MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexrn Structured version   Visualization version   GIF version

Theorem rexrn 6587
Description: Restricted existential quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.)
Hypothesis
Ref Expression
rexrn.1 (𝑥 = (𝐹𝑦) → (𝜑𝜓))
Assertion
Ref Expression
rexrn (𝐹 Fn 𝐴 → (∃𝑥 ∈ ran 𝐹𝜑 ↔ ∃𝑦𝐴 𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem rexrn
StepHypRef Expression
1 fvexd 6426 . 2 ((𝐹 Fn 𝐴𝑦𝐴) → (𝐹𝑦) ∈ V)
2 fvelrnb 6468 . . 3 (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦𝐴 (𝐹𝑦) = 𝑥))
3 eqcom 2806 . . . 4 ((𝐹𝑦) = 𝑥𝑥 = (𝐹𝑦))
43rexbii 3222 . . 3 (∃𝑦𝐴 (𝐹𝑦) = 𝑥 ↔ ∃𝑦𝐴 𝑥 = (𝐹𝑦))
52, 4syl6bb 279 . 2 (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦𝐴 𝑥 = (𝐹𝑦)))
6 rexrn.1 . . 3 (𝑥 = (𝐹𝑦) → (𝜑𝜓))
76adantl 474 . 2 ((𝐹 Fn 𝐴𝑥 = (𝐹𝑦)) → (𝜑𝜓))
81, 5, 7rexxfr2d 5081 1 (𝐹 Fn 𝐴 → (∃𝑥 ∈ ran 𝐹𝜑 ↔ ∃𝑦𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  wrex 3090  Vcvv 3385  ran crn 5313   Fn wfn 6096  cfv 6101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pr 5097
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-iota 6064  df-fun 6103  df-fn 6104  df-fv 6109
This theorem is referenced by:  elrnrexdm  6589  wemapwe  8844  rexanuz  14426  climsup  14741  supcvg  14926  ruclem12  15306  prmreclem6  15958  vdwmc  16015  znunit  20233  lmbr2  21392  lmff  21434  1stcfb  21577  imasf1oxms  22622  lebnumlem3  23090  lmmbr2  23385  lmcau  23439  bcthlem4  23453  mbfsup  23772  itg2monolem1  23858  itg2gt0  23868  ostth  25680  uhgrvtxedgiedgb  26371  uhgrvtxedgiedgbOLD  26372  dfnbgr3  26573  vdn0conngrumgrv2  27540  erdszelem10  31699  neibastop2lem  32867  filnetlem4  32888  mblfinlem2  33936  istotbnd3  34057  sstotbnd  34061  heibor  34107  nacsfix  38061  fnwe2lem2  38406  climinf  40582
  Copyright terms: Public domain W3C validator