Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumfsup Structured version   Visualization version   GIF version

Theorem esumfsup 31329
Description: Formulating an extended sum over integers using the recursive sequence builder. (Contributed by Thierry Arnoux, 18-Oct-2017.)
Hypothesis
Ref Expression
esumfsup.1 𝑘𝐹
Assertion
Ref Expression
esumfsup (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ ℕ(𝐹𝑘) = sup(ran seq1( +𝑒 , 𝐹), ℝ*, < ))

Proof of Theorem esumfsup
Dummy variables 𝑎 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1z 12013 . . . . . 6 1 ∈ ℤ
2 seqfn 13382 . . . . . 6 (1 ∈ ℤ → seq1( +𝑒 , 𝐹) Fn (ℤ‘1))
31, 2ax-mp 5 . . . . 5 seq1( +𝑒 , 𝐹) Fn (ℤ‘1)
4 nnuz 12282 . . . . . 6 ℕ = (ℤ‘1)
54fneq2i 6451 . . . . 5 (seq1( +𝑒 , 𝐹) Fn ℕ ↔ seq1( +𝑒 , 𝐹) Fn (ℤ‘1))
63, 5mpbir 233 . . . 4 seq1( +𝑒 , 𝐹) Fn ℕ
7 iccssxr 12820 . . . . . 6 (0[,]+∞) ⊆ ℝ*
8 esumfsup.1 . . . . . . . 8 𝑘𝐹
98esumfzf 31328 . . . . . . 7 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛))
10 ovex 7189 . . . . . . . 8 (1...𝑛) ∈ V
11 nfcv 2977 . . . . . . . . . . 11 𝑘
12 nfcv 2977 . . . . . . . . . . 11 𝑘(0[,]+∞)
138, 11, 12nff 6510 . . . . . . . . . 10 𝑘 𝐹:ℕ⟶(0[,]+∞)
14 nfv 1915 . . . . . . . . . 10 𝑘 𝑛 ∈ ℕ
1513, 14nfan 1900 . . . . . . . . 9 𝑘(𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ)
16 simpll 765 . . . . . . . . . . 11 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐹:ℕ⟶(0[,]+∞))
17 1nn 11649 . . . . . . . . . . . . 13 1 ∈ ℕ
18 fzssnn 12952 . . . . . . . . . . . . 13 (1 ∈ ℕ → (1...𝑛) ⊆ ℕ)
1917, 18mp1i 13 . . . . . . . . . . . 12 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (1...𝑛) ⊆ ℕ)
20 simpr 487 . . . . . . . . . . . 12 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ (1...𝑛))
2119, 20sseldd 3968 . . . . . . . . . . 11 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
2216, 21ffvelrnd 6852 . . . . . . . . . 10 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝐹𝑘) ∈ (0[,]+∞))
2322ex 415 . . . . . . . . 9 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ (1...𝑛) → (𝐹𝑘) ∈ (0[,]+∞)))
2415, 23ralrimi 3216 . . . . . . . 8 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ (1...𝑛)(𝐹𝑘) ∈ (0[,]+∞))
25 nfcv 2977 . . . . . . . . 9 𝑘(1...𝑛)
2625esumcl 31289 . . . . . . . 8 (((1...𝑛) ∈ V ∧ ∀𝑘 ∈ (1...𝑛)(𝐹𝑘) ∈ (0[,]+∞)) → Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ∈ (0[,]+∞))
2710, 24, 26sylancr 589 . . . . . . 7 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ∈ (0[,]+∞))
289, 27eqeltrrd 2914 . . . . . 6 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (seq1( +𝑒 , 𝐹)‘𝑛) ∈ (0[,]+∞))
297, 28sseldi 3965 . . . . 5 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (seq1( +𝑒 , 𝐹)‘𝑛) ∈ ℝ*)
3029ralrimiva 3182 . . . 4 (𝐹:ℕ⟶(0[,]+∞) → ∀𝑛 ∈ ℕ (seq1( +𝑒 , 𝐹)‘𝑛) ∈ ℝ*)
31 fnfvrnss 6884 . . . 4 ((seq1( +𝑒 , 𝐹) Fn ℕ ∧ ∀𝑛 ∈ ℕ (seq1( +𝑒 , 𝐹)‘𝑛) ∈ ℝ*) → ran seq1( +𝑒 , 𝐹) ⊆ ℝ*)
326, 30, 31sylancr 589 . . 3 (𝐹:ℕ⟶(0[,]+∞) → ran seq1( +𝑒 , 𝐹) ⊆ ℝ*)
33 nnex 11644 . . . . 5 ℕ ∈ V
34 ffvelrn 6849 . . . . . . 7 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ (0[,]+∞))
3534ex 415 . . . . . 6 (𝐹:ℕ⟶(0[,]+∞) → (𝑘 ∈ ℕ → (𝐹𝑘) ∈ (0[,]+∞)))
3613, 35ralrimi 3216 . . . . 5 (𝐹:ℕ⟶(0[,]+∞) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ (0[,]+∞))
3711esumcl 31289 . . . . 5 ((ℕ ∈ V ∧ ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ (0[,]+∞)) → Σ*𝑘 ∈ ℕ(𝐹𝑘) ∈ (0[,]+∞))
3833, 36, 37sylancr 589 . . . 4 (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ ℕ(𝐹𝑘) ∈ (0[,]+∞))
397, 38sseldi 3965 . . 3 (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ ℕ(𝐹𝑘) ∈ ℝ*)
40 fvelrnb 6726 . . . . . . . . 9 (seq1( +𝑒 , 𝐹) Fn ℕ → (𝑥 ∈ ran seq1( +𝑒 , 𝐹) ↔ ∃𝑛 ∈ ℕ (seq1( +𝑒 , 𝐹)‘𝑛) = 𝑥))
416, 40mp1i 13 . . . . . . . 8 (𝐹:ℕ⟶(0[,]+∞) → (𝑥 ∈ ran seq1( +𝑒 , 𝐹) ↔ ∃𝑛 ∈ ℕ (seq1( +𝑒 , 𝐹)‘𝑛) = 𝑥))
42 eqcom 2828 . . . . . . . . . 10 *𝑘 ∈ (1...𝑛)(𝐹𝑘) = 𝑥𝑥 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
439eqeq1d 2823 . . . . . . . . . 10 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = 𝑥 ↔ (seq1( +𝑒 , 𝐹)‘𝑛) = 𝑥))
4442, 43syl5bbr 287 . . . . . . . . 9 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (𝑥 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ↔ (seq1( +𝑒 , 𝐹)‘𝑛) = 𝑥))
4544rexbidva 3296 . . . . . . . 8 (𝐹:ℕ⟶(0[,]+∞) → (∃𝑛 ∈ ℕ 𝑥 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ↔ ∃𝑛 ∈ ℕ (seq1( +𝑒 , 𝐹)‘𝑛) = 𝑥))
4641, 45bitr4d 284 . . . . . . 7 (𝐹:ℕ⟶(0[,]+∞) → (𝑥 ∈ ran seq1( +𝑒 , 𝐹) ↔ ∃𝑛 ∈ ℕ 𝑥 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
4746biimpa 479 . . . . . 6 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ran seq1( +𝑒 , 𝐹)) → ∃𝑛 ∈ ℕ 𝑥 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
4833a1i 11 . . . . . . . . 9 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → ℕ ∈ V)
4934adantlr 713 . . . . . . . . 9 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ (0[,]+∞))
5017, 18mp1i 13 . . . . . . . . 9 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ⊆ ℕ)
5115, 48, 49, 50esummono 31313 . . . . . . . 8 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘))
5251ralrimiva 3182 . . . . . . 7 (𝐹:ℕ⟶(0[,]+∞) → ∀𝑛 ∈ ℕ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘))
5352adantr 483 . . . . . 6 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ran seq1( +𝑒 , 𝐹)) → ∀𝑛 ∈ ℕ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘))
5447, 53jca 514 . . . . 5 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ran seq1( +𝑒 , 𝐹)) → (∃𝑛 ∈ ℕ 𝑥 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ∧ ∀𝑛 ∈ ℕ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘)))
55 r19.29r 3255 . . . . 5 ((∃𝑛 ∈ ℕ 𝑥 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ∧ ∀𝑛 ∈ ℕ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘)) → ∃𝑛 ∈ ℕ (𝑥 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘)))
56 breq1 5069 . . . . . . 7 (𝑥 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) → (𝑥 ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘) ↔ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘)))
5756biimpar 480 . . . . . 6 ((𝑥 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘)) → 𝑥 ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘))
5857rexlimivw 3282 . . . . 5 (∃𝑛 ∈ ℕ (𝑥 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘)) → 𝑥 ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘))
5954, 55, 583syl 18 . . . 4 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ran seq1( +𝑒 , 𝐹)) → 𝑥 ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘))
6059ralrimiva 3182 . . 3 (𝐹:ℕ⟶(0[,]+∞) → ∀𝑥 ∈ ran seq1( +𝑒 , 𝐹)𝑥 ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘))
61 nfv 1915 . . . . . . . . . . 11 𝑘 𝑥 ∈ ℝ
6213, 61nfan 1900 . . . . . . . . . 10 𝑘(𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ)
63 nfcv 2977 . . . . . . . . . . 11 𝑘𝑥
64 nfcv 2977 . . . . . . . . . . 11 𝑘 <
6511nfesum1 31299 . . . . . . . . . . 11 𝑘Σ*𝑘 ∈ ℕ(𝐹𝑘)
6663, 64, 65nfbr 5113 . . . . . . . . . 10 𝑘 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)
6762, 66nfan 1900 . . . . . . . . 9 𝑘((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘))
6833a1i 11 . . . . . . . . 9 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) → ℕ ∈ V)
69 simplll 773 . . . . . . . . . 10 ((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑘 ∈ ℕ) → 𝐹:ℕ⟶(0[,]+∞))
7069, 34sylancom 590 . . . . . . . . 9 ((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ (0[,]+∞))
71 simplr 767 . . . . . . . . . 10 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) → 𝑥 ∈ ℝ)
7271rexrd 10691 . . . . . . . . 9 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) → 𝑥 ∈ ℝ*)
73 simpr 487 . . . . . . . . 9 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) → 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘))
7467, 68, 70, 72, 73esumlub 31319 . . . . . . . 8 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) → ∃𝑎 ∈ (𝒫 ℕ ∩ Fin)𝑥 < Σ*𝑘𝑎(𝐹𝑘))
75 ssnnssfz 30510 . . . . . . . . . 10 (𝑎 ∈ (𝒫 ℕ ∩ Fin) → ∃𝑛 ∈ ℕ 𝑎 ⊆ (1...𝑛))
76 r19.42v 3350 . . . . . . . . . . 11 (∃𝑛 ∈ ℕ (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ⊆ (1...𝑛)) ↔ (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ ∃𝑛 ∈ ℕ 𝑎 ⊆ (1...𝑛)))
77 nfv 1915 . . . . . . . . . . . . . 14 𝑘 𝑎 ⊆ (1...𝑛)
7867, 77nfan 1900 . . . . . . . . . . . . 13 𝑘(((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ⊆ (1...𝑛))
7910a1i 11 . . . . . . . . . . . . 13 ((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ⊆ (1...𝑛)) → (1...𝑛) ∈ V)
80 simp-4l 781 . . . . . . . . . . . . . 14 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ⊆ (1...𝑛)) ∧ 𝑘 ∈ (1...𝑛)) → 𝐹:ℕ⟶(0[,]+∞))
8117, 18ax-mp 5 . . . . . . . . . . . . . . 15 (1...𝑛) ⊆ ℕ
82 simpr 487 . . . . . . . . . . . . . . 15 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ⊆ (1...𝑛)) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ (1...𝑛))
8381, 82sseldi 3965 . . . . . . . . . . . . . 14 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ⊆ (1...𝑛)) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
8480, 83ffvelrnd 6852 . . . . . . . . . . . . 13 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ⊆ (1...𝑛)) ∧ 𝑘 ∈ (1...𝑛)) → (𝐹𝑘) ∈ (0[,]+∞))
85 simpr 487 . . . . . . . . . . . . 13 ((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ⊆ (1...𝑛)) → 𝑎 ⊆ (1...𝑛))
8678, 79, 84, 85esummono 31313 . . . . . . . . . . . 12 ((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ⊆ (1...𝑛)) → Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
8786reximi 3243 . . . . . . . . . . 11 (∃𝑛 ∈ ℕ (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ⊆ (1...𝑛)) → ∃𝑛 ∈ ℕ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
8876, 87sylbir 237 . . . . . . . . . 10 ((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ ∃𝑛 ∈ ℕ 𝑎 ⊆ (1...𝑛)) → ∃𝑛 ∈ ℕ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
8975, 88sylan2 594 . . . . . . . . 9 ((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) → ∃𝑛 ∈ ℕ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
9089ralrimiva 3182 . . . . . . . 8 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) → ∀𝑎 ∈ (𝒫 ℕ ∩ Fin)∃𝑛 ∈ ℕ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
91 r19.29r 3255 . . . . . . . . 9 ((∃𝑎 ∈ (𝒫 ℕ ∩ Fin)𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ ∀𝑎 ∈ (𝒫 ℕ ∩ Fin)∃𝑛 ∈ ℕ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)) → ∃𝑎 ∈ (𝒫 ℕ ∩ Fin)(𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ ∃𝑛 ∈ ℕ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
92 r19.42v 3350 . . . . . . . . . 10 (∃𝑛 ∈ ℕ (𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)) ↔ (𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ ∃𝑛 ∈ ℕ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
9392rexbii 3247 . . . . . . . . 9 (∃𝑎 ∈ (𝒫 ℕ ∩ Fin)∃𝑛 ∈ ℕ (𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)) ↔ ∃𝑎 ∈ (𝒫 ℕ ∩ Fin)(𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ ∃𝑛 ∈ ℕ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
9491, 93sylibr 236 . . . . . . . 8 ((∃𝑎 ∈ (𝒫 ℕ ∩ Fin)𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ ∀𝑎 ∈ (𝒫 ℕ ∩ Fin)∃𝑛 ∈ ℕ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)) → ∃𝑎 ∈ (𝒫 ℕ ∩ Fin)∃𝑛 ∈ ℕ (𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
9574, 90, 94syl2anc 586 . . . . . . 7 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) → ∃𝑎 ∈ (𝒫 ℕ ∩ Fin)∃𝑛 ∈ ℕ (𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
96 simp-4r 782 . . . . . . . . . . 11 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ)
9796rexrd 10691 . . . . . . . . . 10 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ*)
98 vex 3497 . . . . . . . . . . . 12 𝑎 ∈ V
99 nfcv 2977 . . . . . . . . . . . . . . . 16 𝑘𝑎
10099nfel1 2994 . . . . . . . . . . . . . . 15 𝑘 𝑎 ∈ (𝒫 ℕ ∩ Fin)
10167, 100nfan 1900 . . . . . . . . . . . . . 14 𝑘(((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin))
102101, 14nfan 1900 . . . . . . . . . . . . 13 𝑘((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ)
103 simp-5l 783 . . . . . . . . . . . . . . 15 ((((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘𝑎) → 𝐹:ℕ⟶(0[,]+∞))
104 simpllr 774 . . . . . . . . . . . . . . . . 17 ((((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘𝑎) → 𝑎 ∈ (𝒫 ℕ ∩ Fin))
105 inss1 4205 . . . . . . . . . . . . . . . . . 18 (𝒫 ℕ ∩ Fin) ⊆ 𝒫 ℕ
106105sseli 3963 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (𝒫 ℕ ∩ Fin) → 𝑎 ∈ 𝒫 ℕ)
107 elpwi 4548 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ 𝒫 ℕ → 𝑎 ⊆ ℕ)
108104, 106, 1073syl 18 . . . . . . . . . . . . . . . 16 ((((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘𝑎) → 𝑎 ⊆ ℕ)
109 simpr 487 . . . . . . . . . . . . . . . 16 ((((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘𝑎) → 𝑘𝑎)
110108, 109sseldd 3968 . . . . . . . . . . . . . . 15 ((((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘𝑎) → 𝑘 ∈ ℕ)
111103, 110ffvelrnd 6852 . . . . . . . . . . . . . 14 ((((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘𝑎) → (𝐹𝑘) ∈ (0[,]+∞))
112111ex 415 . . . . . . . . . . . . 13 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) → (𝑘𝑎 → (𝐹𝑘) ∈ (0[,]+∞)))
113102, 112ralrimi 3216 . . . . . . . . . . . 12 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) → ∀𝑘𝑎 (𝐹𝑘) ∈ (0[,]+∞))
11499esumcl 31289 . . . . . . . . . . . 12 ((𝑎 ∈ V ∧ ∀𝑘𝑎 (𝐹𝑘) ∈ (0[,]+∞)) → Σ*𝑘𝑎(𝐹𝑘) ∈ (0[,]+∞))
11598, 113, 114sylancr 589 . . . . . . . . . . 11 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) → Σ*𝑘𝑎(𝐹𝑘) ∈ (0[,]+∞))
1167, 115sseldi 3965 . . . . . . . . . 10 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) → Σ*𝑘𝑎(𝐹𝑘) ∈ ℝ*)
117 simp-5l 783 . . . . . . . . . . . . . . 15 ((((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐹:ℕ⟶(0[,]+∞))
118 simpr 487 . . . . . . . . . . . . . . . 16 ((((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ (1...𝑛))
11981, 118sseldi 3965 . . . . . . . . . . . . . . 15 ((((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
120117, 119ffvelrnd 6852 . . . . . . . . . . . . . 14 ((((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝐹𝑘) ∈ (0[,]+∞))
121120ex 415 . . . . . . . . . . . . 13 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ (1...𝑛) → (𝐹𝑘) ∈ (0[,]+∞)))
122102, 121ralrimi 3216 . . . . . . . . . . . 12 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ (1...𝑛)(𝐹𝑘) ∈ (0[,]+∞))
12310, 122, 26sylancr 589 . . . . . . . . . . 11 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ∈ (0[,]+∞))
1247, 123sseldi 3965 . . . . . . . . . 10 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ∈ ℝ*)
125 xrltletr 12551 . . . . . . . . . 10 ((𝑥 ∈ ℝ* ∧ Σ*𝑘𝑎(𝐹𝑘) ∈ ℝ* ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ∈ ℝ*) → ((𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)) → 𝑥 < Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
12697, 116, 124, 125syl3anc 1367 . . . . . . . . 9 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) → ((𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)) → 𝑥 < Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
127126reximdva 3274 . . . . . . . 8 ((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) → (∃𝑛 ∈ ℕ (𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)) → ∃𝑛 ∈ ℕ 𝑥 < Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
128127rexlimdva 3284 . . . . . . 7 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) → (∃𝑎 ∈ (𝒫 ℕ ∩ Fin)∃𝑛 ∈ ℕ (𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)) → ∃𝑛 ∈ ℕ 𝑥 < Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
12995, 128mpd 15 . . . . . 6 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) → ∃𝑛 ∈ ℕ 𝑥 < Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
130 fvelrnb 6726 . . . . . . . . . 10 (seq1( +𝑒 , 𝐹) Fn ℕ → (𝑦 ∈ ran seq1( +𝑒 , 𝐹) ↔ ∃𝑛 ∈ ℕ (seq1( +𝑒 , 𝐹)‘𝑛) = 𝑦))
1316, 130mp1i 13 . . . . . . . . 9 (𝐹:ℕ⟶(0[,]+∞) → (𝑦 ∈ ran seq1( +𝑒 , 𝐹) ↔ ∃𝑛 ∈ ℕ (seq1( +𝑒 , 𝐹)‘𝑛) = 𝑦))
132 eqcom 2828 . . . . . . . . . . 11 *𝑘 ∈ (1...𝑛)(𝐹𝑘) = 𝑦𝑦 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
1339eqeq1d 2823 . . . . . . . . . . 11 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = 𝑦 ↔ (seq1( +𝑒 , 𝐹)‘𝑛) = 𝑦))
134132, 133syl5bbr 287 . . . . . . . . . 10 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (𝑦 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ↔ (seq1( +𝑒 , 𝐹)‘𝑛) = 𝑦))
135134rexbidva 3296 . . . . . . . . 9 (𝐹:ℕ⟶(0[,]+∞) → (∃𝑛 ∈ ℕ 𝑦 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ↔ ∃𝑛 ∈ ℕ (seq1( +𝑒 , 𝐹)‘𝑛) = 𝑦))
136131, 135bitr4d 284 . . . . . . . 8 (𝐹:ℕ⟶(0[,]+∞) → (𝑦 ∈ ran seq1( +𝑒 , 𝐹) ↔ ∃𝑛 ∈ ℕ 𝑦 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
137 simpr 487 . . . . . . . . 9 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑦 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)) → 𝑦 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
138137breq2d 5078 . . . . . . . 8 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑦 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)) → (𝑥 < 𝑦𝑥 < Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
13927, 136, 138rexxfr2d 5312 . . . . . . 7 (𝐹:ℕ⟶(0[,]+∞) → (∃𝑦 ∈ ran seq1( +𝑒 , 𝐹)𝑥 < 𝑦 ↔ ∃𝑛 ∈ ℕ 𝑥 < Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
140139ad2antrr 724 . . . . . 6 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) → (∃𝑦 ∈ ran seq1( +𝑒 , 𝐹)𝑥 < 𝑦 ↔ ∃𝑛 ∈ ℕ 𝑥 < Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
141129, 140mpbird 259 . . . . 5 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) → ∃𝑦 ∈ ran seq1( +𝑒 , 𝐹)𝑥 < 𝑦)
142141ex 415 . . . 4 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘) → ∃𝑦 ∈ ran seq1( +𝑒 , 𝐹)𝑥 < 𝑦))
143142ralrimiva 3182 . . 3 (𝐹:ℕ⟶(0[,]+∞) → ∀𝑥 ∈ ℝ (𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘) → ∃𝑦 ∈ ran seq1( +𝑒 , 𝐹)𝑥 < 𝑦))
144 supxr2 12708 . . 3 (((ran seq1( +𝑒 , 𝐹) ⊆ ℝ* ∧ Σ*𝑘 ∈ ℕ(𝐹𝑘) ∈ ℝ*) ∧ (∀𝑥 ∈ ran seq1( +𝑒 , 𝐹)𝑥 ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘) ∧ ∀𝑥 ∈ ℝ (𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘) → ∃𝑦 ∈ ran seq1( +𝑒 , 𝐹)𝑥 < 𝑦))) → sup(ran seq1( +𝑒 , 𝐹), ℝ*, < ) = Σ*𝑘 ∈ ℕ(𝐹𝑘))
14532, 39, 60, 143, 144syl22anc 836 . 2 (𝐹:ℕ⟶(0[,]+∞) → sup(ran seq1( +𝑒 , 𝐹), ℝ*, < ) = Σ*𝑘 ∈ ℕ(𝐹𝑘))
146145eqcomd 2827 1 (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ ℕ(𝐹𝑘) = sup(ran seq1( +𝑒 , 𝐹), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wnfc 2961  wral 3138  wrex 3139  Vcvv 3494  cin 3935  wss 3936  𝒫 cpw 4539   class class class wbr 5066  ran crn 5556   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  Fincfn 8509  supcsup 8904  cr 10536  0cc0 10537  1c1 10538  +∞cpnf 10672  *cxr 10674   < clt 10675  cle 10676  cn 11638  cz 11982  cuz 12244   +𝑒 cxad 12506  [,]cicc 12742  ...cfz 12893  seqcseq 13370  Σ*cesum 31286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-pi 15426  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-ordt 16774  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-ps 17810  df-tsr 17811  df-plusf 17851  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-subrg 19533  df-abv 19588  df-lmod 19636  df-scaf 19637  df-sra 19944  df-rgmod 19945  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-tmd 22680  df-tgp 22681  df-tsms 22735  df-trg 22768  df-xms 22930  df-ms 22931  df-tms 22932  df-nm 23192  df-ngp 23193  df-nrg 23195  df-nlm 23196  df-ii 23485  df-cncf 23486  df-limc 24464  df-dv 24465  df-log 25140  df-esum 31287
This theorem is referenced by:  esumfsupre  31330  esumsup  31348
  Copyright terms: Public domain W3C validator