MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexima Structured version   Visualization version   GIF version

Theorem rexima 7178
Description: Existential quantification under an image in terms of the base set. (Contributed by Stefan O'Rear, 21-Jan-2015.) Reduce DV conditions. (Revised by Matthew House, 14-Aug-2025.)
Hypothesis
Ref Expression
ralima.x (𝑥 = (𝐹𝑦) → (𝜑𝜓))
Assertion
Ref Expression
rexima ((𝐹 Fn 𝐴𝐵𝐴) → (∃𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∃𝑦𝐵 𝜓))
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝑥,𝐹,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem rexima
StepHypRef Expression
1 ralima.x . . . . 5 (𝑥 = (𝐹𝑦) → (𝜑𝜓))
21notbid 318 . . . 4 (𝑥 = (𝐹𝑦) → (¬ 𝜑 ↔ ¬ 𝜓))
32ralima 7177 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑥 ∈ (𝐹𝐵) ¬ 𝜑 ↔ ∀𝑦𝐵 ¬ 𝜓))
43notbid 318 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (¬ ∀𝑥 ∈ (𝐹𝐵) ¬ 𝜑 ↔ ¬ ∀𝑦𝐵 ¬ 𝜓))
5 dfrex2 3056 . 2 (∃𝑥 ∈ (𝐹𝐵)𝜑 ↔ ¬ ∀𝑥 ∈ (𝐹𝐵) ¬ 𝜑)
6 dfrex2 3056 . 2 (∃𝑦𝐵 𝜓 ↔ ¬ ∀𝑦𝐵 ¬ 𝜓)
74, 5, 63bitr4g 314 1 ((𝐹 Fn 𝐴𝐵𝐴) → (∃𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∃𝑦𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wral 3044  wrex 3053  wss 3905  cima 5626   Fn wfn 6481  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494
This theorem is referenced by:  supisolem  9383  ipodrsima  18465  lmflf  23908  caucfil  25199  dyadmbllem  25516  lhop1lem  25934  negsid  27970  negsunif  27984  nummin  35057  vonf1owev  35080  mblfinlem1  37636  itg2gt0cn  37654
  Copyright terms: Public domain W3C validator