → ∀𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁))
6324, 62jca 511 1 (𝜑 → (𝑁 ∈ (𝑍𝐽(𝐹𝑌)) ∧ ∀𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  ∃!wreu 3345  cop 4583   class class class wbr 5095  cfv 6489  (class class class)co 7355  Basecbs 17127  Hom chom 17179  compcco 17180  Catccat 17578  Isociso 17661   Func cfunc 17769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-map 8761  df-ixp 8832  df-cat 17582  df-cid 17583  df-sect 17662  df-inv 17663  df-iso 17664  df-func 17773
This theorem is referenced by:  upeu4  49357
  Copyright terms: Public domain W3C validator