Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumfsup Structured version   Visualization version   GIF version

Theorem esumfsup 31938
Description: Formulating an extended sum over integers using the recursive sequence builder. (Contributed by Thierry Arnoux, 18-Oct-2017.)
Hypothesis
Ref Expression
esumfsup.1 𝑘𝐹
Assertion
Ref Expression
esumfsup (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ ℕ(𝐹𝑘) = sup(ran seq1( +𝑒 , 𝐹), ℝ*, < ))

Proof of Theorem esumfsup
Dummy variables 𝑎 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1z 12280 . . . . . 6 1 ∈ ℤ
2 seqfn 13661 . . . . . 6 (1 ∈ ℤ → seq1( +𝑒 , 𝐹) Fn (ℤ‘1))
31, 2ax-mp 5 . . . . 5 seq1( +𝑒 , 𝐹) Fn (ℤ‘1)
4 nnuz 12550 . . . . . 6 ℕ = (ℤ‘1)
54fneq2i 6515 . . . . 5 (seq1( +𝑒 , 𝐹) Fn ℕ ↔ seq1( +𝑒 , 𝐹) Fn (ℤ‘1))
63, 5mpbir 230 . . . 4 seq1( +𝑒 , 𝐹) Fn ℕ
7 iccssxr 13091 . . . . . 6 (0[,]+∞) ⊆ ℝ*
8 esumfsup.1 . . . . . . . 8 𝑘𝐹
98esumfzf 31937 . . . . . . 7 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛))
10 ovex 7288 . . . . . . . 8 (1...𝑛) ∈ V
11 nfcv 2906 . . . . . . . . . . 11 𝑘
12 nfcv 2906 . . . . . . . . . . 11 𝑘(0[,]+∞)
138, 11, 12nff 6580 . . . . . . . . . 10 𝑘 𝐹:ℕ⟶(0[,]+∞)
14 nfv 1918 . . . . . . . . . 10 𝑘 𝑛 ∈ ℕ
1513, 14nfan 1903 . . . . . . . . 9 𝑘(𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ)
16 simpll 763 . . . . . . . . . . 11 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐹:ℕ⟶(0[,]+∞))
17 1nn 11914 . . . . . . . . . . . . 13 1 ∈ ℕ
18 fzssnn 13229 . . . . . . . . . . . . 13 (1 ∈ ℕ → (1...𝑛) ⊆ ℕ)
1917, 18mp1i 13 . . . . . . . . . . . 12 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (1...𝑛) ⊆ ℕ)
20 simpr 484 . . . . . . . . . . . 12 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ (1...𝑛))
2119, 20sseldd 3918 . . . . . . . . . . 11 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
2216, 21ffvelrnd 6944 . . . . . . . . . 10 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝐹𝑘) ∈ (0[,]+∞))
2322ex 412 . . . . . . . . 9 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ (1...𝑛) → (𝐹𝑘) ∈ (0[,]+∞)))
2415, 23ralrimi 3139 . . . . . . . 8 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ (1...𝑛)(𝐹𝑘) ∈ (0[,]+∞))
25 nfcv 2906 . . . . . . . . 9 𝑘(1...𝑛)
2625esumcl 31898 . . . . . . . 8 (((1...𝑛) ∈ V ∧ ∀𝑘 ∈ (1...𝑛)(𝐹𝑘) ∈ (0[,]+∞)) → Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ∈ (0[,]+∞))
2710, 24, 26sylancr 586 . . . . . . 7 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ∈ (0[,]+∞))
289, 27eqeltrrd 2840 . . . . . 6 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (seq1( +𝑒 , 𝐹)‘𝑛) ∈ (0[,]+∞))
297, 28sselid 3915 . . . . 5 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (seq1( +𝑒 , 𝐹)‘𝑛) ∈ ℝ*)
3029ralrimiva 3107 . . . 4 (𝐹:ℕ⟶(0[,]+∞) → ∀𝑛 ∈ ℕ (seq1( +𝑒 , 𝐹)‘𝑛) ∈ ℝ*)
31 fnfvrnss 6976 . . . 4 ((seq1( +𝑒 , 𝐹) Fn ℕ ∧ ∀𝑛 ∈ ℕ (seq1( +𝑒 , 𝐹)‘𝑛) ∈ ℝ*) → ran seq1( +𝑒 , 𝐹) ⊆ ℝ*)
326, 30, 31sylancr 586 . . 3 (𝐹:ℕ⟶(0[,]+∞) → ran seq1( +𝑒 , 𝐹) ⊆ ℝ*)
33 nnex 11909 . . . . 5 ℕ ∈ V
34 ffvelrn 6941 . . . . . . 7 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ (0[,]+∞))
3534ex 412 . . . . . 6 (𝐹:ℕ⟶(0[,]+∞) → (𝑘 ∈ ℕ → (𝐹𝑘) ∈ (0[,]+∞)))
3613, 35ralrimi 3139 . . . . 5 (𝐹:ℕ⟶(0[,]+∞) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ (0[,]+∞))
3711esumcl 31898 . . . . 5 ((ℕ ∈ V ∧ ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ (0[,]+∞)) → Σ*𝑘 ∈ ℕ(𝐹𝑘) ∈ (0[,]+∞))
3833, 36, 37sylancr 586 . . . 4 (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ ℕ(𝐹𝑘) ∈ (0[,]+∞))
397, 38sselid 3915 . . 3 (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ ℕ(𝐹𝑘) ∈ ℝ*)
40 fvelrnb 6812 . . . . . . . . 9 (seq1( +𝑒 , 𝐹) Fn ℕ → (𝑥 ∈ ran seq1( +𝑒 , 𝐹) ↔ ∃𝑛 ∈ ℕ (seq1( +𝑒 , 𝐹)‘𝑛) = 𝑥))
416, 40mp1i 13 . . . . . . . 8 (𝐹:ℕ⟶(0[,]+∞) → (𝑥 ∈ ran seq1( +𝑒 , 𝐹) ↔ ∃𝑛 ∈ ℕ (seq1( +𝑒 , 𝐹)‘𝑛) = 𝑥))
42 eqcom 2745 . . . . . . . . . 10 *𝑘 ∈ (1...𝑛)(𝐹𝑘) = 𝑥𝑥 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
439eqeq1d 2740 . . . . . . . . . 10 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = 𝑥 ↔ (seq1( +𝑒 , 𝐹)‘𝑛) = 𝑥))
4442, 43bitr3id 284 . . . . . . . . 9 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (𝑥 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ↔ (seq1( +𝑒 , 𝐹)‘𝑛) = 𝑥))
4544rexbidva 3224 . . . . . . . 8 (𝐹:ℕ⟶(0[,]+∞) → (∃𝑛 ∈ ℕ 𝑥 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ↔ ∃𝑛 ∈ ℕ (seq1( +𝑒 , 𝐹)‘𝑛) = 𝑥))
4641, 45bitr4d 281 . . . . . . 7 (𝐹:ℕ⟶(0[,]+∞) → (𝑥 ∈ ran seq1( +𝑒 , 𝐹) ↔ ∃𝑛 ∈ ℕ 𝑥 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
4746biimpa 476 . . . . . 6 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ran seq1( +𝑒 , 𝐹)) → ∃𝑛 ∈ ℕ 𝑥 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
4833a1i 11 . . . . . . . . 9 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → ℕ ∈ V)
4934adantlr 711 . . . . . . . . 9 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ (0[,]+∞))
5017, 18mp1i 13 . . . . . . . . 9 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ⊆ ℕ)
5115, 48, 49, 50esummono 31922 . . . . . . . 8 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘))
5251ralrimiva 3107 . . . . . . 7 (𝐹:ℕ⟶(0[,]+∞) → ∀𝑛 ∈ ℕ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘))
5352adantr 480 . . . . . 6 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ran seq1( +𝑒 , 𝐹)) → ∀𝑛 ∈ ℕ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘))
5447, 53jca 511 . . . . 5 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ran seq1( +𝑒 , 𝐹)) → (∃𝑛 ∈ ℕ 𝑥 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ∧ ∀𝑛 ∈ ℕ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘)))
55 r19.29r 3184 . . . . 5 ((∃𝑛 ∈ ℕ 𝑥 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ∧ ∀𝑛 ∈ ℕ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘)) → ∃𝑛 ∈ ℕ (𝑥 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘)))
56 breq1 5073 . . . . . . 7 (𝑥 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) → (𝑥 ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘) ↔ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘)))
5756biimpar 477 . . . . . 6 ((𝑥 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘)) → 𝑥 ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘))
5857rexlimivw 3210 . . . . 5 (∃𝑛 ∈ ℕ (𝑥 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘)) → 𝑥 ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘))
5954, 55, 583syl 18 . . . 4 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ran seq1( +𝑒 , 𝐹)) → 𝑥 ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘))
6059ralrimiva 3107 . . 3 (𝐹:ℕ⟶(0[,]+∞) → ∀𝑥 ∈ ran seq1( +𝑒 , 𝐹)𝑥 ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘))
61 nfv 1918 . . . . . . . . . . 11 𝑘 𝑥 ∈ ℝ
6213, 61nfan 1903 . . . . . . . . . 10 𝑘(𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ)
63 nfcv 2906 . . . . . . . . . . 11 𝑘𝑥
64 nfcv 2906 . . . . . . . . . . 11 𝑘 <
6511nfesum1 31908 . . . . . . . . . . 11 𝑘Σ*𝑘 ∈ ℕ(𝐹𝑘)
6663, 64, 65nfbr 5117 . . . . . . . . . 10 𝑘 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)
6762, 66nfan 1903 . . . . . . . . 9 𝑘((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘))
6833a1i 11 . . . . . . . . 9 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) → ℕ ∈ V)
69 simplll 771 . . . . . . . . . 10 ((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑘 ∈ ℕ) → 𝐹:ℕ⟶(0[,]+∞))
7069, 34sylancom 587 . . . . . . . . 9 ((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ (0[,]+∞))
71 simplr 765 . . . . . . . . . 10 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) → 𝑥 ∈ ℝ)
7271rexrd 10956 . . . . . . . . 9 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) → 𝑥 ∈ ℝ*)
73 simpr 484 . . . . . . . . 9 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) → 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘))
7467, 68, 70, 72, 73esumlub 31928 . . . . . . . 8 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) → ∃𝑎 ∈ (𝒫 ℕ ∩ Fin)𝑥 < Σ*𝑘𝑎(𝐹𝑘))
75 ssnnssfz 31010 . . . . . . . . . 10 (𝑎 ∈ (𝒫 ℕ ∩ Fin) → ∃𝑛 ∈ ℕ 𝑎 ⊆ (1...𝑛))
76 r19.42v 3276 . . . . . . . . . . 11 (∃𝑛 ∈ ℕ (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ⊆ (1...𝑛)) ↔ (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ ∃𝑛 ∈ ℕ 𝑎 ⊆ (1...𝑛)))
77 nfv 1918 . . . . . . . . . . . . . 14 𝑘 𝑎 ⊆ (1...𝑛)
7867, 77nfan 1903 . . . . . . . . . . . . 13 𝑘(((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ⊆ (1...𝑛))
7910a1i 11 . . . . . . . . . . . . 13 ((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ⊆ (1...𝑛)) → (1...𝑛) ∈ V)
80 simp-4l 779 . . . . . . . . . . . . . 14 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ⊆ (1...𝑛)) ∧ 𝑘 ∈ (1...𝑛)) → 𝐹:ℕ⟶(0[,]+∞))
8117, 18ax-mp 5 . . . . . . . . . . . . . . 15 (1...𝑛) ⊆ ℕ
82 simpr 484 . . . . . . . . . . . . . . 15 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ⊆ (1...𝑛)) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ (1...𝑛))
8381, 82sselid 3915 . . . . . . . . . . . . . 14 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ⊆ (1...𝑛)) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
8480, 83ffvelrnd 6944 . . . . . . . . . . . . 13 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ⊆ (1...𝑛)) ∧ 𝑘 ∈ (1...𝑛)) → (𝐹𝑘) ∈ (0[,]+∞))
85 simpr 484 . . . . . . . . . . . . 13 ((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ⊆ (1...𝑛)) → 𝑎 ⊆ (1...𝑛))
8678, 79, 84, 85esummono 31922 . . . . . . . . . . . 12 ((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ⊆ (1...𝑛)) → Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
8786reximi 3174 . . . . . . . . . . 11 (∃𝑛 ∈ ℕ (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ⊆ (1...𝑛)) → ∃𝑛 ∈ ℕ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
8876, 87sylbir 234 . . . . . . . . . 10 ((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ ∃𝑛 ∈ ℕ 𝑎 ⊆ (1...𝑛)) → ∃𝑛 ∈ ℕ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
8975, 88sylan2 592 . . . . . . . . 9 ((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) → ∃𝑛 ∈ ℕ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
9089ralrimiva 3107 . . . . . . . 8 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) → ∀𝑎 ∈ (𝒫 ℕ ∩ Fin)∃𝑛 ∈ ℕ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
91 r19.29r 3184 . . . . . . . . 9 ((∃𝑎 ∈ (𝒫 ℕ ∩ Fin)𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ ∀𝑎 ∈ (𝒫 ℕ ∩ Fin)∃𝑛 ∈ ℕ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)) → ∃𝑎 ∈ (𝒫 ℕ ∩ Fin)(𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ ∃𝑛 ∈ ℕ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
92 r19.42v 3276 . . . . . . . . . 10 (∃𝑛 ∈ ℕ (𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)) ↔ (𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ ∃𝑛 ∈ ℕ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
9392rexbii 3177 . . . . . . . . 9 (∃𝑎 ∈ (𝒫 ℕ ∩ Fin)∃𝑛 ∈ ℕ (𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)) ↔ ∃𝑎 ∈ (𝒫 ℕ ∩ Fin)(𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ ∃𝑛 ∈ ℕ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
9491, 93sylibr 233 . . . . . . . 8 ((∃𝑎 ∈ (𝒫 ℕ ∩ Fin)𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ ∀𝑎 ∈ (𝒫 ℕ ∩ Fin)∃𝑛 ∈ ℕ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)) → ∃𝑎 ∈ (𝒫 ℕ ∩ Fin)∃𝑛 ∈ ℕ (𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
9574, 90, 94syl2anc 583 . . . . . . 7 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) → ∃𝑎 ∈ (𝒫 ℕ ∩ Fin)∃𝑛 ∈ ℕ (𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
96 simp-4r 780 . . . . . . . . . . 11 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ)
9796rexrd 10956 . . . . . . . . . 10 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ*)
98 vex 3426 . . . . . . . . . . . 12 𝑎 ∈ V
99 nfcv 2906 . . . . . . . . . . . . . . . 16 𝑘𝑎
10099nfel1 2922 . . . . . . . . . . . . . . 15 𝑘 𝑎 ∈ (𝒫 ℕ ∩ Fin)
10167, 100nfan 1903 . . . . . . . . . . . . . 14 𝑘(((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin))
102101, 14nfan 1903 . . . . . . . . . . . . 13 𝑘((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ)
103 simp-5l 781 . . . . . . . . . . . . . . 15 ((((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘𝑎) → 𝐹:ℕ⟶(0[,]+∞))
104 simpllr 772 . . . . . . . . . . . . . . . . 17 ((((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘𝑎) → 𝑎 ∈ (𝒫 ℕ ∩ Fin))
105 inss1 4159 . . . . . . . . . . . . . . . . . 18 (𝒫 ℕ ∩ Fin) ⊆ 𝒫 ℕ
106105sseli 3913 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (𝒫 ℕ ∩ Fin) → 𝑎 ∈ 𝒫 ℕ)
107 elpwi 4539 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ 𝒫 ℕ → 𝑎 ⊆ ℕ)
108104, 106, 1073syl 18 . . . . . . . . . . . . . . . 16 ((((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘𝑎) → 𝑎 ⊆ ℕ)
109 simpr 484 . . . . . . . . . . . . . . . 16 ((((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘𝑎) → 𝑘𝑎)
110108, 109sseldd 3918 . . . . . . . . . . . . . . 15 ((((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘𝑎) → 𝑘 ∈ ℕ)
111103, 110ffvelrnd 6944 . . . . . . . . . . . . . 14 ((((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘𝑎) → (𝐹𝑘) ∈ (0[,]+∞))
112111ex 412 . . . . . . . . . . . . 13 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) → (𝑘𝑎 → (𝐹𝑘) ∈ (0[,]+∞)))
113102, 112ralrimi 3139 . . . . . . . . . . . 12 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) → ∀𝑘𝑎 (𝐹𝑘) ∈ (0[,]+∞))
11499esumcl 31898 . . . . . . . . . . . 12 ((𝑎 ∈ V ∧ ∀𝑘𝑎 (𝐹𝑘) ∈ (0[,]+∞)) → Σ*𝑘𝑎(𝐹𝑘) ∈ (0[,]+∞))
11598, 113, 114sylancr 586 . . . . . . . . . . 11 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) → Σ*𝑘𝑎(𝐹𝑘) ∈ (0[,]+∞))
1167, 115sselid 3915 . . . . . . . . . 10 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) → Σ*𝑘𝑎(𝐹𝑘) ∈ ℝ*)
117 simp-5l 781 . . . . . . . . . . . . . . 15 ((((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐹:ℕ⟶(0[,]+∞))
118 simpr 484 . . . . . . . . . . . . . . . 16 ((((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ (1...𝑛))
11981, 118sselid 3915 . . . . . . . . . . . . . . 15 ((((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
120117, 119ffvelrnd 6944 . . . . . . . . . . . . . 14 ((((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝐹𝑘) ∈ (0[,]+∞))
121120ex 412 . . . . . . . . . . . . 13 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ (1...𝑛) → (𝐹𝑘) ∈ (0[,]+∞)))
122102, 121ralrimi 3139 . . . . . . . . . . . 12 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ (1...𝑛)(𝐹𝑘) ∈ (0[,]+∞))
12310, 122, 26sylancr 586 . . . . . . . . . . 11 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ∈ (0[,]+∞))
1247, 123sselid 3915 . . . . . . . . . 10 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ∈ ℝ*)
125 xrltletr 12820 . . . . . . . . . 10 ((𝑥 ∈ ℝ* ∧ Σ*𝑘𝑎(𝐹𝑘) ∈ ℝ* ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ∈ ℝ*) → ((𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)) → 𝑥 < Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
12697, 116, 124, 125syl3anc 1369 . . . . . . . . 9 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) → ((𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)) → 𝑥 < Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
127126reximdva 3202 . . . . . . . 8 ((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) → (∃𝑛 ∈ ℕ (𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)) → ∃𝑛 ∈ ℕ 𝑥 < Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
128127rexlimdva 3212 . . . . . . 7 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) → (∃𝑎 ∈ (𝒫 ℕ ∩ Fin)∃𝑛 ∈ ℕ (𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)) → ∃𝑛 ∈ ℕ 𝑥 < Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
12995, 128mpd 15 . . . . . 6 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) → ∃𝑛 ∈ ℕ 𝑥 < Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
130 fvelrnb 6812 . . . . . . . . . 10 (seq1( +𝑒 , 𝐹) Fn ℕ → (𝑦 ∈ ran seq1( +𝑒 , 𝐹) ↔ ∃𝑛 ∈ ℕ (seq1( +𝑒 , 𝐹)‘𝑛) = 𝑦))
1316, 130mp1i 13 . . . . . . . . 9 (𝐹:ℕ⟶(0[,]+∞) → (𝑦 ∈ ran seq1( +𝑒 , 𝐹) ↔ ∃𝑛 ∈ ℕ (seq1( +𝑒 , 𝐹)‘𝑛) = 𝑦))
132 eqcom 2745 . . . . . . . . . . 11 *𝑘 ∈ (1...𝑛)(𝐹𝑘) = 𝑦𝑦 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
1339eqeq1d 2740 . . . . . . . . . . 11 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = 𝑦 ↔ (seq1( +𝑒 , 𝐹)‘𝑛) = 𝑦))
134132, 133bitr3id 284 . . . . . . . . . 10 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (𝑦 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ↔ (seq1( +𝑒 , 𝐹)‘𝑛) = 𝑦))
135134rexbidva 3224 . . . . . . . . 9 (𝐹:ℕ⟶(0[,]+∞) → (∃𝑛 ∈ ℕ 𝑦 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ↔ ∃𝑛 ∈ ℕ (seq1( +𝑒 , 𝐹)‘𝑛) = 𝑦))
136131, 135bitr4d 281 . . . . . . . 8 (𝐹:ℕ⟶(0[,]+∞) → (𝑦 ∈ ran seq1( +𝑒 , 𝐹) ↔ ∃𝑛 ∈ ℕ 𝑦 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
137 simpr 484 . . . . . . . . 9 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑦 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)) → 𝑦 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
138137breq2d 5082 . . . . . . . 8 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑦 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)) → (𝑥 < 𝑦𝑥 < Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
13927, 136, 138rexxfr2d 5329 . . . . . . 7 (𝐹:ℕ⟶(0[,]+∞) → (∃𝑦 ∈ ran seq1( +𝑒 , 𝐹)𝑥 < 𝑦 ↔ ∃𝑛 ∈ ℕ 𝑥 < Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
140139ad2antrr 722 . . . . . 6 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) → (∃𝑦 ∈ ran seq1( +𝑒 , 𝐹)𝑥 < 𝑦 ↔ ∃𝑛 ∈ ℕ 𝑥 < Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
141129, 140mpbird 256 . . . . 5 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) → ∃𝑦 ∈ ran seq1( +𝑒 , 𝐹)𝑥 < 𝑦)
142141ex 412 . . . 4 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘) → ∃𝑦 ∈ ran seq1( +𝑒 , 𝐹)𝑥 < 𝑦))
143142ralrimiva 3107 . . 3 (𝐹:ℕ⟶(0[,]+∞) → ∀𝑥 ∈ ℝ (𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘) → ∃𝑦 ∈ ran seq1( +𝑒 , 𝐹)𝑥 < 𝑦))
144 supxr2 12977 . . 3 (((ran seq1( +𝑒 , 𝐹) ⊆ ℝ* ∧ Σ*𝑘 ∈ ℕ(𝐹𝑘) ∈ ℝ*) ∧ (∀𝑥 ∈ ran seq1( +𝑒 , 𝐹)𝑥 ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘) ∧ ∀𝑥 ∈ ℝ (𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘) → ∃𝑦 ∈ ran seq1( +𝑒 , 𝐹)𝑥 < 𝑦))) → sup(ran seq1( +𝑒 , 𝐹), ℝ*, < ) = Σ*𝑘 ∈ ℕ(𝐹𝑘))
14532, 39, 60, 143, 144syl22anc 835 . 2 (𝐹:ℕ⟶(0[,]+∞) → sup(ran seq1( +𝑒 , 𝐹), ℝ*, < ) = Σ*𝑘 ∈ ℕ(𝐹𝑘))
146145eqcomd 2744 1 (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ ℕ(𝐹𝑘) = sup(ran seq1( +𝑒 , 𝐹), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wnfc 2886  wral 3063  wrex 3064  Vcvv 3422  cin 3882  wss 3883  𝒫 cpw 4530   class class class wbr 5070  ran crn 5581   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  Fincfn 8691  supcsup 9129  cr 10801  0cc0 10802  1c1 10803  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  cn 11903  cz 12249  cuz 12511   +𝑒 cxad 12775  [,]cicc 13011  ...cfz 13168  seqcseq 13649  Σ*cesum 31895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-ordt 17129  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-ps 18199  df-tsr 18200  df-plusf 18240  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-subrg 19937  df-abv 19992  df-lmod 20040  df-scaf 20041  df-sra 20349  df-rgmod 20350  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-tmd 23131  df-tgp 23132  df-tsms 23186  df-trg 23219  df-xms 23381  df-ms 23382  df-tms 23383  df-nm 23644  df-ngp 23645  df-nrg 23647  df-nlm 23648  df-ii 23946  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-esum 31896
This theorem is referenced by:  esumfsupre  31939  esumsup  31957
  Copyright terms: Public domain W3C validator