Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumlub Structured version   Visualization version   GIF version

Theorem esumlub 33587
Description: The extended sum is the lowest upper bound for the partial sums. (Contributed by Thierry Arnoux, 19-Oct-2017.) (Proof shortened by AV, 12-Dec-2019.)
Hypotheses
Ref Expression
esumlub.f 𝑘𝜑
esumlub.0 (𝜑𝐴𝑉)
esumlub.1 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
esumlub.2 (𝜑𝑋 ∈ ℝ*)
esumlub.3 (𝜑𝑋 < Σ*𝑘𝐴𝐵)
Assertion
Ref Expression
esumlub (𝜑 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑋 < Σ*𝑘𝑎𝐵)
Distinct variable groups:   𝑘,𝑎,𝐴   𝐵,𝑎   𝑋,𝑎   𝜑,𝑎
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝑉(𝑘,𝑎)   𝑋(𝑘)

Proof of Theorem esumlub
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 esumlub.3 . . . 4 (𝜑𝑋 < Σ*𝑘𝐴𝐵)
2 esumlub.f . . . . . . 7 𝑘𝜑
3 nfcv 2897 . . . . . . 7 𝑘𝐴
4 esumlub.0 . . . . . . 7 (𝜑𝐴𝑉)
5 esumlub.1 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
6 eqidd 2727 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
72, 3, 4, 5, 6esumval 33573 . . . . . 6 (𝜑 → Σ*𝑘𝐴𝐵 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))), ℝ*, < ))
87breq2d 5153 . . . . 5 (𝜑 → (𝑋 < Σ*𝑘𝐴𝐵𝑋 < sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))), ℝ*, < )))
9 iccssxr 13410 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
10 xrge0base 32686 . . . . . . . . . 10 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
11 xrge0cmn 21297 . . . . . . . . . . 11 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
1211a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
13 inss2 4224 . . . . . . . . . . 11 (𝒫 𝐴 ∩ Fin) ⊆ Fin
14 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ (𝒫 𝐴 ∩ Fin))
1513, 14sselid 3975 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ Fin)
16 nfv 1909 . . . . . . . . . . . 12 𝑘 𝑥 ∈ (𝒫 𝐴 ∩ Fin)
172, 16nfan 1894 . . . . . . . . . . 11 𝑘(𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin))
18 simpll 764 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝜑)
19 inss1 4223 . . . . . . . . . . . . . . . . 17 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
2019sseli 3973 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴)
2120ad2antlr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑥 ∈ 𝒫 𝐴)
2221elpwid 4606 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑥𝐴)
23 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝑥)
2422, 23sseldd 3978 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝐴)
2518, 24, 5syl2anc 583 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝐵 ∈ (0[,]+∞))
2625ex 412 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑘𝑥𝐵 ∈ (0[,]+∞)))
2717, 26ralrimi 3248 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑘𝑥 𝐵 ∈ (0[,]+∞))
2810, 12, 15, 27gsummptcl 19884 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ (0[,]+∞))
299, 28sselid 3975 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ ℝ*)
3029ralrimiva 3140 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ ℝ*)
31 eqid 2726 . . . . . . . 8 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
3231rnmptss 7117 . . . . . . 7 (∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ ℝ* → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ⊆ ℝ*)
3330, 32syl 17 . . . . . 6 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ⊆ ℝ*)
34 esumlub.2 . . . . . 6 (𝜑𝑋 ∈ ℝ*)
35 supxrlub 13307 . . . . . 6 ((ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ⊆ ℝ*𝑋 ∈ ℝ*) → (𝑋 < sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))), ℝ*, < ) ↔ ∃𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))𝑋 < 𝑦))
3633, 34, 35syl2anc 583 . . . . 5 (𝜑 → (𝑋 < sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))), ℝ*, < ) ↔ ∃𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))𝑋 < 𝑦))
378, 36bitrd 279 . . . 4 (𝜑 → (𝑋 < Σ*𝑘𝐴𝐵 ↔ ∃𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))𝑋 < 𝑦))
381, 37mpbid 231 . . 3 (𝜑 → ∃𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))𝑋 < 𝑦)
39 ovex 7437 . . . . 5 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ V
4039a1i 11 . . . 4 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ V)
41 mpteq1 5234 . . . . . . . 8 (𝑥 = 𝑎 → (𝑘𝑥𝐵) = (𝑘𝑎𝐵))
4241oveq2d 7420 . . . . . . 7 (𝑥 = 𝑎 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
4342cbvmptv 5254 . . . . . 6 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) = (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
4443, 39elrnmpti 5952 . . . . 5 (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ↔ ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
4544a1i 11 . . . 4 (𝜑 → (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ↔ ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵))))
46 simpr 484 . . . . 5 ((𝜑𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵))) → 𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
4746breq2d 5153 . . . 4 ((𝜑𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵))) → (𝑋 < 𝑦𝑋 < ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵))))
4840, 45, 47rexxfr2d 5402 . . 3 (𝜑 → (∃𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))𝑋 < 𝑦 ↔ ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑋 < ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵))))
4938, 48mpbid 231 . 2 (𝜑 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑋 < ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
50 nfv 1909 . . . . . . 7 𝑘 𝑎 ∈ (𝒫 𝐴 ∩ Fin)
512, 50nfan 1894 . . . . . 6 𝑘(𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin))
52 simpr 484 . . . . . . 7 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ∈ (𝒫 𝐴 ∩ Fin))
5313, 52sselid 3975 . . . . . 6 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ∈ Fin)
54 simpll 764 . . . . . . 7 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝜑)
5519sseli 3973 . . . . . . . . . 10 (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → 𝑎 ∈ 𝒫 𝐴)
5655ad2antlr 724 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑎 ∈ 𝒫 𝐴)
5756elpwid 4606 . . . . . . . 8 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑎𝐴)
58 simpr 484 . . . . . . . 8 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑘𝑎)
5957, 58sseldd 3978 . . . . . . 7 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑘𝐴)
6054, 59, 5syl2anc 583 . . . . . 6 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝐵 ∈ (0[,]+∞))
6151, 53, 60gsumesum 33586 . . . . 5 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) = Σ*𝑘𝑎𝐵)
6261breq2d 5153 . . . 4 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑋 < ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ↔ 𝑋 < Σ*𝑘𝑎𝐵))
6362biimpd 228 . . 3 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑋 < ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) → 𝑋 < Σ*𝑘𝑎𝐵))
6463reximdva 3162 . 2 (𝜑 → (∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑋 < ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑋 < Σ*𝑘𝑎𝐵))
6549, 64mpd 15 1 (𝜑 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑋 < Σ*𝑘𝑎𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wnf 1777  wcel 2098  wral 3055  wrex 3064  Vcvv 3468  cin 3942  wss 3943  𝒫 cpw 4597   class class class wbr 5141  cmpt 5224  ran crn 5670  (class class class)co 7404  Fincfn 8938  supcsup 9434  0cc0 11109  +∞cpnf 11246  *cxr 11248   < clt 11249  [,]cicc 13330  s cress 17179   Σg cgsu 17392  *𝑠cxrs 17452  CMndccmn 19697  Σ*cesum 33554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8144  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fsupp 9361  df-fi 9405  df-sup 9436  df-inf 9437  df-oi 9504  df-card 9933  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-div 11873  df-nn 12214  df-2 12276  df-3 12277  df-4 12278  df-5 12279  df-6 12280  df-7 12281  df-8 12282  df-9 12283  df-n0 12474  df-z 12560  df-dec 12679  df-uz 12824  df-q 12934  df-xadd 13096  df-ioo 13331  df-ioc 13332  df-ico 13333  df-icc 13334  df-fz 13488  df-fzo 13631  df-seq 13970  df-hash 14293  df-struct 17086  df-sets 17103  df-slot 17121  df-ndx 17133  df-base 17151  df-ress 17180  df-plusg 17216  df-mulr 17217  df-tset 17222  df-ple 17223  df-ds 17225  df-rest 17374  df-topn 17375  df-0g 17393  df-gsum 17394  df-topgen 17395  df-ordt 17453  df-xrs 17454  df-mre 17536  df-mrc 17537  df-acs 17539  df-ps 18528  df-tsr 18529  df-mgm 18570  df-sgrp 18649  df-mnd 18665  df-submnd 18711  df-cntz 19230  df-cmn 19699  df-fbas 21232  df-fg 21233  df-top 22746  df-topon 22763  df-topsp 22785  df-bases 22799  df-ntr 22874  df-nei 22952  df-cn 23081  df-haus 23169  df-fil 23700  df-fm 23792  df-flim 23793  df-flf 23794  df-tsms 23981  df-esum 33555
This theorem is referenced by:  esumfsup  33597  esum2d  33620
  Copyright terms: Public domain W3C validator