Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumlub Structured version   Visualization version   GIF version

Theorem esumlub 34041
Description: The extended sum is the lowest upper bound for the partial sums. (Contributed by Thierry Arnoux, 19-Oct-2017.) (Proof shortened by AV, 12-Dec-2019.)
Hypotheses
Ref Expression
esumlub.f 𝑘𝜑
esumlub.0 (𝜑𝐴𝑉)
esumlub.1 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
esumlub.2 (𝜑𝑋 ∈ ℝ*)
esumlub.3 (𝜑𝑋 < Σ*𝑘𝐴𝐵)
Assertion
Ref Expression
esumlub (𝜑 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑋 < Σ*𝑘𝑎𝐵)
Distinct variable groups:   𝑘,𝑎,𝐴   𝐵,𝑎   𝑋,𝑎   𝜑,𝑎
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝑉(𝑘,𝑎)   𝑋(𝑘)

Proof of Theorem esumlub
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 esumlub.3 . . . 4 (𝜑𝑋 < Σ*𝑘𝐴𝐵)
2 esumlub.f . . . . . . 7 𝑘𝜑
3 nfcv 2903 . . . . . . 7 𝑘𝐴
4 esumlub.0 . . . . . . 7 (𝜑𝐴𝑉)
5 esumlub.1 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
6 eqidd 2736 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
72, 3, 4, 5, 6esumval 34027 . . . . . 6 (𝜑 → Σ*𝑘𝐴𝐵 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))), ℝ*, < ))
87breq2d 5160 . . . . 5 (𝜑 → (𝑋 < Σ*𝑘𝐴𝐵𝑋 < sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))), ℝ*, < )))
9 iccssxr 13467 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
10 xrge0base 32999 . . . . . . . . . 10 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
11 xrge0cmn 21444 . . . . . . . . . . 11 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
1211a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
13 inss2 4246 . . . . . . . . . . 11 (𝒫 𝐴 ∩ Fin) ⊆ Fin
14 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ (𝒫 𝐴 ∩ Fin))
1513, 14sselid 3993 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ Fin)
16 nfv 1912 . . . . . . . . . . . 12 𝑘 𝑥 ∈ (𝒫 𝐴 ∩ Fin)
172, 16nfan 1897 . . . . . . . . . . 11 𝑘(𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin))
18 simpll 767 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝜑)
19 inss1 4245 . . . . . . . . . . . . . . . . 17 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
2019sseli 3991 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴)
2120ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑥 ∈ 𝒫 𝐴)
2221elpwid 4614 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑥𝐴)
23 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝑥)
2422, 23sseldd 3996 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝐴)
2518, 24, 5syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝐵 ∈ (0[,]+∞))
2625ex 412 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑘𝑥𝐵 ∈ (0[,]+∞)))
2717, 26ralrimi 3255 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑘𝑥 𝐵 ∈ (0[,]+∞))
2810, 12, 15, 27gsummptcl 20000 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ (0[,]+∞))
299, 28sselid 3993 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ ℝ*)
3029ralrimiva 3144 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ ℝ*)
31 eqid 2735 . . . . . . . 8 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
3231rnmptss 7143 . . . . . . 7 (∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ ℝ* → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ⊆ ℝ*)
3330, 32syl 17 . . . . . 6 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ⊆ ℝ*)
34 esumlub.2 . . . . . 6 (𝜑𝑋 ∈ ℝ*)
35 supxrlub 13364 . . . . . 6 ((ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ⊆ ℝ*𝑋 ∈ ℝ*) → (𝑋 < sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))), ℝ*, < ) ↔ ∃𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))𝑋 < 𝑦))
3633, 34, 35syl2anc 584 . . . . 5 (𝜑 → (𝑋 < sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))), ℝ*, < ) ↔ ∃𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))𝑋 < 𝑦))
378, 36bitrd 279 . . . 4 (𝜑 → (𝑋 < Σ*𝑘𝐴𝐵 ↔ ∃𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))𝑋 < 𝑦))
381, 37mpbid 232 . . 3 (𝜑 → ∃𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))𝑋 < 𝑦)
39 ovex 7464 . . . . 5 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ V
4039a1i 11 . . . 4 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ V)
41 mpteq1 5241 . . . . . . . 8 (𝑥 = 𝑎 → (𝑘𝑥𝐵) = (𝑘𝑎𝐵))
4241oveq2d 7447 . . . . . . 7 (𝑥 = 𝑎 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
4342cbvmptv 5261 . . . . . 6 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) = (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
4443, 39elrnmpti 5976 . . . . 5 (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ↔ ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
4544a1i 11 . . . 4 (𝜑 → (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ↔ ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵))))
46 simpr 484 . . . . 5 ((𝜑𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵))) → 𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
4746breq2d 5160 . . . 4 ((𝜑𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵))) → (𝑋 < 𝑦𝑋 < ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵))))
4840, 45, 47rexxfr2d 5417 . . 3 (𝜑 → (∃𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))𝑋 < 𝑦 ↔ ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑋 < ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵))))
4938, 48mpbid 232 . 2 (𝜑 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑋 < ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
50 nfv 1912 . . . . . . 7 𝑘 𝑎 ∈ (𝒫 𝐴 ∩ Fin)
512, 50nfan 1897 . . . . . 6 𝑘(𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin))
52 simpr 484 . . . . . . 7 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ∈ (𝒫 𝐴 ∩ Fin))
5313, 52sselid 3993 . . . . . 6 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ∈ Fin)
54 simpll 767 . . . . . . 7 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝜑)
5519sseli 3991 . . . . . . . . . 10 (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → 𝑎 ∈ 𝒫 𝐴)
5655ad2antlr 727 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑎 ∈ 𝒫 𝐴)
5756elpwid 4614 . . . . . . . 8 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑎𝐴)
58 simpr 484 . . . . . . . 8 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑘𝑎)
5957, 58sseldd 3996 . . . . . . 7 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑘𝐴)
6054, 59, 5syl2anc 584 . . . . . 6 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝐵 ∈ (0[,]+∞))
6151, 53, 60gsumesum 34040 . . . . 5 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) = Σ*𝑘𝑎𝐵)
6261breq2d 5160 . . . 4 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑋 < ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ↔ 𝑋 < Σ*𝑘𝑎𝐵))
6362biimpd 229 . . 3 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑋 < ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) → 𝑋 < Σ*𝑘𝑎𝐵))
6463reximdva 3166 . 2 (𝜑 → (∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑋 < ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑋 < Σ*𝑘𝑎𝐵))
6549, 64mpd 15 1 (𝜑 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑋 < Σ*𝑘𝑎𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wnf 1780  wcel 2106  wral 3059  wrex 3068  Vcvv 3478  cin 3962  wss 3963  𝒫 cpw 4605   class class class wbr 5148  cmpt 5231  ran crn 5690  (class class class)co 7431  Fincfn 8984  supcsup 9478  0cc0 11153  +∞cpnf 11290  *cxr 11292   < clt 11293  [,]cicc 13387  s cress 17274   Σg cgsu 17487  *𝑠cxrs 17547  CMndccmn 19813  Σ*cesum 34008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-xadd 13153  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-tset 17317  df-ple 17318  df-ds 17320  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-ordt 17548  df-xrs 17549  df-mre 17631  df-mrc 17632  df-acs 17634  df-ps 18624  df-tsr 18625  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-cntz 19348  df-cmn 19815  df-fbas 21379  df-fg 21380  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-ntr 23044  df-nei 23122  df-cn 23251  df-haus 23339  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-tsms 24151  df-esum 34009
This theorem is referenced by:  esumfsup  34051  esum2d  34074
  Copyright terms: Public domain W3C validator