Step | Hyp | Ref
| Expression |
1 | | cnptop2 21948 |
. . 3
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐾 ∈ Top) |
2 | 1 | a1i 11 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐾 ∈ Top)) |
3 | | cnptop2 21948 |
. . 3
⊢ ((𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃) → 𝐾 ∈ Top) |
4 | 3 | a1i 11 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → ((𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃) → 𝐾 ∈ Top)) |
5 | | cnprest.1 |
. . . . . . . . . . . 12
⊢ 𝑋 = ∪
𝐽 |
6 | 5 | ntrss2 21762 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((int‘𝐽)‘𝐴) ⊆ 𝐴) |
7 | 6 | 3ad2ant1 1130 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → ((int‘𝐽)‘𝐴) ⊆ 𝐴) |
8 | | simp2l 1196 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → 𝑃 ∈ ((int‘𝐽)‘𝐴)) |
9 | 7, 8 | sseldd 3895 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → 𝑃 ∈ 𝐴) |
10 | 9 | fvresd 6682 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → ((𝐹 ↾ 𝐴)‘𝑃) = (𝐹‘𝑃)) |
11 | 10 | eqcomd 2764 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (𝐹‘𝑃) = ((𝐹 ↾ 𝐴)‘𝑃)) |
12 | 11 | eleq1d 2836 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → ((𝐹‘𝑃) ∈ 𝑦 ↔ ((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦)) |
13 | | inss1 4135 |
. . . . . . . . . . 11
⊢ (𝑥 ∩ 𝐴) ⊆ 𝑥 |
14 | | imass2 5941 |
. . . . . . . . . . 11
⊢ ((𝑥 ∩ 𝐴) ⊆ 𝑥 → (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ (𝐹 “ 𝑥)) |
15 | | sstr2 3901 |
. . . . . . . . . . 11
⊢ ((𝐹 “ (𝑥 ∩ 𝐴)) ⊆ (𝐹 “ 𝑥) → ((𝐹 “ 𝑥) ⊆ 𝑦 → (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦)) |
16 | 13, 14, 15 | mp2b 10 |
. . . . . . . . . 10
⊢ ((𝐹 “ 𝑥) ⊆ 𝑦 → (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦) |
17 | 16 | anim2i 619 |
. . . . . . . . 9
⊢ ((𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) → (𝑃 ∈ 𝑥 ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦)) |
18 | 17 | reximi 3171 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦)) |
19 | | simp1l 1194 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → 𝐽 ∈ Top) |
20 | 5 | ntropn 21754 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((int‘𝐽)‘𝐴) ∈ 𝐽) |
21 | 20 | 3ad2ant1 1130 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → ((int‘𝐽)‘𝐴) ∈ 𝐽) |
22 | | inopn 21604 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ ((int‘𝐽)‘𝐴) ∈ 𝐽) → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽) |
23 | 22 | 3com23 1123 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ Top ∧
((int‘𝐽)‘𝐴) ∈ 𝐽 ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽) |
24 | 23 | 3expia 1118 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧
((int‘𝐽)‘𝐴) ∈ 𝐽) → (𝑥 ∈ 𝐽 → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽)) |
25 | 19, 21, 24 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (𝑥 ∈ 𝐽 → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽)) |
26 | | elin 3876 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)) ↔ (𝑃 ∈ 𝑥 ∧ 𝑃 ∈ ((int‘𝐽)‘𝐴))) |
27 | 26 | simplbi2com 506 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈ ((int‘𝐽)‘𝐴) → (𝑃 ∈ 𝑥 → 𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)))) |
28 | 8, 27 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (𝑃 ∈ 𝑥 → 𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)))) |
29 | | sslin 4141 |
. . . . . . . . . . . . . . . . 17
⊢
(((int‘𝐽)‘𝐴) ⊆ 𝐴 → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ⊆ (𝑥 ∩ 𝐴)) |
30 | 7, 29 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ⊆ (𝑥 ∩ 𝐴)) |
31 | | imass2 5941 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∩ ((int‘𝐽)‘𝐴)) ⊆ (𝑥 ∩ 𝐴) → (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ (𝐹 “ (𝑥 ∩ 𝐴))) |
32 | 30, 31 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ (𝐹 “ (𝑥 ∩ 𝐴))) |
33 | | sstr2 3901 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ (𝐹 “ (𝑥 ∩ 𝐴)) → ((𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦 → (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦)) |
34 | 32, 33 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → ((𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦 → (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦)) |
35 | 28, 34 | anim12d 611 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → ((𝑃 ∈ 𝑥 ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦) → (𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∧ (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦))) |
36 | 25, 35 | anim12d 611 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → ((𝑥 ∈ 𝐽 ∧ (𝑃 ∈ 𝑥 ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦)) → ((𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽 ∧ (𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∧ (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦)))) |
37 | | eleq2 2840 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝑥 ∩ ((int‘𝐽)‘𝐴)) → (𝑃 ∈ 𝑧 ↔ 𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)))) |
38 | | imaeq2 5901 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑥 ∩ ((int‘𝐽)‘𝐴)) → (𝐹 “ 𝑧) = (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴)))) |
39 | 38 | sseq1d 3925 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝑥 ∩ ((int‘𝐽)‘𝐴)) → ((𝐹 “ 𝑧) ⊆ 𝑦 ↔ (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦)) |
40 | 37, 39 | anbi12d 633 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝑥 ∩ ((int‘𝐽)‘𝐴)) → ((𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦) ↔ (𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∧ (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦))) |
41 | 40 | rspcev 3543 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽 ∧ (𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∧ (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦)) → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦)) |
42 | 36, 41 | syl6 35 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → ((𝑥 ∈ 𝐽 ∧ (𝑃 ∈ 𝑥 ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦)) → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦))) |
43 | 42 | expdimp 456 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) ∧ 𝑥 ∈ 𝐽) → ((𝑃 ∈ 𝑥 ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦) → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦))) |
44 | 43 | rexlimdva 3208 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦) → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦))) |
45 | | eleq2 2840 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → (𝑃 ∈ 𝑧 ↔ 𝑃 ∈ 𝑥)) |
46 | | imaeq2 5901 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑥 → (𝐹 “ 𝑧) = (𝐹 “ 𝑥)) |
47 | 46 | sseq1d 3925 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → ((𝐹 “ 𝑧) ⊆ 𝑦 ↔ (𝐹 “ 𝑥) ⊆ 𝑦)) |
48 | 45, 47 | anbi12d 633 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → ((𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦) ↔ (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))) |
49 | 48 | cbvrexvw 3362 |
. . . . . . . . 9
⊢
(∃𝑧 ∈
𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦) ↔ ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) |
50 | 44, 49 | syl6ib 254 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))) |
51 | 18, 50 | impbid2 229 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) ↔ ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦))) |
52 | | vex 3413 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
53 | 52 | inex1 5190 |
. . . . . . . . 9
⊢ (𝑥 ∩ 𝐴) ∈ V |
54 | 53 | a1i 11 |
. . . . . . . 8
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ 𝐴) ∈ V) |
55 | 19 | uniexd 7471 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → ∪ 𝐽
∈ V) |
56 | | simp1r 1195 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → 𝐴 ⊆ 𝑋) |
57 | 56, 5 | sseqtrdi 3944 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → 𝐴 ⊆ ∪ 𝐽) |
58 | 55, 57 | ssexd 5197 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → 𝐴 ∈ V) |
59 | | elrest 16764 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝑧 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑥 ∈ 𝐽 𝑧 = (𝑥 ∩ 𝐴))) |
60 | 19, 58, 59 | syl2anc 587 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (𝑧 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑥 ∈ 𝐽 𝑧 = (𝑥 ∩ 𝐴))) |
61 | | eleq2 2840 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑥 ∩ 𝐴) → (𝑃 ∈ 𝑧 ↔ 𝑃 ∈ (𝑥 ∩ 𝐴))) |
62 | | elin 3876 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ (𝑥 ∩ 𝐴) ↔ (𝑃 ∈ 𝑥 ∧ 𝑃 ∈ 𝐴)) |
63 | 62 | rbaib 542 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ 𝐴 → (𝑃 ∈ (𝑥 ∩ 𝐴) ↔ 𝑃 ∈ 𝑥)) |
64 | 9, 63 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (𝑃 ∈ (𝑥 ∩ 𝐴) ↔ 𝑃 ∈ 𝑥)) |
65 | 61, 64 | sylan9bbr 514 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → (𝑃 ∈ 𝑧 ↔ 𝑃 ∈ 𝑥)) |
66 | | simpr 488 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → 𝑧 = (𝑥 ∩ 𝐴)) |
67 | 66 | imaeq2d 5905 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → ((𝐹 ↾ 𝐴) “ 𝑧) = ((𝐹 ↾ 𝐴) “ (𝑥 ∩ 𝐴))) |
68 | | inss2 4136 |
. . . . . . . . . . . 12
⊢ (𝑥 ∩ 𝐴) ⊆ 𝐴 |
69 | | resima2 5862 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∩ 𝐴) ⊆ 𝐴 → ((𝐹 ↾ 𝐴) “ (𝑥 ∩ 𝐴)) = (𝐹 “ (𝑥 ∩ 𝐴))) |
70 | 68, 69 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ((𝐹 ↾ 𝐴) “ (𝑥 ∩ 𝐴)) = (𝐹 “ (𝑥 ∩ 𝐴)) |
71 | 67, 70 | eqtrdi 2809 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → ((𝐹 ↾ 𝐴) “ 𝑧) = (𝐹 “ (𝑥 ∩ 𝐴))) |
72 | 71 | sseq1d 3925 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → (((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦 ↔ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦)) |
73 | 65, 72 | anbi12d 633 |
. . . . . . . 8
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → ((𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦) ↔ (𝑃 ∈ 𝑥 ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦))) |
74 | 54, 60, 73 | rexxfr2d 5283 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦) ↔ ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦))) |
75 | 51, 74 | bitr4d 285 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) ↔ ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦))) |
76 | 12, 75 | imbi12d 348 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) ↔ (((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦)))) |
77 | 76 | ralbidv 3126 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) ↔ ∀𝑦 ∈ 𝐾 (((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦)))) |
78 | | simp2r 1197 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → 𝐹:𝑋⟶𝑌) |
79 | | simp3 1135 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → 𝐾 ∈ Top) |
80 | 56, 9 | sseldd 3895 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → 𝑃 ∈ 𝑋) |
81 | | cnprest.2 |
. . . . . . . 8
⊢ 𝑌 = ∪
𝐾 |
82 | 5, 81 | iscnp2 21944 |
. . . . . . 7
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃 ∈ 𝑋) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) |
83 | 82 | baib 539 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) |
84 | 19, 79, 80, 83 | syl3anc 1368 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) |
85 | 78, 84 | mpbirand 706 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)))) |
86 | 78, 56 | fssresd 6534 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (𝐹 ↾ 𝐴):𝐴⟶𝑌) |
87 | 5 | toptopon 21622 |
. . . . . . . 8
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
88 | 19, 87 | sylib 221 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → 𝐽 ∈ (TopOn‘𝑋)) |
89 | | resttopon 21866 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
90 | 88, 56, 89 | syl2anc 587 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
91 | 81 | toptopon 21622 |
. . . . . . 7
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌)) |
92 | 79, 91 | sylib 221 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → 𝐾 ∈ (TopOn‘𝑌)) |
93 | | iscnp 21942 |
. . . . . 6
⊢ (((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝐴) → ((𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃) ↔ ((𝐹 ↾ 𝐴):𝐴⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦))))) |
94 | 90, 92, 9, 93 | syl3anc 1368 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → ((𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃) ↔ ((𝐹 ↾ 𝐴):𝐴⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦))))) |
95 | 86, 94 | mpbirand 706 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → ((𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃) ↔ ∀𝑦 ∈ 𝐾 (((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦)))) |
96 | 77, 85, 95 | 3bitr4d 314 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃))) |
97 | 96 | 3expia 1118 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → (𝐾 ∈ Top → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃)))) |
98 | 2, 4, 97 | pm5.21ndd 384 |
1
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃))) |