Step | Hyp | Ref
| Expression |
1 | | upeu2.n |
. . 3
⊢ (𝜑 → 𝑁 = (((𝑋𝐺𝑌)‘𝐾)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
2 | | upcic.c |
. . . 4
⊢ 𝐶 = (Base‘𝐸) |
3 | | upcic.j |
. . . 4
⊢ 𝐽 = (Hom ‘𝐸) |
4 | | upcic.o |
. . . 4
⊢ 𝑂 = (comp‘𝐸) |
5 | | upcic.f |
. . . . 5
⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
6 | 5 | funcrcl3 48774 |
. . . 4
⊢ (𝜑 → 𝐸 ∈ Cat) |
7 | | upcic.z |
. . . 4
⊢ (𝜑 → 𝑍 ∈ 𝐶) |
8 | | upcic.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐷) |
9 | 8, 2, 5 | funcf1 17951 |
. . . . 5
⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
10 | | upcic.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
11 | 9, 10 | ffvelcdmd 7123 |
. . . 4
⊢ (𝜑 → (𝐹‘𝑋) ∈ 𝐶) |
12 | | upcic.y |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
13 | 9, 12 | ffvelcdmd 7123 |
. . . 4
⊢ (𝜑 → (𝐹‘𝑌) ∈ 𝐶) |
14 | | upcic.m |
. . . 4
⊢ (𝜑 → 𝑀 ∈ (𝑍𝐽(𝐹‘𝑋))) |
15 | | upcic.h |
. . . . . 6
⊢ 𝐻 = (Hom ‘𝐷) |
16 | 8, 15, 3, 5, 10, 12 | funcf2 17953 |
. . . . 5
⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
17 | | upeu2.i |
. . . . . . 7
⊢ 𝐼 = (Iso‘𝐷) |
18 | 5 | funcrcl2 48773 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ Cat) |
19 | 8, 15, 17, 18, 10, 12 | isohom 17858 |
. . . . . 6
⊢ (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋𝐻𝑌)) |
20 | | upeu2.k |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ (𝑋𝐼𝑌)) |
21 | 19, 20 | sseldd 4010 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) |
22 | 16, 21 | ffvelcdmd 7123 |
. . . 4
⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝐾) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
23 | 2, 3, 4, 6, 7, 11,
13, 14, 22 | catcocl 17764 |
. . 3
⊢ (𝜑 → (((𝑋𝐺𝑌)‘𝐾)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀) ∈ (𝑍𝐽(𝐹‘𝑌))) |
24 | 1, 23 | eqeltrd 2844 |
. 2
⊢ (𝜑 → 𝑁 ∈ (𝑍𝐽(𝐹‘𝑌))) |
25 | | upcic.1 |
. . . . . 6
⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ∀𝑓 ∈ (𝑍𝐽(𝐹‘𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑤))𝑀)) |
26 | 25 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) → ∀𝑤 ∈ 𝐵 ∀𝑓 ∈ (𝑍𝐽(𝐹‘𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑤))𝑀)) |
27 | | simprl 770 |
. . . . 5
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) → 𝑣 ∈ 𝐵) |
28 | | simprr 772 |
. . . . 5
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) → 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣))) |
29 | 26, 27, 28 | upciclem1 48776 |
. . . 4
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) → ∃!𝑝 ∈ (𝑋𝐻𝑣)𝑔 = (((𝑋𝐺𝑣)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑣))𝑀)) |
30 | | eqid 2740 |
. . . . . 6
⊢
(comp‘𝐷) =
(comp‘𝐷) |
31 | 18 | ad2antrr 725 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → 𝐷 ∈ Cat) |
32 | 10 | ad2antrr 725 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → 𝑋 ∈ 𝐵) |
33 | 12 | ad2antrr 725 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → 𝑌 ∈ 𝐵) |
34 | 27 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → 𝑣 ∈ 𝐵) |
35 | 21 | ad2antrr 725 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → 𝐾 ∈ (𝑋𝐻𝑌)) |
36 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → 𝑙 ∈ (𝑌𝐻𝑣)) |
37 | 8, 15, 30, 31, 32, 33, 34, 35, 36 | catcocl 17764 |
. . . . 5
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) ∧ 𝑙 ∈ (𝑌𝐻𝑣)) → (𝑙(〈𝑋, 𝑌〉(comp‘𝐷)𝑣)𝐾) ∈ (𝑋𝐻𝑣)) |
38 | 18 | ad2antrr 725 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → 𝐷 ∈ Cat) |
39 | 10 | ad2antrr 725 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → 𝑋 ∈ 𝐵) |
40 | 12 | ad2antrr 725 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → 𝑌 ∈ 𝐵) |
41 | 27 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → 𝑣 ∈ 𝐵) |
42 | 20 | ad2antrr 725 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → 𝐾 ∈ (𝑋𝐼𝑌)) |
43 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → 𝑝 ∈ (𝑋𝐻𝑣)) |
44 | 8, 15, 30, 17, 38, 39, 40, 41, 42, 43 | upeu2lem 48772 |
. . . . 5
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) ∧ 𝑝 ∈ (𝑋𝐻𝑣)) → ∃!𝑙 ∈ (𝑌𝐻𝑣)𝑝 = (𝑙(〈𝑋, 𝑌〉(comp‘𝐷)𝑣)𝐾)) |
45 | | simprr 772 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(〈𝑋, 𝑌〉(comp‘𝐷)𝑣)𝐾))) → 𝑝 = (𝑙(〈𝑋, 𝑌〉(comp‘𝐷)𝑣)𝐾)) |
46 | 45 | fveq2d 6928 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(〈𝑋, 𝑌〉(comp‘𝐷)𝑣)𝐾))) → ((𝑋𝐺𝑣)‘𝑝) = ((𝑋𝐺𝑣)‘(𝑙(〈𝑋, 𝑌〉(comp‘𝐷)𝑣)𝐾))) |
47 | 46 | oveq1d 7467 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(〈𝑋, 𝑌〉(comp‘𝐷)𝑣)𝐾))) → (((𝑋𝐺𝑣)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑣))𝑀) = (((𝑋𝐺𝑣)‘(𝑙(〈𝑋, 𝑌〉(comp‘𝐷)𝑣)𝐾))(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑣))𝑀)) |
48 | 5 | ad2antrr 725 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(〈𝑋, 𝑌〉(comp‘𝐷)𝑣)𝐾))) → 𝐹(𝐷 Func 𝐸)𝐺) |
49 | 10 | ad2antrr 725 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(〈𝑋, 𝑌〉(comp‘𝐷)𝑣)𝐾))) → 𝑋 ∈ 𝐵) |
50 | 12 | ad2antrr 725 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(〈𝑋, 𝑌〉(comp‘𝐷)𝑣)𝐾))) → 𝑌 ∈ 𝐵) |
51 | 27 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(〈𝑋, 𝑌〉(comp‘𝐷)𝑣)𝐾))) → 𝑣 ∈ 𝐵) |
52 | 7 | ad2antrr 725 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(〈𝑋, 𝑌〉(comp‘𝐷)𝑣)𝐾))) → 𝑍 ∈ 𝐶) |
53 | 14 | ad2antrr 725 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(〈𝑋, 𝑌〉(comp‘𝐷)𝑣)𝐾))) → 𝑀 ∈ (𝑍𝐽(𝐹‘𝑋))) |
54 | 21 | ad2antrr 725 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(〈𝑋, 𝑌〉(comp‘𝐷)𝑣)𝐾))) → 𝐾 ∈ (𝑋𝐻𝑌)) |
55 | | simprl 770 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(〈𝑋, 𝑌〉(comp‘𝐷)𝑣)𝐾))) → 𝑙 ∈ (𝑌𝐻𝑣)) |
56 | 1 | ad2antrr 725 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(〈𝑋, 𝑌〉(comp‘𝐷)𝑣)𝐾))) → 𝑁 = (((𝑋𝐺𝑌)‘𝐾)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
57 | 8, 2, 15, 3, 4, 48, 49, 50, 51, 52, 53, 30, 54, 55, 56 | upciclem2 48777 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(〈𝑋, 𝑌〉(comp‘𝐷)𝑣)𝐾))) → (((𝑋𝐺𝑣)‘(𝑙(〈𝑋, 𝑌〉(comp‘𝐷)𝑣)𝐾))(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑣))𝑀) = (((𝑌𝐺𝑣)‘𝑙)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑣))𝑁)) |
58 | 47, 57 | eqtrd 2780 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(〈𝑋, 𝑌〉(comp‘𝐷)𝑣)𝐾))) → (((𝑋𝐺𝑣)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑣))𝑀) = (((𝑌𝐺𝑣)‘𝑙)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑣))𝑁)) |
59 | 58 | eqeq2d 2751 |
. . . . 5
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) ∧ (𝑙 ∈ (𝑌𝐻𝑣) ∧ 𝑝 = (𝑙(〈𝑋, 𝑌〉(comp‘𝐷)𝑣)𝐾))) → (𝑔 = (((𝑋𝐺𝑣)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑣))𝑀) ↔ 𝑔 = (((𝑌𝐺𝑣)‘𝑙)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑣))𝑁))) |
60 | 37, 44, 59 | reuxfr1dd 48619 |
. . . 4
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) → (∃!𝑝 ∈ (𝑋𝐻𝑣)𝑔 = (((𝑋𝐺𝑣)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑣))𝑀) ↔ ∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑣))𝑁))) |
61 | 29, 60 | mpbid 232 |
. . 3
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑔 ∈ (𝑍𝐽(𝐹‘𝑣)))) → ∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑣))𝑁)) |
62 | 61 | ralrimivva 3208 |
. 2
⊢ (𝜑 → ∀𝑣 ∈ 𝐵 ∀𝑔 ∈ (𝑍𝐽(𝐹‘𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑣))𝑁)) |
63 | 24, 62 | jca 511 |
1
⊢ (𝜑 → (𝑁 ∈ (𝑍𝐽(𝐹‘𝑌)) ∧ ∀𝑣 ∈ 𝐵 ∀𝑔 ∈ (𝑍𝐽(𝐹‘𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑣))𝑁))) |