Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumlub Structured version   Visualization version   GIF version

Theorem esumlub 31441
 Description: The extended sum is the lowest upper bound for the partial sums. (Contributed by Thierry Arnoux, 19-Oct-2017.) (Proof shortened by AV, 12-Dec-2019.)
Hypotheses
Ref Expression
esumlub.f 𝑘𝜑
esumlub.0 (𝜑𝐴𝑉)
esumlub.1 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
esumlub.2 (𝜑𝑋 ∈ ℝ*)
esumlub.3 (𝜑𝑋 < Σ*𝑘𝐴𝐵)
Assertion
Ref Expression
esumlub (𝜑 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑋 < Σ*𝑘𝑎𝐵)
Distinct variable groups:   𝑘,𝑎,𝐴   𝐵,𝑎   𝑋,𝑎   𝜑,𝑎
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝑉(𝑘,𝑎)   𝑋(𝑘)

Proof of Theorem esumlub
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 esumlub.3 . . . 4 (𝜑𝑋 < Σ*𝑘𝐴𝐵)
2 esumlub.f . . . . . . 7 𝑘𝜑
3 nfcv 2955 . . . . . . 7 𝑘𝐴
4 esumlub.0 . . . . . . 7 (𝜑𝐴𝑉)
5 esumlub.1 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
6 eqidd 2799 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
72, 3, 4, 5, 6esumval 31427 . . . . . 6 (𝜑 → Σ*𝑘𝐴𝐵 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))), ℝ*, < ))
87breq2d 5042 . . . . 5 (𝜑 → (𝑋 < Σ*𝑘𝐴𝐵𝑋 < sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))), ℝ*, < )))
9 iccssxr 12810 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
10 xrge0base 30726 . . . . . . . . . 10 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
11 xrge0cmn 20136 . . . . . . . . . . 11 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
1211a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
13 inss2 4156 . . . . . . . . . . 11 (𝒫 𝐴 ∩ Fin) ⊆ Fin
14 simpr 488 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ (𝒫 𝐴 ∩ Fin))
1513, 14sseldi 3913 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ Fin)
16 nfv 1915 . . . . . . . . . . . 12 𝑘 𝑥 ∈ (𝒫 𝐴 ∩ Fin)
172, 16nfan 1900 . . . . . . . . . . 11 𝑘(𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin))
18 simpll 766 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝜑)
19 inss1 4155 . . . . . . . . . . . . . . . . 17 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
2019sseli 3911 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴)
2120ad2antlr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑥 ∈ 𝒫 𝐴)
2221elpwid 4508 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑥𝐴)
23 simpr 488 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝑥)
2422, 23sseldd 3916 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝐴)
2518, 24, 5syl2anc 587 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝐵 ∈ (0[,]+∞))
2625ex 416 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑘𝑥𝐵 ∈ (0[,]+∞)))
2717, 26ralrimi 3180 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑘𝑥 𝐵 ∈ (0[,]+∞))
2810, 12, 15, 27gsummptcl 19083 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ (0[,]+∞))
299, 28sseldi 3913 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ ℝ*)
3029ralrimiva 3149 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ ℝ*)
31 eqid 2798 . . . . . . . 8 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
3231rnmptss 6863 . . . . . . 7 (∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ ℝ* → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ⊆ ℝ*)
3330, 32syl 17 . . . . . 6 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ⊆ ℝ*)
34 esumlub.2 . . . . . 6 (𝜑𝑋 ∈ ℝ*)
35 supxrlub 12708 . . . . . 6 ((ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ⊆ ℝ*𝑋 ∈ ℝ*) → (𝑋 < sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))), ℝ*, < ) ↔ ∃𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))𝑋 < 𝑦))
3633, 34, 35syl2anc 587 . . . . 5 (𝜑 → (𝑋 < sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))), ℝ*, < ) ↔ ∃𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))𝑋 < 𝑦))
378, 36bitrd 282 . . . 4 (𝜑 → (𝑋 < Σ*𝑘𝐴𝐵 ↔ ∃𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))𝑋 < 𝑦))
381, 37mpbid 235 . . 3 (𝜑 → ∃𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))𝑋 < 𝑦)
39 ovex 7168 . . . . 5 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ V
4039a1i 11 . . . 4 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ V)
41 mpteq1 5118 . . . . . . . 8 (𝑥 = 𝑎 → (𝑘𝑥𝐵) = (𝑘𝑎𝐵))
4241oveq2d 7151 . . . . . . 7 (𝑥 = 𝑎 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
4342cbvmptv 5133 . . . . . 6 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) = (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
4443, 39elrnmpti 5796 . . . . 5 (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ↔ ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
4544a1i 11 . . . 4 (𝜑 → (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ↔ ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵))))
46 simpr 488 . . . . 5 ((𝜑𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵))) → 𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
4746breq2d 5042 . . . 4 ((𝜑𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵))) → (𝑋 < 𝑦𝑋 < ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵))))
4840, 45, 47rexxfr2d 5277 . . 3 (𝜑 → (∃𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))𝑋 < 𝑦 ↔ ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑋 < ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵))))
4938, 48mpbid 235 . 2 (𝜑 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑋 < ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
50 nfv 1915 . . . . . . 7 𝑘 𝑎 ∈ (𝒫 𝐴 ∩ Fin)
512, 50nfan 1900 . . . . . 6 𝑘(𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin))
52 simpr 488 . . . . . . 7 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ∈ (𝒫 𝐴 ∩ Fin))
5313, 52sseldi 3913 . . . . . 6 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ∈ Fin)
54 simpll 766 . . . . . . 7 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝜑)
5519sseli 3911 . . . . . . . . . 10 (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → 𝑎 ∈ 𝒫 𝐴)
5655ad2antlr 726 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑎 ∈ 𝒫 𝐴)
5756elpwid 4508 . . . . . . . 8 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑎𝐴)
58 simpr 488 . . . . . . . 8 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑘𝑎)
5957, 58sseldd 3916 . . . . . . 7 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑘𝐴)
6054, 59, 5syl2anc 587 . . . . . 6 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝐵 ∈ (0[,]+∞))
6151, 53, 60gsumesum 31440 . . . . 5 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) = Σ*𝑘𝑎𝐵)
6261breq2d 5042 . . . 4 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑋 < ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ↔ 𝑋 < Σ*𝑘𝑎𝐵))
6362biimpd 232 . . 3 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑋 < ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) → 𝑋 < Σ*𝑘𝑎𝐵))
6463reximdva 3233 . 2 (𝜑 → (∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑋 < ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑋 < Σ*𝑘𝑎𝐵))
6549, 64mpd 15 1 (𝜑 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑋 < Σ*𝑘𝑎𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538  Ⅎwnf 1785   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107  Vcvv 3441   ∩ cin 3880   ⊆ wss 3881  𝒫 cpw 4497   class class class wbr 5030   ↦ cmpt 5110  ran crn 5520  (class class class)co 7135  Fincfn 8494  supcsup 8890  0cc0 10528  +∞cpnf 10663  ℝ*cxr 10665   < clt 10666  [,]cicc 12731   ↾s cress 16478   Σg cgsu 16708  ℝ*𝑠cxrs 16767  CMndccmn 18901  Σ*cesum 31408 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605  ax-pre-sup 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7390  df-om 7563  df-1st 7673  df-2nd 7674  df-supp 7816  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-oadd 8091  df-er 8274  df-map 8393  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-fsupp 8820  df-fi 8861  df-sup 8892  df-inf 8893  df-oi 8960  df-card 9354  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-div 11289  df-nn 11628  df-2 11690  df-3 11691  df-4 11692  df-5 11693  df-6 11694  df-7 11695  df-8 11696  df-9 11697  df-n0 11888  df-z 11972  df-dec 12089  df-uz 12234  df-q 12339  df-xadd 12498  df-ioo 12732  df-ioc 12733  df-ico 12734  df-icc 12735  df-fz 12888  df-fzo 13031  df-seq 13367  df-hash 13689  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-tset 16578  df-ple 16579  df-ds 16581  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-ordt 16768  df-xrs 16769  df-mre 16851  df-mrc 16852  df-acs 16854  df-ps 17804  df-tsr 17805  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-cntz 18442  df-cmn 18903  df-fbas 20091  df-fg 20092  df-top 21506  df-topon 21523  df-topsp 21545  df-bases 21558  df-ntr 21632  df-nei 21710  df-cn 21839  df-haus 21927  df-fil 22458  df-fm 22550  df-flim 22551  df-flf 22552  df-tsms 22739  df-esum 31409 This theorem is referenced by:  esumfsup  31451  esum2d  31474
 Copyright terms: Public domain W3C validator