Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumlub Structured version   Visualization version   GIF version

Theorem esumlub 32324
Description: The extended sum is the lowest upper bound for the partial sums. (Contributed by Thierry Arnoux, 19-Oct-2017.) (Proof shortened by AV, 12-Dec-2019.)
Hypotheses
Ref Expression
esumlub.f 𝑘𝜑
esumlub.0 (𝜑𝐴𝑉)
esumlub.1 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
esumlub.2 (𝜑𝑋 ∈ ℝ*)
esumlub.3 (𝜑𝑋 < Σ*𝑘𝐴𝐵)
Assertion
Ref Expression
esumlub (𝜑 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑋 < Σ*𝑘𝑎𝐵)
Distinct variable groups:   𝑘,𝑎,𝐴   𝐵,𝑎   𝑋,𝑎   𝜑,𝑎
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝑉(𝑘,𝑎)   𝑋(𝑘)

Proof of Theorem esumlub
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 esumlub.3 . . . 4 (𝜑𝑋 < Σ*𝑘𝐴𝐵)
2 esumlub.f . . . . . . 7 𝑘𝜑
3 nfcv 2905 . . . . . . 7 𝑘𝐴
4 esumlub.0 . . . . . . 7 (𝜑𝐴𝑉)
5 esumlub.1 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
6 eqidd 2738 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
72, 3, 4, 5, 6esumval 32310 . . . . . 6 (𝜑 → Σ*𝑘𝐴𝐵 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))), ℝ*, < ))
87breq2d 5109 . . . . 5 (𝜑 → (𝑋 < Σ*𝑘𝐴𝐵𝑋 < sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))), ℝ*, < )))
9 iccssxr 13268 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
10 xrge0base 31579 . . . . . . . . . 10 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
11 xrge0cmn 20746 . . . . . . . . . . 11 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
1211a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
13 inss2 4181 . . . . . . . . . . 11 (𝒫 𝐴 ∩ Fin) ⊆ Fin
14 simpr 486 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ (𝒫 𝐴 ∩ Fin))
1513, 14sselid 3934 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ Fin)
16 nfv 1917 . . . . . . . . . . . 12 𝑘 𝑥 ∈ (𝒫 𝐴 ∩ Fin)
172, 16nfan 1902 . . . . . . . . . . 11 𝑘(𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin))
18 simpll 765 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝜑)
19 inss1 4180 . . . . . . . . . . . . . . . . 17 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
2019sseli 3932 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴)
2120ad2antlr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑥 ∈ 𝒫 𝐴)
2221elpwid 4561 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑥𝐴)
23 simpr 486 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝑥)
2422, 23sseldd 3937 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝐴)
2518, 24, 5syl2anc 585 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝐵 ∈ (0[,]+∞))
2625ex 414 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑘𝑥𝐵 ∈ (0[,]+∞)))
2717, 26ralrimi 3237 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑘𝑥 𝐵 ∈ (0[,]+∞))
2810, 12, 15, 27gsummptcl 19663 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ (0[,]+∞))
299, 28sselid 3934 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ ℝ*)
3029ralrimiva 3140 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ ℝ*)
31 eqid 2737 . . . . . . . 8 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
3231rnmptss 7057 . . . . . . 7 (∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ ℝ* → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ⊆ ℝ*)
3330, 32syl 17 . . . . . 6 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ⊆ ℝ*)
34 esumlub.2 . . . . . 6 (𝜑𝑋 ∈ ℝ*)
35 supxrlub 13165 . . . . . 6 ((ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ⊆ ℝ*𝑋 ∈ ℝ*) → (𝑋 < sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))), ℝ*, < ) ↔ ∃𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))𝑋 < 𝑦))
3633, 34, 35syl2anc 585 . . . . 5 (𝜑 → (𝑋 < sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))), ℝ*, < ) ↔ ∃𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))𝑋 < 𝑦))
378, 36bitrd 279 . . . 4 (𝜑 → (𝑋 < Σ*𝑘𝐴𝐵 ↔ ∃𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))𝑋 < 𝑦))
381, 37mpbid 231 . . 3 (𝜑 → ∃𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))𝑋 < 𝑦)
39 ovex 7375 . . . . 5 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ V
4039a1i 11 . . . 4 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ V)
41 mpteq1 5190 . . . . . . . 8 (𝑥 = 𝑎 → (𝑘𝑥𝐵) = (𝑘𝑎𝐵))
4241oveq2d 7358 . . . . . . 7 (𝑥 = 𝑎 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
4342cbvmptv 5210 . . . . . 6 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) = (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
4443, 39elrnmpti 5906 . . . . 5 (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ↔ ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
4544a1i 11 . . . 4 (𝜑 → (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ↔ ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵))))
46 simpr 486 . . . . 5 ((𝜑𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵))) → 𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
4746breq2d 5109 . . . 4 ((𝜑𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵))) → (𝑋 < 𝑦𝑋 < ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵))))
4840, 45, 47rexxfr2d 5359 . . 3 (𝜑 → (∃𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))𝑋 < 𝑦 ↔ ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑋 < ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵))))
4938, 48mpbid 231 . 2 (𝜑 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑋 < ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
50 nfv 1917 . . . . . . 7 𝑘 𝑎 ∈ (𝒫 𝐴 ∩ Fin)
512, 50nfan 1902 . . . . . 6 𝑘(𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin))
52 simpr 486 . . . . . . 7 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ∈ (𝒫 𝐴 ∩ Fin))
5313, 52sselid 3934 . . . . . 6 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ∈ Fin)
54 simpll 765 . . . . . . 7 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝜑)
5519sseli 3932 . . . . . . . . . 10 (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → 𝑎 ∈ 𝒫 𝐴)
5655ad2antlr 725 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑎 ∈ 𝒫 𝐴)
5756elpwid 4561 . . . . . . . 8 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑎𝐴)
58 simpr 486 . . . . . . . 8 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑘𝑎)
5957, 58sseldd 3937 . . . . . . 7 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑘𝐴)
6054, 59, 5syl2anc 585 . . . . . 6 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝐵 ∈ (0[,]+∞))
6151, 53, 60gsumesum 32323 . . . . 5 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) = Σ*𝑘𝑎𝐵)
6261breq2d 5109 . . . 4 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑋 < ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ↔ 𝑋 < Σ*𝑘𝑎𝐵))
6362biimpd 228 . . 3 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑋 < ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) → 𝑋 < Σ*𝑘𝑎𝐵))
6463reximdva 3162 . 2 (𝜑 → (∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑋 < ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑋 < Σ*𝑘𝑎𝐵))
6549, 64mpd 15 1 (𝜑 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑋 < Σ*𝑘𝑎𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1541  wnf 1785  wcel 2106  wral 3062  wrex 3071  Vcvv 3442  cin 3901  wss 3902  𝒫 cpw 4552   class class class wbr 5097  cmpt 5180  ran crn 5626  (class class class)co 7342  Fincfn 8809  supcsup 9302  0cc0 10977  +∞cpnf 11112  *cxr 11114   < clt 11115  [,]cicc 13188  s cress 17039   Σg cgsu 17249  *𝑠cxrs 17309  CMndccmn 19482  Σ*cesum 32291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054  ax-pre-sup 11055
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-tp 4583  df-op 4585  df-uni 4858  df-int 4900  df-iun 4948  df-iin 4949  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-se 5581  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-isom 6493  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-of 7600  df-om 7786  df-1st 7904  df-2nd 7905  df-supp 8053  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-1o 8372  df-er 8574  df-map 8693  df-en 8810  df-dom 8811  df-sdom 8812  df-fin 8813  df-fsupp 9232  df-fi 9273  df-sup 9304  df-inf 9305  df-oi 9372  df-card 9801  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-div 11739  df-nn 12080  df-2 12142  df-3 12143  df-4 12144  df-5 12145  df-6 12146  df-7 12147  df-8 12148  df-9 12149  df-n0 12340  df-z 12426  df-dec 12544  df-uz 12689  df-q 12795  df-xadd 12955  df-ioo 13189  df-ioc 13190  df-ico 13191  df-icc 13192  df-fz 13346  df-fzo 13489  df-seq 13828  df-hash 14151  df-struct 16946  df-sets 16963  df-slot 16981  df-ndx 16993  df-base 17011  df-ress 17040  df-plusg 17073  df-mulr 17074  df-tset 17079  df-ple 17080  df-ds 17082  df-rest 17231  df-topn 17232  df-0g 17250  df-gsum 17251  df-topgen 17252  df-ordt 17310  df-xrs 17311  df-mre 17393  df-mrc 17394  df-acs 17396  df-ps 18382  df-tsr 18383  df-mgm 18424  df-sgrp 18473  df-mnd 18484  df-submnd 18529  df-cntz 19020  df-cmn 19484  df-fbas 20700  df-fg 20701  df-top 22149  df-topon 22166  df-topsp 22188  df-bases 22202  df-ntr 22277  df-nei 22355  df-cn 22484  df-haus 22572  df-fil 23103  df-fm 23195  df-flim 23196  df-flf 23197  df-tsms 23384  df-esum 32292
This theorem is referenced by:  esumfsup  32334  esum2d  32357
  Copyright terms: Public domain W3C validator