Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumlub Structured version   Visualization version   GIF version

Theorem esumlub 34023
Description: The extended sum is the lowest upper bound for the partial sums. (Contributed by Thierry Arnoux, 19-Oct-2017.) (Proof shortened by AV, 12-Dec-2019.)
Hypotheses
Ref Expression
esumlub.f 𝑘𝜑
esumlub.0 (𝜑𝐴𝑉)
esumlub.1 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
esumlub.2 (𝜑𝑋 ∈ ℝ*)
esumlub.3 (𝜑𝑋 < Σ*𝑘𝐴𝐵)
Assertion
Ref Expression
esumlub (𝜑 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑋 < Σ*𝑘𝑎𝐵)
Distinct variable groups:   𝑘,𝑎,𝐴   𝐵,𝑎   𝑋,𝑎   𝜑,𝑎
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝑉(𝑘,𝑎)   𝑋(𝑘)

Proof of Theorem esumlub
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 esumlub.3 . . . 4 (𝜑𝑋 < Σ*𝑘𝐴𝐵)
2 esumlub.f . . . . . . 7 𝑘𝜑
3 nfcv 2891 . . . . . . 7 𝑘𝐴
4 esumlub.0 . . . . . . 7 (𝜑𝐴𝑉)
5 esumlub.1 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
6 eqidd 2730 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
72, 3, 4, 5, 6esumval 34009 . . . . . 6 (𝜑 → Σ*𝑘𝐴𝐵 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))), ℝ*, < ))
87breq2d 5114 . . . . 5 (𝜑 → (𝑋 < Σ*𝑘𝐴𝐵𝑋 < sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))), ℝ*, < )))
9 iccssxr 13367 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
10 xrge0base 32925 . . . . . . . . . 10 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
11 xrge0cmn 21301 . . . . . . . . . . 11 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
1211a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
13 inss2 4197 . . . . . . . . . . 11 (𝒫 𝐴 ∩ Fin) ⊆ Fin
14 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ (𝒫 𝐴 ∩ Fin))
1513, 14sselid 3941 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ Fin)
16 nfv 1914 . . . . . . . . . . . 12 𝑘 𝑥 ∈ (𝒫 𝐴 ∩ Fin)
172, 16nfan 1899 . . . . . . . . . . 11 𝑘(𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin))
18 simpll 766 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝜑)
19 inss1 4196 . . . . . . . . . . . . . . . . 17 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
2019sseli 3939 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴)
2120ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑥 ∈ 𝒫 𝐴)
2221elpwid 4568 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑥𝐴)
23 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝑥)
2422, 23sseldd 3944 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝐴)
2518, 24, 5syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝐵 ∈ (0[,]+∞))
2625ex 412 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑘𝑥𝐵 ∈ (0[,]+∞)))
2717, 26ralrimi 3233 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑘𝑥 𝐵 ∈ (0[,]+∞))
2810, 12, 15, 27gsummptcl 19873 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ (0[,]+∞))
299, 28sselid 3941 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ ℝ*)
3029ralrimiva 3125 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ ℝ*)
31 eqid 2729 . . . . . . . 8 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
3231rnmptss 7077 . . . . . . 7 (∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ ℝ* → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ⊆ ℝ*)
3330, 32syl 17 . . . . . 6 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ⊆ ℝ*)
34 esumlub.2 . . . . . 6 (𝜑𝑋 ∈ ℝ*)
35 supxrlub 13261 . . . . . 6 ((ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ⊆ ℝ*𝑋 ∈ ℝ*) → (𝑋 < sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))), ℝ*, < ) ↔ ∃𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))𝑋 < 𝑦))
3633, 34, 35syl2anc 584 . . . . 5 (𝜑 → (𝑋 < sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))), ℝ*, < ) ↔ ∃𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))𝑋 < 𝑦))
378, 36bitrd 279 . . . 4 (𝜑 → (𝑋 < Σ*𝑘𝐴𝐵 ↔ ∃𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))𝑋 < 𝑦))
381, 37mpbid 232 . . 3 (𝜑 → ∃𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))𝑋 < 𝑦)
39 ovex 7402 . . . . 5 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ V
4039a1i 11 . . . 4 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ V)
41 mpteq1 5191 . . . . . . . 8 (𝑥 = 𝑎 → (𝑘𝑥𝐵) = (𝑘𝑎𝐵))
4241oveq2d 7385 . . . . . . 7 (𝑥 = 𝑎 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
4342cbvmptv 5206 . . . . . 6 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) = (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
4443, 39elrnmpti 5915 . . . . 5 (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ↔ ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
4544a1i 11 . . . 4 (𝜑 → (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ↔ ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵))))
46 simpr 484 . . . . 5 ((𝜑𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵))) → 𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
4746breq2d 5114 . . . 4 ((𝜑𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵))) → (𝑋 < 𝑦𝑋 < ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵))))
4840, 45, 47rexxfr2d 5361 . . 3 (𝜑 → (∃𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))𝑋 < 𝑦 ↔ ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑋 < ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵))))
4938, 48mpbid 232 . 2 (𝜑 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑋 < ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
50 nfv 1914 . . . . . . 7 𝑘 𝑎 ∈ (𝒫 𝐴 ∩ Fin)
512, 50nfan 1899 . . . . . 6 𝑘(𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin))
52 simpr 484 . . . . . . 7 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ∈ (𝒫 𝐴 ∩ Fin))
5313, 52sselid 3941 . . . . . 6 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ∈ Fin)
54 simpll 766 . . . . . . 7 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝜑)
5519sseli 3939 . . . . . . . . . 10 (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → 𝑎 ∈ 𝒫 𝐴)
5655ad2antlr 727 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑎 ∈ 𝒫 𝐴)
5756elpwid 4568 . . . . . . . 8 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑎𝐴)
58 simpr 484 . . . . . . . 8 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑘𝑎)
5957, 58sseldd 3944 . . . . . . 7 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑘𝐴)
6054, 59, 5syl2anc 584 . . . . . 6 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝐵 ∈ (0[,]+∞))
6151, 53, 60gsumesum 34022 . . . . 5 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) = Σ*𝑘𝑎𝐵)
6261breq2d 5114 . . . 4 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑋 < ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ↔ 𝑋 < Σ*𝑘𝑎𝐵))
6362biimpd 229 . . 3 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑋 < ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) → 𝑋 < Σ*𝑘𝑎𝐵))
6463reximdva 3146 . 2 (𝜑 → (∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑋 < ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑋 < Σ*𝑘𝑎𝐵))
6549, 64mpd 15 1 (𝜑 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑋 < Σ*𝑘𝑎𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  wral 3044  wrex 3053  Vcvv 3444  cin 3910  wss 3911  𝒫 cpw 4559   class class class wbr 5102  cmpt 5183  ran crn 5632  (class class class)co 7369  Fincfn 8895  supcsup 9367  0cc0 11044  +∞cpnf 11181  *cxr 11183   < clt 11184  [,]cicc 13285  s cress 17176   Σg cgsu 17379  *𝑠cxrs 17439  CMndccmn 19686  Σ*cesum 33990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-xadd 13049  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-tset 17215  df-ple 17216  df-ds 17218  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-ordt 17440  df-xrs 17441  df-mre 17523  df-mrc 17524  df-acs 17526  df-ps 18501  df-tsr 18502  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-cntz 19225  df-cmn 19688  df-fbas 21237  df-fg 21238  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-ntr 22883  df-nei 22961  df-cn 23090  df-haus 23178  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-tsms 23990  df-esum 33991
This theorem is referenced by:  esumfsup  34033  esum2d  34056
  Copyright terms: Public domain W3C validator