Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upeu2 Structured version   Visualization version   GIF version

Theorem upeu2 48956
Description: Generate new universal morphism through isomorphism from existing universal object. (Contributed by Zhi Wang, 20-Sep-2025.)
Hypotheses
Ref Expression
upcic.b 𝐵 = (Base‘𝐷)
upcic.c 𝐶 = (Base‘𝐸)
upcic.h 𝐻 = (Hom ‘𝐷)
upcic.j 𝐽 = (Hom ‘𝐸)
upcic.o 𝑂 = (comp‘𝐸)
upcic.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
upcic.x (𝜑𝑋𝐵)
upcic.y (𝜑𝑌𝐵)
upcic.z (𝜑𝑍𝐶)
upcic.m (𝜑𝑀 ∈ (𝑍𝐽(𝐹𝑋)))
upcic.1 (𝜑 → ∀𝑤𝐵𝑓 ∈ (𝑍𝐽(𝐹𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑤))𝑀))
upeu2.i 𝐼 = (Iso‘𝐷)
upeu2.k (𝜑𝐾 ∈ (𝑋𝐼𝑌))
upeu2.n (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
Assertion
Ref Expression
upeu2 (𝜑 → (𝑁 ∈ (𝑍𝐽(𝐹𝑌)) ∧ ∀𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁)))
Distinct variable groups:   𝐵,𝑔,𝑙   𝑤,𝐵   𝐷,𝑙   𝑓,𝐹,𝑘,𝑤   𝐹,𝑙   𝑓,𝐺,𝑘,𝑤   𝐺,𝑙   𝑓,𝐻,𝑘,𝑤   𝐻,𝑙   𝑓,𝐽,𝑤   𝐽,𝑙   𝐾,𝑙   𝑓,𝑀,𝑘,𝑤   𝑀,𝑙   𝑓,𝑂,𝑘,𝑤   𝑂,𝑙   𝑓,𝑋,𝑘,𝑤   𝑋,𝑙   𝑌,𝑙   𝑓,𝑍,𝑘,𝑤   𝑍,𝑙   𝑓,𝑔,𝑣,𝑘   𝜑,𝑔,𝑙,𝑣   𝑤,𝑣
Allowed substitution hints:   𝜑(𝑤,𝑓,𝑘)   𝐵(𝑣,𝑓,𝑘)   𝐶(𝑤,𝑣,𝑓,𝑔,𝑘,𝑙)   𝐷(𝑤,𝑣,𝑓,𝑔,𝑘)   𝐸(𝑤,𝑣,𝑓,𝑔,𝑘,𝑙)   𝐹(𝑣,𝑔)   𝐺(𝑣,𝑔)   𝐻(𝑣,𝑔)   𝐼(𝑤,𝑣,𝑓,𝑔,𝑘,𝑙)   𝐽(𝑣,𝑔,𝑘)   𝐾(𝑤,𝑣,𝑓,𝑔,𝑘)   𝑀(𝑣,𝑔)   𝑁(𝑤,𝑣,𝑓,𝑔,𝑘,𝑙)   𝑂(𝑣,𝑔)   𝑋(𝑣,𝑔)   𝑌(𝑤,𝑣,𝑓,𝑔,𝑘)   𝑍(𝑣,𝑔)

Proof of Theorem upeu2
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 upeu2.n . . 3 (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
2 upcic.c . . . 4 𝐶 = (Base‘𝐸)
3 upcic.j . . . 4 𝐽 = (Hom ‘𝐸)
4 upcic.o . . . 4 𝑂 = (comp‘𝐸)
5 upcic.f . . . . 5 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
65funcrcl3 48938 . . . 4 (𝜑𝐸 ∈ Cat)
7 upcic.z . . . 4 (𝜑𝑍𝐶)
8 upcic.b . . . . . 6 𝐵 = (Base‘𝐷)
98, 2, 5funcf1 17883 . . . . 5 (𝜑𝐹:𝐵𝐶)
10 upcic.x . . . . 5 (𝜑𝑋𝐵)
119, 10ffvelcdmd 7085 . . . 4 (𝜑 → (𝐹𝑋) ∈ 𝐶)
12 upcic.y . . . . 5 (𝜑𝑌𝐵)
139, 12ffvelcdmd 7085 . . . 4 (𝜑 → (𝐹𝑌) ∈ 𝐶)
14 upcic.m . . . 4 (𝜑𝑀 ∈ (𝑍𝐽(𝐹𝑋)))
15 upcic.h . . . . . 6 𝐻 = (Hom ‘𝐷)
168, 15, 3, 5, 10, 12funcf2 17885 . . . . 5 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹𝑋)𝐽(𝐹𝑌)))
17 upeu2.i . . . . . . 7 𝐼 = (Iso‘𝐷)
185funcrcl2 48937 . . . . . . 7 (𝜑𝐷 ∈ Cat)
198, 15, 17, 18, 10, 12isohom 17792 . . . . . 6 (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋𝐻𝑌))
20 upeu2.k . . . . . 6 (𝜑𝐾 ∈ (𝑋𝐼𝑌))
2119, 20sseldd 3964 . . . . 5 (𝜑𝐾 ∈ (𝑋𝐻𝑌))
2216, 21ffvelcdmd 7085 . . . 4 (𝜑 → ((𝑋𝐺𝑌)‘𝐾) ∈ ((𝐹𝑋)𝐽(𝐹𝑌)))
232, 3, 4, 6, 7, 11, 13, 14, 22catcocl 17700 . . 3 (𝜑 → (((𝑋𝐺𝑌)‘𝐾)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀) ∈ (𝑍𝐽(𝐹𝑌)))
241, 23eqeltrd 2833 . 2 (𝜑𝑁 ∈ (𝑍𝐽(𝐹𝑌)))
25 upcic.1 . . . . . 6 (𝜑 → ∀𝑤𝐵𝑓 ∈ (𝑍𝐽(𝐹𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑤))𝑀))
2625adantr 480 . . . . 5 ((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) → ∀𝑤𝐵𝑓 ∈ (𝑍𝐽(𝐹𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑤))𝑀))
27 simprl 770 . . . . 5 ((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) → 𝑣𝐵)
28 simprr 772 . . . . 5 ((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) → 𝑔 ∈ (𝑍𝐽(𝐹𝑣)))
2926, 27, 28upciclem1 48950 . . . 4 ((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) → ∃!𝑝 ∈ (𝑋𝐻𝑣)𝑔 = (((𝑋𝐺𝑣)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑣))𝑀))
30 eqid 2734 . . . . . 6 (comp‘𝐷) = (comp‘𝐷)
3118ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → 𝐷 ∈ Cat)
3210ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → 𝑋𝐵)
3312ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → 𝑌𝐵)
3427adantr 480 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → 𝑣𝐵)
3521ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → 𝐾 ∈ (𝑋𝐻𝑌))
36 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → 𝑙 ∈ (𝑌𝐻𝑣))
378, 15, 30, 31, 32, 33, 34, 35, 36catcocl 17700 . . . . 5 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾) ∈ (𝑋𝐻𝑣))
3818ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → 𝐷 ∈ Cat)
3910ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → 𝑋𝐵)
4012ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → 𝑌𝐵)
4127adantr 480 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → 𝑣𝐵)
4220ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → 𝐾 ∈ (𝑋𝐼𝑌))
43 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → 𝑝 ∈ (𝑋𝐻𝑣))
448, 15, 30, 17, 38, 39, 40, 41, 42, 43upeu2lem 48905 . . . . 5 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → ∃!𝑙 ∈ (𝑌𝐻𝑣)𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))
45 simprr 772 . . . . . . . . 9 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))
4645fveq2d 6890 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → ((𝑋𝐺𝑣)‘𝑝) = ((𝑋𝐺𝑣)‘(𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾)))
4746oveq1d 7428 . . . . . . 7 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → (((𝑋𝐺𝑣)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑣))𝑀) = (((𝑋𝐺𝑣)‘(𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑣))𝑀))
485ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝐹(𝐷 Func 𝐸)𝐺)
4910ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝑋𝐵)
5012ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝑌𝐵)
5127adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝑣𝐵)
527ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝑍𝐶)
5314ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝑀 ∈ (𝑍𝐽(𝐹𝑋)))
5421ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝐾 ∈ (𝑋𝐻𝑌))
55 simprl 770 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝑙 ∈ (𝑌𝐻𝑣))
561ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → 𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
578, 2, 15, 3, 4, 48, 49, 50, 51, 52, 53, 30, 54, 55, 56upciclem2 48951 . . . . . . 7 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → (((𝑋𝐺𝑣)‘(𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑣))𝑀) = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁))
5847, 57eqtrd 2769 . . . . . 6 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → (((𝑋𝐺𝑣)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑣))𝑀) = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁))
5958eqeq2d 2745 . . . . 5 (((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑣)𝐾))) → (𝑔 = (((𝑋𝐺𝑣)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑣))𝑀) ↔ 𝑔 = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁)))
6037, 44, 59reuxfr1dd 48699 . . . 4 ((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) → (∃!𝑝 ∈ (𝑋𝐻𝑣)𝑔 = (((𝑋𝐺𝑣)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑣))𝑀) ↔ ∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁)))
6129, 60mpbid 232 . . 3 ((𝜑 ∧ (𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣)))) → ∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁))
6261ralrimivva 3189 . 2 (𝜑 → ∀𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁))
6324, 62jca 511 1 (𝜑 → (𝑁 ∈ (𝑍𝐽(𝐹𝑌)) ∧ ∀𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3050  ∃!wreu 3361  cop 4612   class class class wbr 5123  cfv 6541  (class class class)co 7413  Basecbs 17230  Hom chom 17285  compcco 17286  Catccat 17679  Isociso 17762   Func cfunc 17871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-map 8850  df-ixp 8920  df-cat 17683  df-cid 17684  df-sect 17763  df-inv 17764  df-iso 17765  df-func 17875
This theorem is referenced by:  upeu4  48978
  Copyright terms: Public domain W3C validator