Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnprest Structured version   Visualization version   GIF version

Theorem cnprest 21463
 Description: Equivalence of continuity at a point and continuity of the restricted function at a point. (Contributed by Mario Carneiro, 8-Aug-2014.)
Hypotheses
Ref Expression
cnprest.1 𝑋 = 𝐽
cnprest.2 𝑌 = 𝐾
Assertion
Ref Expression
cnprest (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃)))

Proof of Theorem cnprest
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnptop2 21417 . . 3 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐾 ∈ Top)
21a1i 11 . 2 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐾 ∈ Top))
3 cnptop2 21417 . . 3 ((𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃) → 𝐾 ∈ Top)
43a1i 11 . 2 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → ((𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃) → 𝐾 ∈ Top))
5 cnprest.1 . . . . . . . . . . . 12 𝑋 = 𝐽
65ntrss2 21231 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘𝐴) ⊆ 𝐴)
763ad2ant1 1169 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → ((int‘𝐽)‘𝐴) ⊆ 𝐴)
8 simp2l 1262 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → 𝑃 ∈ ((int‘𝐽)‘𝐴))
97, 8sseldd 3827 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → 𝑃𝐴)
10 fvres 6451 . . . . . . . . 9 (𝑃𝐴 → ((𝐹𝐴)‘𝑃) = (𝐹𝑃))
119, 10syl 17 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → ((𝐹𝐴)‘𝑃) = (𝐹𝑃))
1211eqcomd 2830 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (𝐹𝑃) = ((𝐹𝐴)‘𝑃))
1312eleq1d 2890 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → ((𝐹𝑃) ∈ 𝑦 ↔ ((𝐹𝐴)‘𝑃) ∈ 𝑦))
14 inss1 4056 . . . . . . . . . . 11 (𝑥𝐴) ⊆ 𝑥
15 imass2 5741 . . . . . . . . . . 11 ((𝑥𝐴) ⊆ 𝑥 → (𝐹 “ (𝑥𝐴)) ⊆ (𝐹𝑥))
16 sstr2 3833 . . . . . . . . . . 11 ((𝐹 “ (𝑥𝐴)) ⊆ (𝐹𝑥) → ((𝐹𝑥) ⊆ 𝑦 → (𝐹 “ (𝑥𝐴)) ⊆ 𝑦))
1714, 15, 16mp2b 10 . . . . . . . . . 10 ((𝐹𝑥) ⊆ 𝑦 → (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)
1817anim2i 612 . . . . . . . . 9 ((𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → (𝑃𝑥 ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦))
1918reximi 3218 . . . . . . . 8 (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦))
20 simp1l 1260 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → 𝐽 ∈ Top)
215ntropn 21223 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘𝐴) ∈ 𝐽)
22213ad2ant1 1169 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → ((int‘𝐽)‘𝐴) ∈ 𝐽)
23 inopn 21073 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ Top ∧ 𝑥𝐽 ∧ ((int‘𝐽)‘𝐴) ∈ 𝐽) → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽)
24233com23 1162 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ ((int‘𝐽)‘𝐴) ∈ 𝐽𝑥𝐽) → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽)
25243expia 1156 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ ((int‘𝐽)‘𝐴) ∈ 𝐽) → (𝑥𝐽 → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽))
2620, 22, 25syl2anc 581 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (𝑥𝐽 → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽))
27 elin 4022 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)) ↔ (𝑃𝑥𝑃 ∈ ((int‘𝐽)‘𝐴)))
2827simplbi2com 498 . . . . . . . . . . . . . . 15 (𝑃 ∈ ((int‘𝐽)‘𝐴) → (𝑃𝑥𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴))))
298, 28syl 17 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (𝑃𝑥𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴))))
30 sslin 4062 . . . . . . . . . . . . . . . . 17 (((int‘𝐽)‘𝐴) ⊆ 𝐴 → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ⊆ (𝑥𝐴))
317, 30syl 17 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ⊆ (𝑥𝐴))
32 imass2 5741 . . . . . . . . . . . . . . . 16 ((𝑥 ∩ ((int‘𝐽)‘𝐴)) ⊆ (𝑥𝐴) → (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ (𝐹 “ (𝑥𝐴)))
3331, 32syl 17 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ (𝐹 “ (𝑥𝐴)))
34 sstr2 3833 . . . . . . . . . . . . . . 15 ((𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ (𝐹 “ (𝑥𝐴)) → ((𝐹 “ (𝑥𝐴)) ⊆ 𝑦 → (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦))
3533, 34syl 17 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → ((𝐹 “ (𝑥𝐴)) ⊆ 𝑦 → (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦))
3629, 35anim12d 604 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → ((𝑃𝑥 ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦) → (𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∧ (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦)))
3726, 36anim12d 604 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → ((𝑥𝐽 ∧ (𝑃𝑥 ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)) → ((𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽 ∧ (𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∧ (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦))))
38 eleq2 2894 . . . . . . . . . . . . . 14 (𝑧 = (𝑥 ∩ ((int‘𝐽)‘𝐴)) → (𝑃𝑧𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴))))
39 imaeq2 5702 . . . . . . . . . . . . . . 15 (𝑧 = (𝑥 ∩ ((int‘𝐽)‘𝐴)) → (𝐹𝑧) = (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))))
4039sseq1d 3856 . . . . . . . . . . . . . 14 (𝑧 = (𝑥 ∩ ((int‘𝐽)‘𝐴)) → ((𝐹𝑧) ⊆ 𝑦 ↔ (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦))
4138, 40anbi12d 626 . . . . . . . . . . . . 13 (𝑧 = (𝑥 ∩ ((int‘𝐽)‘𝐴)) → ((𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦) ↔ (𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∧ (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦)))
4241rspcev 3525 . . . . . . . . . . . 12 (((𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽 ∧ (𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∧ (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦)) → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦))
4337, 42syl6 35 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → ((𝑥𝐽 ∧ (𝑃𝑥 ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)) → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦)))
4443expdimp 446 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) ∧ 𝑥𝐽) → ((𝑃𝑥 ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦) → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦)))
4544rexlimdva 3239 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦) → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦)))
46 eleq2 2894 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝑃𝑧𝑃𝑥))
47 imaeq2 5702 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
4847sseq1d 3856 . . . . . . . . . . 11 (𝑧 = 𝑥 → ((𝐹𝑧) ⊆ 𝑦 ↔ (𝐹𝑥) ⊆ 𝑦))
4946, 48anbi12d 626 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦) ↔ (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))
5049cbvrexv 3383 . . . . . . . . 9 (∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦) ↔ ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))
5145, 50syl6ib 243 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))
5219, 51impbid2 218 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) ↔ ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)))
53 vex 3416 . . . . . . . . . 10 𝑥 ∈ V
5453inex1 5023 . . . . . . . . 9 (𝑥𝐴) ∈ V
5554a1i 11 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) ∧ 𝑥𝐽) → (𝑥𝐴) ∈ V)
56 uniexg 7214 . . . . . . . . . . 11 (𝐽 ∈ Top → 𝐽 ∈ V)
5720, 56syl 17 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → 𝐽 ∈ V)
58 simp1r 1261 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → 𝐴𝑋)
5958, 5syl6sseq 3875 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → 𝐴 𝐽)
6057, 59ssexd 5029 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → 𝐴 ∈ V)
61 elrest 16440 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝑧 ∈ (𝐽t 𝐴) ↔ ∃𝑥𝐽 𝑧 = (𝑥𝐴)))
6220, 60, 61syl2anc 581 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (𝑧 ∈ (𝐽t 𝐴) ↔ ∃𝑥𝐽 𝑧 = (𝑥𝐴)))
63 eleq2 2894 . . . . . . . . . 10 (𝑧 = (𝑥𝐴) → (𝑃𝑧𝑃 ∈ (𝑥𝐴)))
64 elin 4022 . . . . . . . . . . . 12 (𝑃 ∈ (𝑥𝐴) ↔ (𝑃𝑥𝑃𝐴))
6564rbaib 536 . . . . . . . . . . 11 (𝑃𝐴 → (𝑃 ∈ (𝑥𝐴) ↔ 𝑃𝑥))
669, 65syl 17 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (𝑃 ∈ (𝑥𝐴) ↔ 𝑃𝑥))
6763, 66sylan9bbr 508 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) ∧ 𝑧 = (𝑥𝐴)) → (𝑃𝑧𝑃𝑥))
68 simpr 479 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) ∧ 𝑧 = (𝑥𝐴)) → 𝑧 = (𝑥𝐴))
6968imaeq2d 5706 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) ∧ 𝑧 = (𝑥𝐴)) → ((𝐹𝐴) “ 𝑧) = ((𝐹𝐴) “ (𝑥𝐴)))
70 inss2 4057 . . . . . . . . . . . 12 (𝑥𝐴) ⊆ 𝐴
71 resima2 5667 . . . . . . . . . . . 12 ((𝑥𝐴) ⊆ 𝐴 → ((𝐹𝐴) “ (𝑥𝐴)) = (𝐹 “ (𝑥𝐴)))
7270, 71ax-mp 5 . . . . . . . . . . 11 ((𝐹𝐴) “ (𝑥𝐴)) = (𝐹 “ (𝑥𝐴))
7369, 72syl6eq 2876 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) ∧ 𝑧 = (𝑥𝐴)) → ((𝐹𝐴) “ 𝑧) = (𝐹 “ (𝑥𝐴)))
7473sseq1d 3856 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) ∧ 𝑧 = (𝑥𝐴)) → (((𝐹𝐴) “ 𝑧) ⊆ 𝑦 ↔ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦))
7567, 74anbi12d 626 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) ∧ 𝑧 = (𝑥𝐴)) → ((𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦) ↔ (𝑃𝑥 ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)))
7655, 62, 75rexxfr2d 5110 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦) ↔ ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)))
7752, 76bitr4d 274 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) ↔ ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))
7813, 77imbi12d 336 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ↔ (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦))))
7978ralbidv 3194 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ↔ ∀𝑦𝐾 (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦))))
80 simp3 1174 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → 𝐾 ∈ Top)
8158, 9sseldd 3827 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → 𝑃𝑋)
82 cnprest.2 . . . . . . . 8 𝑌 = 𝐾
835, 82iscnp2 21413 . . . . . . 7 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
8483baib 533 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
8520, 80, 81, 84syl3anc 1496 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
86 simp2r 1263 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → 𝐹:𝑋𝑌)
8786biantrurd 530 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
8885, 87bitr4d 274 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))))
895toptopon 21091 . . . . . . . 8 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
9020, 89sylib 210 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → 𝐽 ∈ (TopOn‘𝑋))
91 resttopon 21335 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
9290, 58, 91syl2anc 581 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
9382toptopon 21091 . . . . . . 7 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
9480, 93sylib 210 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → 𝐾 ∈ (TopOn‘𝑌))
95 iscnp 21411 . . . . . 6 (((𝐽t 𝐴) ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝐴) → ((𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃) ↔ ((𝐹𝐴):𝐴𝑌 ∧ ∀𝑦𝐾 (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))))
9692, 94, 9, 95syl3anc 1496 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → ((𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃) ↔ ((𝐹𝐴):𝐴𝑌 ∧ ∀𝑦𝐾 (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))))
9786, 58fssresd 6307 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (𝐹𝐴):𝐴𝑌)
9897biantrurd 530 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (∀𝑦𝐾 (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)) ↔ ((𝐹𝐴):𝐴𝑌 ∧ ∀𝑦𝐾 (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))))
9996, 98bitr4d 274 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → ((𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃) ↔ ∀𝑦𝐾 (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦))))
10079, 88, 993bitr4d 303 . . 3 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃)))
1011003expia 1156 . 2 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → (𝐾 ∈ Top → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃))))
1022, 4, 101pm5.21ndd 371 1 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   ∧ w3a 1113   = wceq 1658   ∈ wcel 2166  ∀wral 3116  ∃wrex 3117  Vcvv 3413   ∩ cin 3796   ⊆ wss 3797  ∪ cuni 4657   ↾ cres 5343   “ cima 5344  ⟶wf 6118  ‘cfv 6122  (class class class)co 6904   ↾t crest 16433  Topctop 21067  TopOnctopon 21084  intcnt 21191   CnP ccnp 21399 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-ral 3121  df-rex 3122  df-reu 3123  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-pss 3813  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-tp 4401  df-op 4403  df-uni 4658  df-int 4697  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-tr 4975  df-id 5249  df-eprel 5254  df-po 5262  df-so 5263  df-fr 5300  df-we 5302  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-pred 5919  df-ord 5965  df-on 5966  df-lim 5967  df-suc 5968  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-om 7326  df-1st 7427  df-2nd 7428  df-wrecs 7671  df-recs 7733  df-rdg 7771  df-oadd 7829  df-er 8008  df-map 8123  df-en 8222  df-fin 8225  df-fi 8585  df-rest 16435  df-topgen 16456  df-top 21068  df-topon 21085  df-bases 21120  df-ntr 21194  df-cnp 21402 This theorem is referenced by:  limcres  24048  dvcnvrelem2  24179  psercn  24578  abelth  24593  cxpcn3  24890  efrlim  25108  cvmlift2lem11  31840  cvmlift2lem12  31841  cvmlift3lem7  31852  cncfuni  40893  cncfiooicclem1  40900  dirkercncflem4  41116  fourierdlem62  41178
 Copyright terms: Public domain W3C validator