Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djhcvat42 Structured version   Visualization version   GIF version

Theorem djhcvat42 37392
Description: A covering property. (cvrat42 35421 analog.) (Contributed by NM, 17-Aug-2014.)
Hypotheses
Ref Expression
djhcvat42.h 𝐻 = (LHyp‘𝐾)
djhcvat42.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
djhcvat42.v 𝑉 = (Base‘𝑈)
djhcvat42.o 0 = (0g𝑈)
djhcvat42.n 𝑁 = (LSpan‘𝑈)
djhcvat42.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
djhcvat42.j = ((joinH‘𝐾)‘𝑊)
djhcvat42.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
djhcvat42.s (𝜑𝑆 ∈ ran 𝐼)
djhcvat42.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
djhcvat42.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
Assertion
Ref Expression
djhcvat42 (𝜑 → ((𝑆 ≠ { 0 } ∧ (𝑁‘{𝑋}) ⊆ (𝑆 (𝑁‘{𝑌}))) → ∃𝑧 ∈ (𝑉 ∖ { 0 })((𝑁‘{𝑧}) ⊆ 𝑆 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑧}) (𝑁‘{𝑌})))))
Distinct variable groups:   𝑧,𝐼   𝑧,𝐾   𝑧,𝑁   𝜑,𝑧   𝑧,𝑊   𝑧,𝑆   𝑧,𝑉   𝑧,𝑋   𝑧,𝑌
Allowed substitution hints:   𝑈(𝑧)   𝐻(𝑧)   (𝑧)   0 (𝑧)

Proof of Theorem djhcvat42
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 djhcvat42.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
21simpld 488 . . 3 (𝜑𝐾 ∈ HL)
3 djhcvat42.s . . . 4 (𝜑𝑆 ∈ ran 𝐼)
4 eqid 2765 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
5 djhcvat42.h . . . . 5 𝐻 = (LHyp‘𝐾)
6 djhcvat42.i . . . . 5 𝐼 = ((DIsoH‘𝐾)‘𝑊)
74, 5, 6dihcnvcl 37248 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆 ∈ ran 𝐼) → (𝐼𝑆) ∈ (Base‘𝐾))
81, 3, 7syl2anc 579 . . 3 (𝜑 → (𝐼𝑆) ∈ (Base‘𝐾))
9 djhcvat42.x . . . . 5 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
109eldifad 3746 . . . 4 (𝜑𝑋𝑉)
11 eldifsni 4478 . . . . 5 (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋0 )
129, 11syl 17 . . . 4 (𝜑𝑋0 )
13 eqid 2765 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
14 djhcvat42.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
15 djhcvat42.v . . . . 5 𝑉 = (Base‘𝑈)
16 djhcvat42.o . . . . 5 0 = (0g𝑈)
17 djhcvat42.n . . . . 5 𝑁 = (LSpan‘𝑈)
1813, 5, 14, 15, 16, 17, 6dihlspsnat 37310 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) → (𝐼‘(𝑁‘{𝑋})) ∈ (Atoms‘𝐾))
191, 10, 12, 18syl3anc 1490 . . 3 (𝜑 → (𝐼‘(𝑁‘{𝑋})) ∈ (Atoms‘𝐾))
20 djhcvat42.y . . . . 5 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
2120eldifad 3746 . . . 4 (𝜑𝑌𝑉)
22 eldifsni 4478 . . . . 5 (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌0 )
2320, 22syl 17 . . . 4 (𝜑𝑌0 )
2413, 5, 14, 15, 16, 17, 6dihlspsnat 37310 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉𝑌0 ) → (𝐼‘(𝑁‘{𝑌})) ∈ (Atoms‘𝐾))
251, 21, 23, 24syl3anc 1490 . . 3 (𝜑 → (𝐼‘(𝑁‘{𝑌})) ∈ (Atoms‘𝐾))
26 eqid 2765 . . . 4 (le‘𝐾) = (le‘𝐾)
27 eqid 2765 . . . 4 (join‘𝐾) = (join‘𝐾)
28 eqid 2765 . . . 4 (0.‘𝐾) = (0.‘𝐾)
294, 26, 27, 28, 13cvrat42 35421 . . 3 ((𝐾 ∈ HL ∧ ((𝐼𝑆) ∈ (Base‘𝐾) ∧ (𝐼‘(𝑁‘{𝑋})) ∈ (Atoms‘𝐾) ∧ (𝐼‘(𝑁‘{𝑌})) ∈ (Atoms‘𝐾))) → (((𝐼𝑆) ≠ (0.‘𝐾) ∧ (𝐼‘(𝑁‘{𝑋}))(le‘𝐾)((𝐼𝑆)(join‘𝐾)(𝐼‘(𝑁‘{𝑌})))) → ∃𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝐼𝑆) ∧ (𝐼‘(𝑁‘{𝑋}))(le‘𝐾)(𝑟(join‘𝐾)(𝐼‘(𝑁‘{𝑌}))))))
302, 8, 19, 25, 29syl13anc 1491 . 2 (𝜑 → (((𝐼𝑆) ≠ (0.‘𝐾) ∧ (𝐼‘(𝑁‘{𝑋}))(le‘𝐾)((𝐼𝑆)(join‘𝐾)(𝐼‘(𝑁‘{𝑌})))) → ∃𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝐼𝑆) ∧ (𝐼‘(𝑁‘{𝑋}))(le‘𝐾)(𝑟(join‘𝐾)(𝐼‘(𝑁‘{𝑌}))))))
315, 28, 6, 14, 15, 16, 17, 1, 3dih0sb 37262 . . . 4 (𝜑 → (𝑆 = { 0 } ↔ (𝐼𝑆) = (0.‘𝐾)))
3231necon3bid 2981 . . 3 (𝜑 → (𝑆 ≠ { 0 } ↔ (𝐼𝑆) ≠ (0.‘𝐾)))
335, 14, 15, 17, 6dihlsprn 37308 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ ran 𝐼)
341, 10, 33syl2anc 579 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ∈ ran 𝐼)
355, 14, 6, 15dihrnss 37255 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆 ∈ ran 𝐼) → 𝑆𝑉)
361, 3, 35syl2anc 579 . . . . . 6 (𝜑𝑆𝑉)
375, 14, 15, 17, 6dihlsprn 37308 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ ran 𝐼)
381, 21, 37syl2anc 579 . . . . . . 7 (𝜑 → (𝑁‘{𝑌}) ∈ ran 𝐼)
395, 14, 6, 15dihrnss 37255 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑁‘{𝑌}) ∈ ran 𝐼) → (𝑁‘{𝑌}) ⊆ 𝑉)
401, 38, 39syl2anc 579 . . . . . 6 (𝜑 → (𝑁‘{𝑌}) ⊆ 𝑉)
41 djhcvat42.j . . . . . . 7 = ((joinH‘𝐾)‘𝑊)
425, 6, 14, 15, 41djhcl 37377 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝑉 ∧ (𝑁‘{𝑌}) ⊆ 𝑉)) → (𝑆 (𝑁‘{𝑌})) ∈ ran 𝐼)
431, 36, 40, 42syl12anc 865 . . . . 5 (𝜑 → (𝑆 (𝑁‘{𝑌})) ∈ ran 𝐼)
4426, 5, 6, 1, 34, 43dihcnvord 37251 . . . 4 (𝜑 → ((𝐼‘(𝑁‘{𝑋}))(le‘𝐾)(𝐼‘(𝑆 (𝑁‘{𝑌}))) ↔ (𝑁‘{𝑋}) ⊆ (𝑆 (𝑁‘{𝑌}))))
4527, 5, 6, 41, 1, 3, 38djhj 37381 . . . . 5 (𝜑 → (𝐼‘(𝑆 (𝑁‘{𝑌}))) = ((𝐼𝑆)(join‘𝐾)(𝐼‘(𝑁‘{𝑌}))))
4645breq2d 4823 . . . 4 (𝜑 → ((𝐼‘(𝑁‘{𝑋}))(le‘𝐾)(𝐼‘(𝑆 (𝑁‘{𝑌}))) ↔ (𝐼‘(𝑁‘{𝑋}))(le‘𝐾)((𝐼𝑆)(join‘𝐾)(𝐼‘(𝑁‘{𝑌})))))
4744, 46bitr3d 272 . . 3 (𝜑 → ((𝑁‘{𝑋}) ⊆ (𝑆 (𝑁‘{𝑌})) ↔ (𝐼‘(𝑁‘{𝑋}))(le‘𝐾)((𝐼𝑆)(join‘𝐾)(𝐼‘(𝑁‘{𝑌})))))
4832, 47anbi12d 624 . 2 (𝜑 → ((𝑆 ≠ { 0 } ∧ (𝑁‘{𝑋}) ⊆ (𝑆 (𝑁‘{𝑌}))) ↔ ((𝐼𝑆) ≠ (0.‘𝐾) ∧ (𝐼‘(𝑁‘{𝑋}))(le‘𝐾)((𝐼𝑆)(join‘𝐾)(𝐼‘(𝑁‘{𝑌}))))))
491adantr 472 . . . . 5 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → (𝐾 ∈ HL ∧ 𝑊𝐻))
50 eldifi 3896 . . . . . 6 (𝑧 ∈ (𝑉 ∖ { 0 }) → 𝑧𝑉)
5150adantl 473 . . . . 5 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → 𝑧𝑉)
52 eldifsni 4478 . . . . . 6 (𝑧 ∈ (𝑉 ∖ { 0 }) → 𝑧0 )
5352adantl 473 . . . . 5 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → 𝑧0 )
5413, 5, 14, 15, 16, 17, 6dihlspsnat 37310 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑧𝑉𝑧0 ) → (𝐼‘(𝑁‘{𝑧})) ∈ (Atoms‘𝐾))
5549, 51, 53, 54syl3anc 1490 . . . 4 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → (𝐼‘(𝑁‘{𝑧})) ∈ (Atoms‘𝐾))
5613, 5, 14, 15, 16, 17, 6, 1dihatexv2 37316 . . . 4 (𝜑 → (𝑟 ∈ (Atoms‘𝐾) ↔ ∃𝑧 ∈ (𝑉 ∖ { 0 })𝑟 = (𝐼‘(𝑁‘{𝑧}))))
57 breq1 4814 . . . . . 6 (𝑟 = (𝐼‘(𝑁‘{𝑧})) → (𝑟(le‘𝐾)(𝐼𝑆) ↔ (𝐼‘(𝑁‘{𝑧}))(le‘𝐾)(𝐼𝑆)))
58 oveq1 6853 . . . . . . 7 (𝑟 = (𝐼‘(𝑁‘{𝑧})) → (𝑟(join‘𝐾)(𝐼‘(𝑁‘{𝑌}))) = ((𝐼‘(𝑁‘{𝑧}))(join‘𝐾)(𝐼‘(𝑁‘{𝑌}))))
5958breq2d 4823 . . . . . 6 (𝑟 = (𝐼‘(𝑁‘{𝑧})) → ((𝐼‘(𝑁‘{𝑋}))(le‘𝐾)(𝑟(join‘𝐾)(𝐼‘(𝑁‘{𝑌}))) ↔ (𝐼‘(𝑁‘{𝑋}))(le‘𝐾)((𝐼‘(𝑁‘{𝑧}))(join‘𝐾)(𝐼‘(𝑁‘{𝑌})))))
6057, 59anbi12d 624 . . . . 5 (𝑟 = (𝐼‘(𝑁‘{𝑧})) → ((𝑟(le‘𝐾)(𝐼𝑆) ∧ (𝐼‘(𝑁‘{𝑋}))(le‘𝐾)(𝑟(join‘𝐾)(𝐼‘(𝑁‘{𝑌})))) ↔ ((𝐼‘(𝑁‘{𝑧}))(le‘𝐾)(𝐼𝑆) ∧ (𝐼‘(𝑁‘{𝑋}))(le‘𝐾)((𝐼‘(𝑁‘{𝑧}))(join‘𝐾)(𝐼‘(𝑁‘{𝑌}))))))
6160adantl 473 . . . 4 ((𝜑𝑟 = (𝐼‘(𝑁‘{𝑧}))) → ((𝑟(le‘𝐾)(𝐼𝑆) ∧ (𝐼‘(𝑁‘{𝑋}))(le‘𝐾)(𝑟(join‘𝐾)(𝐼‘(𝑁‘{𝑌})))) ↔ ((𝐼‘(𝑁‘{𝑧}))(le‘𝐾)(𝐼𝑆) ∧ (𝐼‘(𝑁‘{𝑋}))(le‘𝐾)((𝐼‘(𝑁‘{𝑧}))(join‘𝐾)(𝐼‘(𝑁‘{𝑌}))))))
6255, 56, 61rexxfr2d 5048 . . 3 (𝜑 → (∃𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝐼𝑆) ∧ (𝐼‘(𝑁‘{𝑋}))(le‘𝐾)(𝑟(join‘𝐾)(𝐼‘(𝑁‘{𝑌})))) ↔ ∃𝑧 ∈ (𝑉 ∖ { 0 })((𝐼‘(𝑁‘{𝑧}))(le‘𝐾)(𝐼𝑆) ∧ (𝐼‘(𝑁‘{𝑋}))(le‘𝐾)((𝐼‘(𝑁‘{𝑧}))(join‘𝐾)(𝐼‘(𝑁‘{𝑌}))))))
635, 14, 15, 17, 6dihlsprn 37308 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑧𝑉) → (𝑁‘{𝑧}) ∈ ran 𝐼)
6449, 51, 63syl2anc 579 . . . . . 6 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → (𝑁‘{𝑧}) ∈ ran 𝐼)
653adantr 472 . . . . . 6 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → 𝑆 ∈ ran 𝐼)
6626, 5, 6, 49, 64, 65dihcnvord 37251 . . . . 5 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → ((𝐼‘(𝑁‘{𝑧}))(le‘𝐾)(𝐼𝑆) ↔ (𝑁‘{𝑧}) ⊆ 𝑆))
6738adantr 472 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → (𝑁‘{𝑌}) ∈ ran 𝐼)
6827, 5, 6, 41, 49, 64, 67djhj 37381 . . . . . . 7 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → (𝐼‘((𝑁‘{𝑧}) (𝑁‘{𝑌}))) = ((𝐼‘(𝑁‘{𝑧}))(join‘𝐾)(𝐼‘(𝑁‘{𝑌}))))
6968breq2d 4823 . . . . . 6 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → ((𝐼‘(𝑁‘{𝑋}))(le‘𝐾)(𝐼‘((𝑁‘{𝑧}) (𝑁‘{𝑌}))) ↔ (𝐼‘(𝑁‘{𝑋}))(le‘𝐾)((𝐼‘(𝑁‘{𝑧}))(join‘𝐾)(𝐼‘(𝑁‘{𝑌})))))
7010adantr 472 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → 𝑋𝑉)
7149, 70, 33syl2anc 579 . . . . . . 7 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → (𝑁‘{𝑋}) ∈ ran 𝐼)
725, 14, 6, 15dihrnss 37255 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑁‘{𝑧}) ∈ ran 𝐼) → (𝑁‘{𝑧}) ⊆ 𝑉)
7349, 64, 72syl2anc 579 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → (𝑁‘{𝑧}) ⊆ 𝑉)
7440adantr 472 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → (𝑁‘{𝑌}) ⊆ 𝑉)
755, 6, 14, 15, 41djhcl 37377 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑁‘{𝑧}) ⊆ 𝑉 ∧ (𝑁‘{𝑌}) ⊆ 𝑉)) → ((𝑁‘{𝑧}) (𝑁‘{𝑌})) ∈ ran 𝐼)
7649, 73, 74, 75syl12anc 865 . . . . . . 7 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → ((𝑁‘{𝑧}) (𝑁‘{𝑌})) ∈ ran 𝐼)
7726, 5, 6, 49, 71, 76dihcnvord 37251 . . . . . 6 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → ((𝐼‘(𝑁‘{𝑋}))(le‘𝐾)(𝐼‘((𝑁‘{𝑧}) (𝑁‘{𝑌}))) ↔ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑧}) (𝑁‘{𝑌}))))
7869, 77bitr3d 272 . . . . 5 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → ((𝐼‘(𝑁‘{𝑋}))(le‘𝐾)((𝐼‘(𝑁‘{𝑧}))(join‘𝐾)(𝐼‘(𝑁‘{𝑌}))) ↔ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑧}) (𝑁‘{𝑌}))))
7966, 78anbi12d 624 . . . 4 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → (((𝐼‘(𝑁‘{𝑧}))(le‘𝐾)(𝐼𝑆) ∧ (𝐼‘(𝑁‘{𝑋}))(le‘𝐾)((𝐼‘(𝑁‘{𝑧}))(join‘𝐾)(𝐼‘(𝑁‘{𝑌})))) ↔ ((𝑁‘{𝑧}) ⊆ 𝑆 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑧}) (𝑁‘{𝑌})))))
8079rexbidva 3196 . . 3 (𝜑 → (∃𝑧 ∈ (𝑉 ∖ { 0 })((𝐼‘(𝑁‘{𝑧}))(le‘𝐾)(𝐼𝑆) ∧ (𝐼‘(𝑁‘{𝑋}))(le‘𝐾)((𝐼‘(𝑁‘{𝑧}))(join‘𝐾)(𝐼‘(𝑁‘{𝑌})))) ↔ ∃𝑧 ∈ (𝑉 ∖ { 0 })((𝑁‘{𝑧}) ⊆ 𝑆 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑧}) (𝑁‘{𝑌})))))
8162, 80bitr2d 271 . 2 (𝜑 → (∃𝑧 ∈ (𝑉 ∖ { 0 })((𝑁‘{𝑧}) ⊆ 𝑆 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑧}) (𝑁‘{𝑌}))) ↔ ∃𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝐼𝑆) ∧ (𝐼‘(𝑁‘{𝑋}))(le‘𝐾)(𝑟(join‘𝐾)(𝐼‘(𝑁‘{𝑌}))))))
8230, 48, 813imtr4d 285 1 (𝜑 → ((𝑆 ≠ { 0 } ∧ (𝑁‘{𝑋}) ⊆ (𝑆 (𝑁‘{𝑌}))) → ∃𝑧 ∈ (𝑉 ∖ { 0 })((𝑁‘{𝑧}) ⊆ 𝑆 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑧}) (𝑁‘{𝑌})))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wne 2937  wrex 3056  cdif 3731  wss 3734  {csn 4336   class class class wbr 4811  ccnv 5278  ran crn 5280  cfv 6070  (class class class)co 6846  Basecbs 16144  lecple 16235  0gc0g 16380  joincjn 17224  0.cp0 17317  LSpanclspn 19257  Atomscatm 35240  HLchlt 35327  LHypclh 35961  DVecHcdvh 37055  DIsoHcdih 37205  joinHcdjh 37371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-riotaBAD 34930
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-om 7268  df-1st 7370  df-2nd 7371  df-tpos 7559  df-undef 7606  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-oadd 7772  df-er 7951  df-map 8066  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-nn 11279  df-2 11339  df-3 11340  df-4 11341  df-5 11342  df-6 11343  df-n0 11543  df-z 11629  df-uz 11892  df-fz 12539  df-struct 16146  df-ndx 16147  df-slot 16148  df-base 16150  df-sets 16151  df-ress 16152  df-plusg 16241  df-mulr 16242  df-sca 16244  df-vsca 16245  df-0g 16382  df-proset 17208  df-poset 17226  df-plt 17238  df-lub 17254  df-glb 17255  df-join 17256  df-meet 17257  df-p0 17319  df-p1 17320  df-lat 17326  df-clat 17388  df-mgm 17522  df-sgrp 17564  df-mnd 17575  df-submnd 17616  df-grp 17706  df-minusg 17707  df-sbg 17708  df-subg 17869  df-cntz 18027  df-lsm 18329  df-cmn 18475  df-abl 18476  df-mgp 18771  df-ur 18783  df-ring 18830  df-oppr 18904  df-dvdsr 18922  df-unit 18923  df-invr 18953  df-dvr 18964  df-drng 19032  df-lmod 19148  df-lss 19216  df-lsp 19258  df-lvec 19389  df-lsatoms 34953  df-oposet 35153  df-ol 35155  df-oml 35156  df-covers 35243  df-ats 35244  df-atl 35275  df-cvlat 35299  df-hlat 35328  df-llines 35475  df-lplanes 35476  df-lvols 35477  df-lines 35478  df-psubsp 35480  df-pmap 35481  df-padd 35773  df-lhyp 35965  df-laut 35966  df-ldil 36081  df-ltrn 36082  df-trl 36136  df-tendo 36732  df-edring 36734  df-disoa 37006  df-dvech 37056  df-dib 37116  df-dic 37150  df-dih 37206  df-doch 37325  df-djh 37372
This theorem is referenced by:  dihjat1lem  37405
  Copyright terms: Public domain W3C validator