MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txrest Structured version   Visualization version   GIF version

Theorem txrest 23660
Description: The subspace of a topological product space induced by a subset with a Cartesian product representation is a topological product of the subspaces induced by the subspaces of the terms of the products. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
txrest (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → ((𝑅 ×t 𝑆) ↾t (𝐴 × 𝐵)) = ((𝑅t 𝐴) ×t (𝑆t 𝐵)))

Proof of Theorem txrest
Dummy variables 𝑠 𝑟 𝑢 𝑣 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . . 6 ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) = ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))
21txval 23593 . . . . 5 ((𝑅𝑉𝑆𝑊) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))))
32adantr 480 . . . 4 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))))
43oveq1d 7463 . . 3 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → ((𝑅 ×t 𝑆) ↾t (𝐴 × 𝐵)) = ((topGen‘ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))) ↾t (𝐴 × 𝐵)))
51txbasex 23595 . . . 4 ((𝑅𝑉𝑆𝑊) → ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) ∈ V)
6 xpexg 7785 . . . 4 ((𝐴𝑋𝐵𝑌) → (𝐴 × 𝐵) ∈ V)
7 tgrest 23188 . . . 4 ((ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) ∈ V ∧ (𝐴 × 𝐵) ∈ V) → (topGen‘(ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) ↾t (𝐴 × 𝐵))) = ((topGen‘ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))) ↾t (𝐴 × 𝐵)))
85, 6, 7syl2an 595 . . 3 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (topGen‘(ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) ↾t (𝐴 × 𝐵))) = ((topGen‘ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))) ↾t (𝐴 × 𝐵)))
9 elrest 17487 . . . . . . . 8 ((ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) ∈ V ∧ (𝐴 × 𝐵) ∈ V) → (𝑥 ∈ (ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) ↾t (𝐴 × 𝐵)) ↔ ∃𝑤 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))𝑥 = (𝑤 ∩ (𝐴 × 𝐵))))
105, 6, 9syl2an 595 . . . . . . 7 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (𝑥 ∈ (ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) ↾t (𝐴 × 𝐵)) ↔ ∃𝑤 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))𝑥 = (𝑤 ∩ (𝐴 × 𝐵))))
11 vex 3492 . . . . . . . . . . 11 𝑟 ∈ V
1211inex1 5335 . . . . . . . . . 10 (𝑟𝐴) ∈ V
1312a1i 11 . . . . . . . . 9 ((((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑟𝑅) → (𝑟𝐴) ∈ V)
14 elrest 17487 . . . . . . . . . 10 ((𝑅𝑉𝐴𝑋) → (𝑢 ∈ (𝑅t 𝐴) ↔ ∃𝑟𝑅 𝑢 = (𝑟𝐴)))
1514ad2ant2r 746 . . . . . . . . 9 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (𝑢 ∈ (𝑅t 𝐴) ↔ ∃𝑟𝑅 𝑢 = (𝑟𝐴)))
16 xpeq1 5714 . . . . . . . . . . . 12 (𝑢 = (𝑟𝐴) → (𝑢 × 𝑣) = ((𝑟𝐴) × 𝑣))
1716eqeq2d 2751 . . . . . . . . . . 11 (𝑢 = (𝑟𝐴) → (𝑥 = (𝑢 × 𝑣) ↔ 𝑥 = ((𝑟𝐴) × 𝑣)))
1817rexbidv 3185 . . . . . . . . . 10 (𝑢 = (𝑟𝐴) → (∃𝑣 ∈ (𝑆t 𝐵)𝑥 = (𝑢 × 𝑣) ↔ ∃𝑣 ∈ (𝑆t 𝐵)𝑥 = ((𝑟𝐴) × 𝑣)))
19 vex 3492 . . . . . . . . . . . . 13 𝑠 ∈ V
2019inex1 5335 . . . . . . . . . . . 12 (𝑠𝐵) ∈ V
2120a1i 11 . . . . . . . . . . 11 ((((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑠𝑆) → (𝑠𝐵) ∈ V)
22 elrest 17487 . . . . . . . . . . . 12 ((𝑆𝑊𝐵𝑌) → (𝑣 ∈ (𝑆t 𝐵) ↔ ∃𝑠𝑆 𝑣 = (𝑠𝐵)))
2322ad2ant2l 745 . . . . . . . . . . 11 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (𝑣 ∈ (𝑆t 𝐵) ↔ ∃𝑠𝑆 𝑣 = (𝑠𝐵)))
24 xpeq2 5721 . . . . . . . . . . . . 13 (𝑣 = (𝑠𝐵) → ((𝑟𝐴) × 𝑣) = ((𝑟𝐴) × (𝑠𝐵)))
2524eqeq2d 2751 . . . . . . . . . . . 12 (𝑣 = (𝑠𝐵) → (𝑥 = ((𝑟𝐴) × 𝑣) ↔ 𝑥 = ((𝑟𝐴) × (𝑠𝐵))))
2625adantl 481 . . . . . . . . . . 11 ((((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑣 = (𝑠𝐵)) → (𝑥 = ((𝑟𝐴) × 𝑣) ↔ 𝑥 = ((𝑟𝐴) × (𝑠𝐵))))
2721, 23, 26rexxfr2d 5429 . . . . . . . . . 10 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (∃𝑣 ∈ (𝑆t 𝐵)𝑥 = ((𝑟𝐴) × 𝑣) ↔ ∃𝑠𝑆 𝑥 = ((𝑟𝐴) × (𝑠𝐵))))
2818, 27sylan9bbr 510 . . . . . . . . 9 ((((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑢 = (𝑟𝐴)) → (∃𝑣 ∈ (𝑆t 𝐵)𝑥 = (𝑢 × 𝑣) ↔ ∃𝑠𝑆 𝑥 = ((𝑟𝐴) × (𝑠𝐵))))
2913, 15, 28rexxfr2d 5429 . . . . . . . 8 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (∃𝑢 ∈ (𝑅t 𝐴)∃𝑣 ∈ (𝑆t 𝐵)𝑥 = (𝑢 × 𝑣) ↔ ∃𝑟𝑅𝑠𝑆 𝑥 = ((𝑟𝐴) × (𝑠𝐵))))
3011, 19xpex 7788 . . . . . . . . . 10 (𝑟 × 𝑠) ∈ V
3130rgen2w 3072 . . . . . . . . 9 𝑟𝑅𝑠𝑆 (𝑟 × 𝑠) ∈ V
32 eqid 2740 . . . . . . . . . 10 (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) = (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))
33 ineq1 4234 . . . . . . . . . . . 12 (𝑤 = (𝑟 × 𝑠) → (𝑤 ∩ (𝐴 × 𝐵)) = ((𝑟 × 𝑠) ∩ (𝐴 × 𝐵)))
34 inxp 5856 . . . . . . . . . . . 12 ((𝑟 × 𝑠) ∩ (𝐴 × 𝐵)) = ((𝑟𝐴) × (𝑠𝐵))
3533, 34eqtrdi 2796 . . . . . . . . . . 11 (𝑤 = (𝑟 × 𝑠) → (𝑤 ∩ (𝐴 × 𝐵)) = ((𝑟𝐴) × (𝑠𝐵)))
3635eqeq2d 2751 . . . . . . . . . 10 (𝑤 = (𝑟 × 𝑠) → (𝑥 = (𝑤 ∩ (𝐴 × 𝐵)) ↔ 𝑥 = ((𝑟𝐴) × (𝑠𝐵))))
3732, 36rexrnmpo 7590 . . . . . . . . 9 (∀𝑟𝑅𝑠𝑆 (𝑟 × 𝑠) ∈ V → (∃𝑤 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))𝑥 = (𝑤 ∩ (𝐴 × 𝐵)) ↔ ∃𝑟𝑅𝑠𝑆 𝑥 = ((𝑟𝐴) × (𝑠𝐵))))
3831, 37ax-mp 5 . . . . . . . 8 (∃𝑤 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))𝑥 = (𝑤 ∩ (𝐴 × 𝐵)) ↔ ∃𝑟𝑅𝑠𝑆 𝑥 = ((𝑟𝐴) × (𝑠𝐵)))
3929, 38bitr4di 289 . . . . . . 7 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (∃𝑢 ∈ (𝑅t 𝐴)∃𝑣 ∈ (𝑆t 𝐵)𝑥 = (𝑢 × 𝑣) ↔ ∃𝑤 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))𝑥 = (𝑤 ∩ (𝐴 × 𝐵))))
4010, 39bitr4d 282 . . . . . 6 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (𝑥 ∈ (ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) ↾t (𝐴 × 𝐵)) ↔ ∃𝑢 ∈ (𝑅t 𝐴)∃𝑣 ∈ (𝑆t 𝐵)𝑥 = (𝑢 × 𝑣)))
4140eqabdv 2878 . . . . 5 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) ↾t (𝐴 × 𝐵)) = {𝑥 ∣ ∃𝑢 ∈ (𝑅t 𝐴)∃𝑣 ∈ (𝑆t 𝐵)𝑥 = (𝑢 × 𝑣)})
42 eqid 2740 . . . . . 6 (𝑢 ∈ (𝑅t 𝐴), 𝑣 ∈ (𝑆t 𝐵) ↦ (𝑢 × 𝑣)) = (𝑢 ∈ (𝑅t 𝐴), 𝑣 ∈ (𝑆t 𝐵) ↦ (𝑢 × 𝑣))
4342rnmpo 7583 . . . . 5 ran (𝑢 ∈ (𝑅t 𝐴), 𝑣 ∈ (𝑆t 𝐵) ↦ (𝑢 × 𝑣)) = {𝑥 ∣ ∃𝑢 ∈ (𝑅t 𝐴)∃𝑣 ∈ (𝑆t 𝐵)𝑥 = (𝑢 × 𝑣)}
4441, 43eqtr4di 2798 . . . 4 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) ↾t (𝐴 × 𝐵)) = ran (𝑢 ∈ (𝑅t 𝐴), 𝑣 ∈ (𝑆t 𝐵) ↦ (𝑢 × 𝑣)))
4544fveq2d 6924 . . 3 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (topGen‘(ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) ↾t (𝐴 × 𝐵))) = (topGen‘ran (𝑢 ∈ (𝑅t 𝐴), 𝑣 ∈ (𝑆t 𝐵) ↦ (𝑢 × 𝑣))))
464, 8, 453eqtr2d 2786 . 2 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → ((𝑅 ×t 𝑆) ↾t (𝐴 × 𝐵)) = (topGen‘ran (𝑢 ∈ (𝑅t 𝐴), 𝑣 ∈ (𝑆t 𝐵) ↦ (𝑢 × 𝑣))))
47 ovex 7481 . . 3 (𝑅t 𝐴) ∈ V
48 ovex 7481 . . 3 (𝑆t 𝐵) ∈ V
49 eqid 2740 . . . 4 ran (𝑢 ∈ (𝑅t 𝐴), 𝑣 ∈ (𝑆t 𝐵) ↦ (𝑢 × 𝑣)) = ran (𝑢 ∈ (𝑅t 𝐴), 𝑣 ∈ (𝑆t 𝐵) ↦ (𝑢 × 𝑣))
5049txval 23593 . . 3 (((𝑅t 𝐴) ∈ V ∧ (𝑆t 𝐵) ∈ V) → ((𝑅t 𝐴) ×t (𝑆t 𝐵)) = (topGen‘ran (𝑢 ∈ (𝑅t 𝐴), 𝑣 ∈ (𝑆t 𝐵) ↦ (𝑢 × 𝑣))))
5147, 48, 50mp2an 691 . 2 ((𝑅t 𝐴) ×t (𝑆t 𝐵)) = (topGen‘ran (𝑢 ∈ (𝑅t 𝐴), 𝑣 ∈ (𝑆t 𝐵) ↦ (𝑢 × 𝑣)))
5246, 51eqtr4di 2798 1 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → ((𝑅 ×t 𝑆) ↾t (𝐴 × 𝐵)) = ((𝑅t 𝐴) ×t (𝑆t 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wrex 3076  Vcvv 3488  cin 3975   × cxp 5698  ran crn 5701  cfv 6573  (class class class)co 7448  cmpo 7450  t crest 17480  topGenctg 17497   ×t ctx 23589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-rest 17482  df-topgen 17503  df-tx 23591
This theorem is referenced by:  txlly  23665  txnlly  23666  txkgen  23681  cnmpt2res  23706  xkoinjcn  23716  cnmpopc  24974  cnheiborlem  25005  lhop1lem  26072  cxpcn3  26809  raddcn  33875  cvmlift2lem6  35276  cvmlift2lem9  35279  cvmlift2lem12  35282
  Copyright terms: Public domain W3C validator