| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cnptop2 23252 | . . 3
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐾 ∈ Top) | 
| 2 | 1 | a1i 11 | . 2
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐾 ∈ Top)) | 
| 3 |  | cnptop2 23252 | . . 3
⊢ ((𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃) → 𝐾 ∈ Top) | 
| 4 | 3 | a1i 11 | . 2
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → ((𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃) → 𝐾 ∈ Top)) | 
| 5 |  | cnprest.1 | . . . . . . . . . . . 12
⊢ 𝑋 = ∪
𝐽 | 
| 6 | 5 | ntrss2 23066 | . . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((int‘𝐽)‘𝐴) ⊆ 𝐴) | 
| 7 | 6 | 3ad2ant1 1133 | . . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → ((int‘𝐽)‘𝐴) ⊆ 𝐴) | 
| 8 |  | simp2l 1199 | . . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → 𝑃 ∈ ((int‘𝐽)‘𝐴)) | 
| 9 | 7, 8 | sseldd 3983 | . . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → 𝑃 ∈ 𝐴) | 
| 10 | 9 | fvresd 6925 | . . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → ((𝐹 ↾ 𝐴)‘𝑃) = (𝐹‘𝑃)) | 
| 11 | 10 | eqcomd 2742 | . . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (𝐹‘𝑃) = ((𝐹 ↾ 𝐴)‘𝑃)) | 
| 12 | 11 | eleq1d 2825 | . . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → ((𝐹‘𝑃) ∈ 𝑦 ↔ ((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦)) | 
| 13 |  | inss1 4236 | . . . . . . . . . . 11
⊢ (𝑥 ∩ 𝐴) ⊆ 𝑥 | 
| 14 |  | imass2 6119 | . . . . . . . . . . 11
⊢ ((𝑥 ∩ 𝐴) ⊆ 𝑥 → (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ (𝐹 “ 𝑥)) | 
| 15 |  | sstr2 3989 | . . . . . . . . . . 11
⊢ ((𝐹 “ (𝑥 ∩ 𝐴)) ⊆ (𝐹 “ 𝑥) → ((𝐹 “ 𝑥) ⊆ 𝑦 → (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦)) | 
| 16 | 13, 14, 15 | mp2b 10 | . . . . . . . . . 10
⊢ ((𝐹 “ 𝑥) ⊆ 𝑦 → (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦) | 
| 17 | 16 | anim2i 617 | . . . . . . . . 9
⊢ ((𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) → (𝑃 ∈ 𝑥 ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦)) | 
| 18 | 17 | reximi 3083 | . . . . . . . 8
⊢
(∃𝑥 ∈
𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦)) | 
| 19 |  | simp1l 1197 | . . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → 𝐽 ∈ Top) | 
| 20 | 5 | ntropn 23058 | . . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((int‘𝐽)‘𝐴) ∈ 𝐽) | 
| 21 | 20 | 3ad2ant1 1133 | . . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → ((int‘𝐽)‘𝐴) ∈ 𝐽) | 
| 22 |  | inopn 22906 | . . . . . . . . . . . . . . . 16
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ ((int‘𝐽)‘𝐴) ∈ 𝐽) → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽) | 
| 23 | 22 | 3com23 1126 | . . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ Top ∧
((int‘𝐽)‘𝐴) ∈ 𝐽 ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽) | 
| 24 | 23 | 3expia 1121 | . . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧
((int‘𝐽)‘𝐴) ∈ 𝐽) → (𝑥 ∈ 𝐽 → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽)) | 
| 25 | 19, 21, 24 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (𝑥 ∈ 𝐽 → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽)) | 
| 26 |  | elin 3966 | . . . . . . . . . . . . . . . 16
⊢ (𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)) ↔ (𝑃 ∈ 𝑥 ∧ 𝑃 ∈ ((int‘𝐽)‘𝐴))) | 
| 27 | 26 | simplbi2com 502 | . . . . . . . . . . . . . . 15
⊢ (𝑃 ∈ ((int‘𝐽)‘𝐴) → (𝑃 ∈ 𝑥 → 𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)))) | 
| 28 | 8, 27 | syl 17 | . . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (𝑃 ∈ 𝑥 → 𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)))) | 
| 29 |  | sslin 4242 | . . . . . . . . . . . . . . . . 17
⊢
(((int‘𝐽)‘𝐴) ⊆ 𝐴 → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ⊆ (𝑥 ∩ 𝐴)) | 
| 30 | 7, 29 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ⊆ (𝑥 ∩ 𝐴)) | 
| 31 |  | imass2 6119 | . . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∩ ((int‘𝐽)‘𝐴)) ⊆ (𝑥 ∩ 𝐴) → (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ (𝐹 “ (𝑥 ∩ 𝐴))) | 
| 32 | 30, 31 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ (𝐹 “ (𝑥 ∩ 𝐴))) | 
| 33 |  | sstr2 3989 | . . . . . . . . . . . . . . 15
⊢ ((𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ (𝐹 “ (𝑥 ∩ 𝐴)) → ((𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦 → (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦)) | 
| 34 | 32, 33 | syl 17 | . . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → ((𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦 → (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦)) | 
| 35 | 28, 34 | anim12d 609 | . . . . . . . . . . . . 13
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → ((𝑃 ∈ 𝑥 ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦) → (𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∧ (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦))) | 
| 36 | 25, 35 | anim12d 609 | . . . . . . . . . . . 12
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → ((𝑥 ∈ 𝐽 ∧ (𝑃 ∈ 𝑥 ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦)) → ((𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽 ∧ (𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∧ (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦)))) | 
| 37 |  | eleq2 2829 | . . . . . . . . . . . . . 14
⊢ (𝑧 = (𝑥 ∩ ((int‘𝐽)‘𝐴)) → (𝑃 ∈ 𝑧 ↔ 𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)))) | 
| 38 |  | imaeq2 6073 | . . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑥 ∩ ((int‘𝐽)‘𝐴)) → (𝐹 “ 𝑧) = (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴)))) | 
| 39 | 38 | sseq1d 4014 | . . . . . . . . . . . . . 14
⊢ (𝑧 = (𝑥 ∩ ((int‘𝐽)‘𝐴)) → ((𝐹 “ 𝑧) ⊆ 𝑦 ↔ (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦)) | 
| 40 | 37, 39 | anbi12d 632 | . . . . . . . . . . . . 13
⊢ (𝑧 = (𝑥 ∩ ((int‘𝐽)‘𝐴)) → ((𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦) ↔ (𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∧ (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦))) | 
| 41 | 40 | rspcev 3621 | . . . . . . . . . . . 12
⊢ (((𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽 ∧ (𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∧ (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦)) → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦)) | 
| 42 | 36, 41 | syl6 35 | . . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → ((𝑥 ∈ 𝐽 ∧ (𝑃 ∈ 𝑥 ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦)) → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦))) | 
| 43 | 42 | expdimp 452 | . . . . . . . . . 10
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) ∧ 𝑥 ∈ 𝐽) → ((𝑃 ∈ 𝑥 ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦) → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦))) | 
| 44 | 43 | rexlimdva 3154 | . . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦) → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦))) | 
| 45 |  | eleq2 2829 | . . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → (𝑃 ∈ 𝑧 ↔ 𝑃 ∈ 𝑥)) | 
| 46 |  | imaeq2 6073 | . . . . . . . . . . . 12
⊢ (𝑧 = 𝑥 → (𝐹 “ 𝑧) = (𝐹 “ 𝑥)) | 
| 47 | 46 | sseq1d 4014 | . . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → ((𝐹 “ 𝑧) ⊆ 𝑦 ↔ (𝐹 “ 𝑥) ⊆ 𝑦)) | 
| 48 | 45, 47 | anbi12d 632 | . . . . . . . . . 10
⊢ (𝑧 = 𝑥 → ((𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦) ↔ (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))) | 
| 49 | 48 | cbvrexvw 3237 | . . . . . . . . 9
⊢
(∃𝑧 ∈
𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦) ↔ ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) | 
| 50 | 44, 49 | imbitrdi 251 | . . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))) | 
| 51 | 18, 50 | impbid2 226 | . . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) ↔ ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦))) | 
| 52 |  | vex 3483 | . . . . . . . . . 10
⊢ 𝑥 ∈ V | 
| 53 | 52 | inex1 5316 | . . . . . . . . 9
⊢ (𝑥 ∩ 𝐴) ∈ V | 
| 54 | 53 | a1i 11 | . . . . . . . 8
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ 𝐴) ∈ V) | 
| 55 | 19 | uniexd 7763 | . . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → ∪ 𝐽
∈ V) | 
| 56 |  | simp1r 1198 | . . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → 𝐴 ⊆ 𝑋) | 
| 57 | 56, 5 | sseqtrdi 4023 | . . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → 𝐴 ⊆ ∪ 𝐽) | 
| 58 | 55, 57 | ssexd 5323 | . . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → 𝐴 ∈ V) | 
| 59 |  | elrest 17473 | . . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝑧 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑥 ∈ 𝐽 𝑧 = (𝑥 ∩ 𝐴))) | 
| 60 | 19, 58, 59 | syl2anc 584 | . . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (𝑧 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑥 ∈ 𝐽 𝑧 = (𝑥 ∩ 𝐴))) | 
| 61 |  | eleq2 2829 | . . . . . . . . . 10
⊢ (𝑧 = (𝑥 ∩ 𝐴) → (𝑃 ∈ 𝑧 ↔ 𝑃 ∈ (𝑥 ∩ 𝐴))) | 
| 62 |  | elin 3966 | . . . . . . . . . . . 12
⊢ (𝑃 ∈ (𝑥 ∩ 𝐴) ↔ (𝑃 ∈ 𝑥 ∧ 𝑃 ∈ 𝐴)) | 
| 63 | 62 | rbaib 538 | . . . . . . . . . . 11
⊢ (𝑃 ∈ 𝐴 → (𝑃 ∈ (𝑥 ∩ 𝐴) ↔ 𝑃 ∈ 𝑥)) | 
| 64 | 9, 63 | syl 17 | . . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (𝑃 ∈ (𝑥 ∩ 𝐴) ↔ 𝑃 ∈ 𝑥)) | 
| 65 | 61, 64 | sylan9bbr 510 | . . . . . . . . 9
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → (𝑃 ∈ 𝑧 ↔ 𝑃 ∈ 𝑥)) | 
| 66 |  | simpr 484 | . . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → 𝑧 = (𝑥 ∩ 𝐴)) | 
| 67 | 66 | imaeq2d 6077 | . . . . . . . . . . 11
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → ((𝐹 ↾ 𝐴) “ 𝑧) = ((𝐹 ↾ 𝐴) “ (𝑥 ∩ 𝐴))) | 
| 68 |  | inss2 4237 | . . . . . . . . . . . 12
⊢ (𝑥 ∩ 𝐴) ⊆ 𝐴 | 
| 69 |  | resima2 6033 | . . . . . . . . . . . 12
⊢ ((𝑥 ∩ 𝐴) ⊆ 𝐴 → ((𝐹 ↾ 𝐴) “ (𝑥 ∩ 𝐴)) = (𝐹 “ (𝑥 ∩ 𝐴))) | 
| 70 | 68, 69 | ax-mp 5 | . . . . . . . . . . 11
⊢ ((𝐹 ↾ 𝐴) “ (𝑥 ∩ 𝐴)) = (𝐹 “ (𝑥 ∩ 𝐴)) | 
| 71 | 67, 70 | eqtrdi 2792 | . . . . . . . . . 10
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → ((𝐹 ↾ 𝐴) “ 𝑧) = (𝐹 “ (𝑥 ∩ 𝐴))) | 
| 72 | 71 | sseq1d 4014 | . . . . . . . . 9
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → (((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦 ↔ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦)) | 
| 73 | 65, 72 | anbi12d 632 | . . . . . . . 8
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → ((𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦) ↔ (𝑃 ∈ 𝑥 ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦))) | 
| 74 | 54, 60, 73 | rexxfr2d 5410 | . . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦) ↔ ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦))) | 
| 75 | 51, 74 | bitr4d 282 | . . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) ↔ ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦))) | 
| 76 | 12, 75 | imbi12d 344 | . . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) ↔ (((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦)))) | 
| 77 | 76 | ralbidv 3177 | . . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) ↔ ∀𝑦 ∈ 𝐾 (((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦)))) | 
| 78 |  | simp2r 1200 | . . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → 𝐹:𝑋⟶𝑌) | 
| 79 |  | simp3 1138 | . . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → 𝐾 ∈ Top) | 
| 80 | 56, 9 | sseldd 3983 | . . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → 𝑃 ∈ 𝑋) | 
| 81 |  | cnprest.2 | . . . . . . . 8
⊢ 𝑌 = ∪
𝐾 | 
| 82 | 5, 81 | iscnp2 23248 | . . . . . . 7
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃 ∈ 𝑋) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) | 
| 83 | 82 | baib 535 | . . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) | 
| 84 | 19, 79, 80, 83 | syl3anc 1372 | . . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) | 
| 85 | 78, 84 | mpbirand 707 | . . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)))) | 
| 86 | 78, 56 | fssresd 6774 | . . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (𝐹 ↾ 𝐴):𝐴⟶𝑌) | 
| 87 | 5 | toptopon 22924 | . . . . . . . 8
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) | 
| 88 | 19, 87 | sylib 218 | . . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → 𝐽 ∈ (TopOn‘𝑋)) | 
| 89 |  | resttopon 23170 | . . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) | 
| 90 | 88, 56, 89 | syl2anc 584 | . . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) | 
| 91 | 81 | toptopon 22924 | . . . . . . 7
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌)) | 
| 92 | 79, 91 | sylib 218 | . . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → 𝐾 ∈ (TopOn‘𝑌)) | 
| 93 |  | iscnp 23246 | . . . . . 6
⊢ (((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝐴) → ((𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃) ↔ ((𝐹 ↾ 𝐴):𝐴⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦))))) | 
| 94 | 90, 92, 9, 93 | syl3anc 1372 | . . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → ((𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃) ↔ ((𝐹 ↾ 𝐴):𝐴⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦))))) | 
| 95 | 86, 94 | mpbirand 707 | . . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → ((𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃) ↔ ∀𝑦 ∈ 𝐾 (((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦)))) | 
| 96 | 77, 85, 95 | 3bitr4d 311 | . . 3
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃))) | 
| 97 | 96 | 3expia 1121 | . 2
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → (𝐾 ∈ Top → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃)))) | 
| 98 | 2, 4, 97 | pm5.21ndd 379 | 1
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃))) |