MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnprest Structured version   Visualization version   GIF version

Theorem cnprest 23114
Description: Equivalence of continuity at a point and continuity of the restricted function at a point. (Contributed by Mario Carneiro, 8-Aug-2014.)
Hypotheses
Ref Expression
cnprest.1 𝑋 = βˆͺ 𝐽
cnprest.2 π‘Œ = βˆͺ 𝐾
Assertion
Ref Expression
cnprest (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹 β†Ύ 𝐴) ∈ (((𝐽 β†Ύt 𝐴) CnP 𝐾)β€˜π‘ƒ)))

Proof of Theorem cnprest
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnptop2 23068 . . 3 (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) β†’ 𝐾 ∈ Top)
21a1i 11 . 2 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) β†’ 𝐾 ∈ Top))
3 cnptop2 23068 . . 3 ((𝐹 β†Ύ 𝐴) ∈ (((𝐽 β†Ύt 𝐴) CnP 𝐾)β€˜π‘ƒ) β†’ 𝐾 ∈ Top)
43a1i 11 . 2 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ ((𝐹 β†Ύ 𝐴) ∈ (((𝐽 β†Ύt 𝐴) CnP 𝐾)β€˜π‘ƒ) β†’ 𝐾 ∈ Top))
5 cnprest.1 . . . . . . . . . . . 12 𝑋 = βˆͺ 𝐽
65ntrss2 22882 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜π΄) βŠ† 𝐴)
763ad2ant1 1132 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ ((intβ€˜π½)β€˜π΄) βŠ† 𝐴)
8 simp2l 1198 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ 𝑃 ∈ ((intβ€˜π½)β€˜π΄))
97, 8sseldd 3983 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ 𝑃 ∈ 𝐴)
109fvresd 6911 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ ((𝐹 β†Ύ 𝐴)β€˜π‘ƒ) = (πΉβ€˜π‘ƒ))
1110eqcomd 2737 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ (πΉβ€˜π‘ƒ) = ((𝐹 β†Ύ 𝐴)β€˜π‘ƒ))
1211eleq1d 2817 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ ((πΉβ€˜π‘ƒ) ∈ 𝑦 ↔ ((𝐹 β†Ύ 𝐴)β€˜π‘ƒ) ∈ 𝑦))
13 inss1 4228 . . . . . . . . . . 11 (π‘₯ ∩ 𝐴) βŠ† π‘₯
14 imass2 6101 . . . . . . . . . . 11 ((π‘₯ ∩ 𝐴) βŠ† π‘₯ β†’ (𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† (𝐹 β€œ π‘₯))
15 sstr2 3989 . . . . . . . . . . 11 ((𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† (𝐹 β€œ π‘₯) β†’ ((𝐹 β€œ π‘₯) βŠ† 𝑦 β†’ (𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† 𝑦))
1613, 14, 15mp2b 10 . . . . . . . . . 10 ((𝐹 β€œ π‘₯) βŠ† 𝑦 β†’ (𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† 𝑦)
1716anim2i 616 . . . . . . . . 9 ((𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦) β†’ (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† 𝑦))
1817reximi 3083 . . . . . . . 8 (βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦) β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† 𝑦))
19 simp1l 1196 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ 𝐽 ∈ Top)
205ntropn 22874 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜π΄) ∈ 𝐽)
21203ad2ant1 1132 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ ((intβ€˜π½)β€˜π΄) ∈ 𝐽)
22 inopn 22722 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ Top ∧ π‘₯ ∈ 𝐽 ∧ ((intβ€˜π½)β€˜π΄) ∈ 𝐽) β†’ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) ∈ 𝐽)
23223com23 1125 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ ((intβ€˜π½)β€˜π΄) ∈ 𝐽 ∧ π‘₯ ∈ 𝐽) β†’ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) ∈ 𝐽)
24233expia 1120 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ ((intβ€˜π½)β€˜π΄) ∈ 𝐽) β†’ (π‘₯ ∈ 𝐽 β†’ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) ∈ 𝐽))
2519, 21, 24syl2anc 583 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ (π‘₯ ∈ 𝐽 β†’ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) ∈ 𝐽))
26 elin 3964 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) ↔ (𝑃 ∈ π‘₯ ∧ 𝑃 ∈ ((intβ€˜π½)β€˜π΄)))
2726simplbi2com 502 . . . . . . . . . . . . . . 15 (𝑃 ∈ ((intβ€˜π½)β€˜π΄) β†’ (𝑃 ∈ π‘₯ β†’ 𝑃 ∈ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄))))
288, 27syl 17 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ (𝑃 ∈ π‘₯ β†’ 𝑃 ∈ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄))))
29 sslin 4234 . . . . . . . . . . . . . . . . 17 (((intβ€˜π½)β€˜π΄) βŠ† 𝐴 β†’ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) βŠ† (π‘₯ ∩ 𝐴))
307, 29syl 17 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) βŠ† (π‘₯ ∩ 𝐴))
31 imass2 6101 . . . . . . . . . . . . . . . 16 ((π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) βŠ† (π‘₯ ∩ 𝐴) β†’ (𝐹 β€œ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄))) βŠ† (𝐹 β€œ (π‘₯ ∩ 𝐴)))
3230, 31syl 17 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ (𝐹 β€œ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄))) βŠ† (𝐹 β€œ (π‘₯ ∩ 𝐴)))
33 sstr2 3989 . . . . . . . . . . . . . . 15 ((𝐹 β€œ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄))) βŠ† (𝐹 β€œ (π‘₯ ∩ 𝐴)) β†’ ((𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† 𝑦 β†’ (𝐹 β€œ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄))) βŠ† 𝑦))
3432, 33syl 17 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ ((𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† 𝑦 β†’ (𝐹 β€œ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄))) βŠ† 𝑦))
3528, 34anim12d 608 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ ((𝑃 ∈ π‘₯ ∧ (𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† 𝑦) β†’ (𝑃 ∈ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) ∧ (𝐹 β€œ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄))) βŠ† 𝑦)))
3625, 35anim12d 608 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ ((π‘₯ ∈ 𝐽 ∧ (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† 𝑦)) β†’ ((π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) ∈ 𝐽 ∧ (𝑃 ∈ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) ∧ (𝐹 β€œ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄))) βŠ† 𝑦))))
37 eleq2 2821 . . . . . . . . . . . . . 14 (𝑧 = (π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) β†’ (𝑃 ∈ 𝑧 ↔ 𝑃 ∈ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄))))
38 imaeq2 6055 . . . . . . . . . . . . . . 15 (𝑧 = (π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) β†’ (𝐹 β€œ 𝑧) = (𝐹 β€œ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄))))
3938sseq1d 4013 . . . . . . . . . . . . . 14 (𝑧 = (π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) β†’ ((𝐹 β€œ 𝑧) βŠ† 𝑦 ↔ (𝐹 β€œ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄))) βŠ† 𝑦))
4037, 39anbi12d 630 . . . . . . . . . . . . 13 (𝑧 = (π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) β†’ ((𝑃 ∈ 𝑧 ∧ (𝐹 β€œ 𝑧) βŠ† 𝑦) ↔ (𝑃 ∈ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) ∧ (𝐹 β€œ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄))) βŠ† 𝑦)))
4140rspcev 3612 . . . . . . . . . . . 12 (((π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) ∈ 𝐽 ∧ (𝑃 ∈ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) ∧ (𝐹 β€œ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄))) βŠ† 𝑦)) β†’ βˆƒπ‘§ ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 β€œ 𝑧) βŠ† 𝑦))
4236, 41syl6 35 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ ((π‘₯ ∈ 𝐽 ∧ (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† 𝑦)) β†’ βˆƒπ‘§ ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 β€œ 𝑧) βŠ† 𝑦)))
4342expdimp 452 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) ∧ π‘₯ ∈ 𝐽) β†’ ((𝑃 ∈ π‘₯ ∧ (𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† 𝑦) β†’ βˆƒπ‘§ ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 β€œ 𝑧) βŠ† 𝑦)))
4443rexlimdva 3154 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ (βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† 𝑦) β†’ βˆƒπ‘§ ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 β€œ 𝑧) βŠ† 𝑦)))
45 eleq2 2821 . . . . . . . . . . 11 (𝑧 = π‘₯ β†’ (𝑃 ∈ 𝑧 ↔ 𝑃 ∈ π‘₯))
46 imaeq2 6055 . . . . . . . . . . . 12 (𝑧 = π‘₯ β†’ (𝐹 β€œ 𝑧) = (𝐹 β€œ π‘₯))
4746sseq1d 4013 . . . . . . . . . . 11 (𝑧 = π‘₯ β†’ ((𝐹 β€œ 𝑧) βŠ† 𝑦 ↔ (𝐹 β€œ π‘₯) βŠ† 𝑦))
4845, 47anbi12d 630 . . . . . . . . . 10 (𝑧 = π‘₯ β†’ ((𝑃 ∈ 𝑧 ∧ (𝐹 β€œ 𝑧) βŠ† 𝑦) ↔ (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)))
4948cbvrexvw 3234 . . . . . . . . 9 (βˆƒπ‘§ ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 β€œ 𝑧) βŠ† 𝑦) ↔ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦))
5044, 49imbitrdi 250 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ (βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† 𝑦) β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)))
5118, 50impbid2 225 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ (βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦) ↔ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† 𝑦)))
52 vex 3477 . . . . . . . . . 10 π‘₯ ∈ V
5352inex1 5317 . . . . . . . . 9 (π‘₯ ∩ 𝐴) ∈ V
5453a1i 11 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) ∧ π‘₯ ∈ 𝐽) β†’ (π‘₯ ∩ 𝐴) ∈ V)
5519uniexd 7736 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ βˆͺ 𝐽 ∈ V)
56 simp1r 1197 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ 𝐴 βŠ† 𝑋)
5756, 5sseqtrdi 4032 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ 𝐴 βŠ† βˆͺ 𝐽)
5855, 57ssexd 5324 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ 𝐴 ∈ V)
59 elrest 17380 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) β†’ (𝑧 ∈ (𝐽 β†Ύt 𝐴) ↔ βˆƒπ‘₯ ∈ 𝐽 𝑧 = (π‘₯ ∩ 𝐴)))
6019, 58, 59syl2anc 583 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ (𝑧 ∈ (𝐽 β†Ύt 𝐴) ↔ βˆƒπ‘₯ ∈ 𝐽 𝑧 = (π‘₯ ∩ 𝐴)))
61 eleq2 2821 . . . . . . . . . 10 (𝑧 = (π‘₯ ∩ 𝐴) β†’ (𝑃 ∈ 𝑧 ↔ 𝑃 ∈ (π‘₯ ∩ 𝐴)))
62 elin 3964 . . . . . . . . . . . 12 (𝑃 ∈ (π‘₯ ∩ 𝐴) ↔ (𝑃 ∈ π‘₯ ∧ 𝑃 ∈ 𝐴))
6362rbaib 538 . . . . . . . . . . 11 (𝑃 ∈ 𝐴 β†’ (𝑃 ∈ (π‘₯ ∩ 𝐴) ↔ 𝑃 ∈ π‘₯))
649, 63syl 17 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ (𝑃 ∈ (π‘₯ ∩ 𝐴) ↔ 𝑃 ∈ π‘₯))
6561, 64sylan9bbr 510 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) ∧ 𝑧 = (π‘₯ ∩ 𝐴)) β†’ (𝑃 ∈ 𝑧 ↔ 𝑃 ∈ π‘₯))
66 simpr 484 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) ∧ 𝑧 = (π‘₯ ∩ 𝐴)) β†’ 𝑧 = (π‘₯ ∩ 𝐴))
6766imaeq2d 6059 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) ∧ 𝑧 = (π‘₯ ∩ 𝐴)) β†’ ((𝐹 β†Ύ 𝐴) β€œ 𝑧) = ((𝐹 β†Ύ 𝐴) β€œ (π‘₯ ∩ 𝐴)))
68 inss2 4229 . . . . . . . . . . . 12 (π‘₯ ∩ 𝐴) βŠ† 𝐴
69 resima2 6016 . . . . . . . . . . . 12 ((π‘₯ ∩ 𝐴) βŠ† 𝐴 β†’ ((𝐹 β†Ύ 𝐴) β€œ (π‘₯ ∩ 𝐴)) = (𝐹 β€œ (π‘₯ ∩ 𝐴)))
7068, 69ax-mp 5 . . . . . . . . . . 11 ((𝐹 β†Ύ 𝐴) β€œ (π‘₯ ∩ 𝐴)) = (𝐹 β€œ (π‘₯ ∩ 𝐴))
7167, 70eqtrdi 2787 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) ∧ 𝑧 = (π‘₯ ∩ 𝐴)) β†’ ((𝐹 β†Ύ 𝐴) β€œ 𝑧) = (𝐹 β€œ (π‘₯ ∩ 𝐴)))
7271sseq1d 4013 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) ∧ 𝑧 = (π‘₯ ∩ 𝐴)) β†’ (((𝐹 β†Ύ 𝐴) β€œ 𝑧) βŠ† 𝑦 ↔ (𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† 𝑦))
7365, 72anbi12d 630 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) ∧ 𝑧 = (π‘₯ ∩ 𝐴)) β†’ ((𝑃 ∈ 𝑧 ∧ ((𝐹 β†Ύ 𝐴) β€œ 𝑧) βŠ† 𝑦) ↔ (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† 𝑦)))
7454, 60, 73rexxfr2d 5409 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ (βˆƒπ‘§ ∈ (𝐽 β†Ύt 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 β†Ύ 𝐴) β€œ 𝑧) βŠ† 𝑦) ↔ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† 𝑦)))
7551, 74bitr4d 282 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ (βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦) ↔ βˆƒπ‘§ ∈ (𝐽 β†Ύt 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 β†Ύ 𝐴) β€œ 𝑧) βŠ† 𝑦)))
7612, 75imbi12d 344 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ (((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)) ↔ (((𝐹 β†Ύ 𝐴)β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘§ ∈ (𝐽 β†Ύt 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 β†Ύ 𝐴) β€œ 𝑧) βŠ† 𝑦))))
7776ralbidv 3176 . . . 4 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ (βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)) ↔ βˆ€π‘¦ ∈ 𝐾 (((𝐹 β†Ύ 𝐴)β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘§ ∈ (𝐽 β†Ύt 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 β†Ύ 𝐴) β€œ 𝑧) βŠ† 𝑦))))
78 simp2r 1199 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ 𝐹:π‘‹βŸΆπ‘Œ)
79 simp3 1137 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ 𝐾 ∈ Top)
8056, 9sseldd 3983 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ 𝑃 ∈ 𝑋)
81 cnprest.2 . . . . . . . 8 π‘Œ = βˆͺ 𝐾
825, 81iscnp2 23064 . . . . . . 7 (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃 ∈ 𝑋) ∧ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)))))
8382baib 535 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)))))
8419, 79, 80, 83syl3anc 1370 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)))))
8578, 84mpbirand 704 . . . 4 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦))))
8678, 56fssresd 6758 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ (𝐹 β†Ύ 𝐴):π΄βŸΆπ‘Œ)
875toptopon 22740 . . . . . . . 8 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOnβ€˜π‘‹))
8819, 87sylib 217 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
89 resttopon 22986 . . . . . . 7 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 βŠ† 𝑋) β†’ (𝐽 β†Ύt 𝐴) ∈ (TopOnβ€˜π΄))
9088, 56, 89syl2anc 583 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ (𝐽 β†Ύt 𝐴) ∈ (TopOnβ€˜π΄))
9181toptopon 22740 . . . . . . 7 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOnβ€˜π‘Œ))
9279, 91sylib 217 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
93 iscnp 23062 . . . . . 6 (((𝐽 β†Ύt 𝐴) ∈ (TopOnβ€˜π΄) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝐴) β†’ ((𝐹 β†Ύ 𝐴) ∈ (((𝐽 β†Ύt 𝐴) CnP 𝐾)β€˜π‘ƒ) ↔ ((𝐹 β†Ύ 𝐴):π΄βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 (((𝐹 β†Ύ 𝐴)β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘§ ∈ (𝐽 β†Ύt 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 β†Ύ 𝐴) β€œ 𝑧) βŠ† 𝑦)))))
9490, 92, 9, 93syl3anc 1370 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ ((𝐹 β†Ύ 𝐴) ∈ (((𝐽 β†Ύt 𝐴) CnP 𝐾)β€˜π‘ƒ) ↔ ((𝐹 β†Ύ 𝐴):π΄βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 (((𝐹 β†Ύ 𝐴)β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘§ ∈ (𝐽 β†Ύt 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 β†Ύ 𝐴) β€œ 𝑧) βŠ† 𝑦)))))
9586, 94mpbirand 704 . . . 4 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ ((𝐹 β†Ύ 𝐴) ∈ (((𝐽 β†Ύt 𝐴) CnP 𝐾)β€˜π‘ƒ) ↔ βˆ€π‘¦ ∈ 𝐾 (((𝐹 β†Ύ 𝐴)β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘§ ∈ (𝐽 β†Ύt 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 β†Ύ 𝐴) β€œ 𝑧) βŠ† 𝑦))))
9677, 85, 953bitr4d 311 . . 3 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹 β†Ύ 𝐴) ∈ (((𝐽 β†Ύt 𝐴) CnP 𝐾)β€˜π‘ƒ)))
97963expia 1120 . 2 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ (𝐾 ∈ Top β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹 β†Ύ 𝐴) ∈ (((𝐽 β†Ύt 𝐴) CnP 𝐾)β€˜π‘ƒ))))
982, 4, 97pm5.21ndd 379 1 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹 β†Ύ 𝐴) ∈ (((𝐽 β†Ύt 𝐴) CnP 𝐾)β€˜π‘ƒ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060  βˆƒwrex 3069  Vcvv 3473   ∩ cin 3947   βŠ† wss 3948  βˆͺ cuni 4908   β†Ύ cres 5678   β€œ cima 5679  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7412   β†Ύt crest 17373  Topctop 22716  TopOnctopon 22733  intcnt 22842   CnP ccnp 23050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-map 8828  df-en 8946  df-fin 8949  df-fi 9412  df-rest 17375  df-topgen 17396  df-top 22717  df-topon 22734  df-bases 22770  df-ntr 22845  df-cnp 23053
This theorem is referenced by:  limcres  25736  dvcnvrelem2  25872  psercn  26279  abelth  26294  cxpcn3  26598  efrlim  26816  efrlimOLD  26817  cvmlift2lem11  34770  cvmlift2lem12  34771  cvmlift3lem7  34782  cncfuni  45064  cncfiooicclem1  45071  dirkercncflem4  45284  fourierdlem62  45346
  Copyright terms: Public domain W3C validator