MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnprest Structured version   Visualization version   GIF version

Theorem cnprest 21813
Description: Equivalence of continuity at a point and continuity of the restricted function at a point. (Contributed by Mario Carneiro, 8-Aug-2014.)
Hypotheses
Ref Expression
cnprest.1 𝑋 = 𝐽
cnprest.2 𝑌 = 𝐾
Assertion
Ref Expression
cnprest (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃)))

Proof of Theorem cnprest
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnptop2 21767 . . 3 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐾 ∈ Top)
21a1i 11 . 2 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐾 ∈ Top))
3 cnptop2 21767 . . 3 ((𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃) → 𝐾 ∈ Top)
43a1i 11 . 2 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → ((𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃) → 𝐾 ∈ Top))
5 cnprest.1 . . . . . . . . . . . 12 𝑋 = 𝐽
65ntrss2 21581 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘𝐴) ⊆ 𝐴)
763ad2ant1 1127 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → ((int‘𝐽)‘𝐴) ⊆ 𝐴)
8 simp2l 1193 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → 𝑃 ∈ ((int‘𝐽)‘𝐴))
97, 8sseldd 3971 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → 𝑃𝐴)
109fvresd 6686 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → ((𝐹𝐴)‘𝑃) = (𝐹𝑃))
1110eqcomd 2831 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (𝐹𝑃) = ((𝐹𝐴)‘𝑃))
1211eleq1d 2901 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → ((𝐹𝑃) ∈ 𝑦 ↔ ((𝐹𝐴)‘𝑃) ∈ 𝑦))
13 inss1 4208 . . . . . . . . . . 11 (𝑥𝐴) ⊆ 𝑥
14 imass2 5962 . . . . . . . . . . 11 ((𝑥𝐴) ⊆ 𝑥 → (𝐹 “ (𝑥𝐴)) ⊆ (𝐹𝑥))
15 sstr2 3977 . . . . . . . . . . 11 ((𝐹 “ (𝑥𝐴)) ⊆ (𝐹𝑥) → ((𝐹𝑥) ⊆ 𝑦 → (𝐹 “ (𝑥𝐴)) ⊆ 𝑦))
1613, 14, 15mp2b 10 . . . . . . . . . 10 ((𝐹𝑥) ⊆ 𝑦 → (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)
1716anim2i 616 . . . . . . . . 9 ((𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → (𝑃𝑥 ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦))
1817reximi 3247 . . . . . . . 8 (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦))
19 simp1l 1191 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → 𝐽 ∈ Top)
205ntropn 21573 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘𝐴) ∈ 𝐽)
21203ad2ant1 1127 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → ((int‘𝐽)‘𝐴) ∈ 𝐽)
22 inopn 21423 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ Top ∧ 𝑥𝐽 ∧ ((int‘𝐽)‘𝐴) ∈ 𝐽) → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽)
23223com23 1120 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ ((int‘𝐽)‘𝐴) ∈ 𝐽𝑥𝐽) → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽)
24233expia 1115 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ ((int‘𝐽)‘𝐴) ∈ 𝐽) → (𝑥𝐽 → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽))
2519, 21, 24syl2anc 584 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (𝑥𝐽 → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽))
26 elin 4172 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)) ↔ (𝑃𝑥𝑃 ∈ ((int‘𝐽)‘𝐴)))
2726simplbi2com 503 . . . . . . . . . . . . . . 15 (𝑃 ∈ ((int‘𝐽)‘𝐴) → (𝑃𝑥𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴))))
288, 27syl 17 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (𝑃𝑥𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴))))
29 sslin 4214 . . . . . . . . . . . . . . . . 17 (((int‘𝐽)‘𝐴) ⊆ 𝐴 → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ⊆ (𝑥𝐴))
307, 29syl 17 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ⊆ (𝑥𝐴))
31 imass2 5962 . . . . . . . . . . . . . . . 16 ((𝑥 ∩ ((int‘𝐽)‘𝐴)) ⊆ (𝑥𝐴) → (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ (𝐹 “ (𝑥𝐴)))
3230, 31syl 17 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ (𝐹 “ (𝑥𝐴)))
33 sstr2 3977 . . . . . . . . . . . . . . 15 ((𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ (𝐹 “ (𝑥𝐴)) → ((𝐹 “ (𝑥𝐴)) ⊆ 𝑦 → (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦))
3432, 33syl 17 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → ((𝐹 “ (𝑥𝐴)) ⊆ 𝑦 → (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦))
3528, 34anim12d 608 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → ((𝑃𝑥 ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦) → (𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∧ (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦)))
3625, 35anim12d 608 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → ((𝑥𝐽 ∧ (𝑃𝑥 ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)) → ((𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽 ∧ (𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∧ (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦))))
37 eleq2 2905 . . . . . . . . . . . . . 14 (𝑧 = (𝑥 ∩ ((int‘𝐽)‘𝐴)) → (𝑃𝑧𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴))))
38 imaeq2 5922 . . . . . . . . . . . . . . 15 (𝑧 = (𝑥 ∩ ((int‘𝐽)‘𝐴)) → (𝐹𝑧) = (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))))
3938sseq1d 4001 . . . . . . . . . . . . . 14 (𝑧 = (𝑥 ∩ ((int‘𝐽)‘𝐴)) → ((𝐹𝑧) ⊆ 𝑦 ↔ (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦))
4037, 39anbi12d 630 . . . . . . . . . . . . 13 (𝑧 = (𝑥 ∩ ((int‘𝐽)‘𝐴)) → ((𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦) ↔ (𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∧ (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦)))
4140rspcev 3626 . . . . . . . . . . . 12 (((𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽 ∧ (𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∧ (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦)) → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦))
4236, 41syl6 35 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → ((𝑥𝐽 ∧ (𝑃𝑥 ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)) → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦)))
4342expdimp 453 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) ∧ 𝑥𝐽) → ((𝑃𝑥 ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦) → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦)))
4443rexlimdva 3288 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦) → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦)))
45 eleq2 2905 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝑃𝑧𝑃𝑥))
46 imaeq2 5922 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
4746sseq1d 4001 . . . . . . . . . . 11 (𝑧 = 𝑥 → ((𝐹𝑧) ⊆ 𝑦 ↔ (𝐹𝑥) ⊆ 𝑦))
4845, 47anbi12d 630 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦) ↔ (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))
4948cbvrexvw 3455 . . . . . . . . 9 (∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦) ↔ ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))
5044, 49syl6ib 252 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))
5118, 50impbid2 227 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) ↔ ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)))
52 vex 3502 . . . . . . . . . 10 𝑥 ∈ V
5352inex1 5217 . . . . . . . . 9 (𝑥𝐴) ∈ V
5453a1i 11 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) ∧ 𝑥𝐽) → (𝑥𝐴) ∈ V)
55 uniexg 7460 . . . . . . . . . . 11 (𝐽 ∈ Top → 𝐽 ∈ V)
5619, 55syl 17 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → 𝐽 ∈ V)
57 simp1r 1192 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → 𝐴𝑋)
5857, 5syl6sseq 4020 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → 𝐴 𝐽)
5956, 58ssexd 5224 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → 𝐴 ∈ V)
60 elrest 16693 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝑧 ∈ (𝐽t 𝐴) ↔ ∃𝑥𝐽 𝑧 = (𝑥𝐴)))
6119, 59, 60syl2anc 584 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (𝑧 ∈ (𝐽t 𝐴) ↔ ∃𝑥𝐽 𝑧 = (𝑥𝐴)))
62 eleq2 2905 . . . . . . . . . 10 (𝑧 = (𝑥𝐴) → (𝑃𝑧𝑃 ∈ (𝑥𝐴)))
63 elin 4172 . . . . . . . . . . . 12 (𝑃 ∈ (𝑥𝐴) ↔ (𝑃𝑥𝑃𝐴))
6463rbaib 539 . . . . . . . . . . 11 (𝑃𝐴 → (𝑃 ∈ (𝑥𝐴) ↔ 𝑃𝑥))
659, 64syl 17 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (𝑃 ∈ (𝑥𝐴) ↔ 𝑃𝑥))
6662, 65sylan9bbr 511 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) ∧ 𝑧 = (𝑥𝐴)) → (𝑃𝑧𝑃𝑥))
67 simpr 485 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) ∧ 𝑧 = (𝑥𝐴)) → 𝑧 = (𝑥𝐴))
6867imaeq2d 5926 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) ∧ 𝑧 = (𝑥𝐴)) → ((𝐹𝐴) “ 𝑧) = ((𝐹𝐴) “ (𝑥𝐴)))
69 inss2 4209 . . . . . . . . . . . 12 (𝑥𝐴) ⊆ 𝐴
70 resima2 5886 . . . . . . . . . . . 12 ((𝑥𝐴) ⊆ 𝐴 → ((𝐹𝐴) “ (𝑥𝐴)) = (𝐹 “ (𝑥𝐴)))
7169, 70ax-mp 5 . . . . . . . . . . 11 ((𝐹𝐴) “ (𝑥𝐴)) = (𝐹 “ (𝑥𝐴))
7268, 71syl6eq 2876 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) ∧ 𝑧 = (𝑥𝐴)) → ((𝐹𝐴) “ 𝑧) = (𝐹 “ (𝑥𝐴)))
7372sseq1d 4001 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) ∧ 𝑧 = (𝑥𝐴)) → (((𝐹𝐴) “ 𝑧) ⊆ 𝑦 ↔ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦))
7466, 73anbi12d 630 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) ∧ 𝑧 = (𝑥𝐴)) → ((𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦) ↔ (𝑃𝑥 ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)))
7554, 61, 74rexxfr2d 5307 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦) ↔ ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)))
7651, 75bitr4d 283 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) ↔ ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))
7712, 76imbi12d 346 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ↔ (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦))))
7877ralbidv 3201 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ↔ ∀𝑦𝐾 (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦))))
79 simp2r 1194 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → 𝐹:𝑋𝑌)
80 simp3 1132 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → 𝐾 ∈ Top)
8157, 9sseldd 3971 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → 𝑃𝑋)
82 cnprest.2 . . . . . . . 8 𝑌 = 𝐾
835, 82iscnp2 21763 . . . . . . 7 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
8483baib 536 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
8519, 80, 81, 84syl3anc 1365 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
8679, 85mpbirand 703 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))))
8779, 57fssresd 6541 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (𝐹𝐴):𝐴𝑌)
885toptopon 21441 . . . . . . . 8 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
8919, 88sylib 219 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → 𝐽 ∈ (TopOn‘𝑋))
90 resttopon 21685 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
9189, 57, 90syl2anc 584 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
9282toptopon 21441 . . . . . . 7 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
9380, 92sylib 219 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → 𝐾 ∈ (TopOn‘𝑌))
94 iscnp 21761 . . . . . 6 (((𝐽t 𝐴) ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝐴) → ((𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃) ↔ ((𝐹𝐴):𝐴𝑌 ∧ ∀𝑦𝐾 (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))))
9591, 93, 9, 94syl3anc 1365 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → ((𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃) ↔ ((𝐹𝐴):𝐴𝑌 ∧ ∀𝑦𝐾 (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))))
9687, 95mpbirand 703 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → ((𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃) ↔ ∀𝑦𝐾 (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦))))
9778, 86, 963bitr4d 312 . . 3 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃)))
98973expia 1115 . 2 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → (𝐾 ∈ Top → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃))))
992, 4, 98pm5.21ndd 381 1 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wral 3142  wrex 3143  Vcvv 3499  cin 3938  wss 3939   cuni 4836  cres 5555  cima 5556  wf 6347  cfv 6351  (class class class)co 7151  t crest 16686  Topctop 21417  TopOnctopon 21434  intcnt 21541   CnP ccnp 21749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-oadd 8100  df-er 8282  df-map 8401  df-en 8502  df-fin 8505  df-fi 8867  df-rest 16688  df-topgen 16709  df-top 21418  df-topon 21435  df-bases 21470  df-ntr 21544  df-cnp 21752
This theorem is referenced by:  limcres  24399  dvcnvrelem2  24530  psercn  24929  abelth  24944  cxpcn3  25242  efrlim  25461  cvmlift2lem11  32444  cvmlift2lem12  32445  cvmlift3lem7  32456  cncfuni  42030  cncfiooicclem1  42037  dirkercncflem4  42253  fourierdlem62  42315
  Copyright terms: Public domain W3C validator