Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumfsup Structured version   Visualization version   GIF version

Theorem esumfsup 34051
Description: Formulating an extended sum over integers using the recursive sequence builder. (Contributed by Thierry Arnoux, 18-Oct-2017.)
Hypothesis
Ref Expression
esumfsup.1 𝑘𝐹
Assertion
Ref Expression
esumfsup (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ ℕ(𝐹𝑘) = sup(ran seq1( +𝑒 , 𝐹), ℝ*, < ))

Proof of Theorem esumfsup
Dummy variables 𝑎 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1z 12645 . . . . . 6 1 ∈ ℤ
2 seqfn 14051 . . . . . 6 (1 ∈ ℤ → seq1( +𝑒 , 𝐹) Fn (ℤ‘1))
31, 2ax-mp 5 . . . . 5 seq1( +𝑒 , 𝐹) Fn (ℤ‘1)
4 nnuz 12919 . . . . . 6 ℕ = (ℤ‘1)
54fneq2i 6667 . . . . 5 (seq1( +𝑒 , 𝐹) Fn ℕ ↔ seq1( +𝑒 , 𝐹) Fn (ℤ‘1))
63, 5mpbir 231 . . . 4 seq1( +𝑒 , 𝐹) Fn ℕ
7 iccssxr 13467 . . . . . 6 (0[,]+∞) ⊆ ℝ*
8 esumfsup.1 . . . . . . . 8 𝑘𝐹
98esumfzf 34050 . . . . . . 7 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛))
10 ovex 7464 . . . . . . . 8 (1...𝑛) ∈ V
11 nfcv 2903 . . . . . . . . . . 11 𝑘
12 nfcv 2903 . . . . . . . . . . 11 𝑘(0[,]+∞)
138, 11, 12nff 6733 . . . . . . . . . 10 𝑘 𝐹:ℕ⟶(0[,]+∞)
14 nfv 1912 . . . . . . . . . 10 𝑘 𝑛 ∈ ℕ
1513, 14nfan 1897 . . . . . . . . 9 𝑘(𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ)
16 simpll 767 . . . . . . . . . . 11 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐹:ℕ⟶(0[,]+∞))
17 1nn 12275 . . . . . . . . . . . . 13 1 ∈ ℕ
18 fzssnn 13605 . . . . . . . . . . . . 13 (1 ∈ ℕ → (1...𝑛) ⊆ ℕ)
1917, 18mp1i 13 . . . . . . . . . . . 12 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (1...𝑛) ⊆ ℕ)
20 simpr 484 . . . . . . . . . . . 12 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ (1...𝑛))
2119, 20sseldd 3996 . . . . . . . . . . 11 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
2216, 21ffvelcdmd 7105 . . . . . . . . . 10 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝐹𝑘) ∈ (0[,]+∞))
2322ex 412 . . . . . . . . 9 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ (1...𝑛) → (𝐹𝑘) ∈ (0[,]+∞)))
2415, 23ralrimi 3255 . . . . . . . 8 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ (1...𝑛)(𝐹𝑘) ∈ (0[,]+∞))
25 nfcv 2903 . . . . . . . . 9 𝑘(1...𝑛)
2625esumcl 34011 . . . . . . . 8 (((1...𝑛) ∈ V ∧ ∀𝑘 ∈ (1...𝑛)(𝐹𝑘) ∈ (0[,]+∞)) → Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ∈ (0[,]+∞))
2710, 24, 26sylancr 587 . . . . . . 7 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ∈ (0[,]+∞))
289, 27eqeltrrd 2840 . . . . . 6 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (seq1( +𝑒 , 𝐹)‘𝑛) ∈ (0[,]+∞))
297, 28sselid 3993 . . . . 5 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (seq1( +𝑒 , 𝐹)‘𝑛) ∈ ℝ*)
3029ralrimiva 3144 . . . 4 (𝐹:ℕ⟶(0[,]+∞) → ∀𝑛 ∈ ℕ (seq1( +𝑒 , 𝐹)‘𝑛) ∈ ℝ*)
31 fnfvrnss 7141 . . . 4 ((seq1( +𝑒 , 𝐹) Fn ℕ ∧ ∀𝑛 ∈ ℕ (seq1( +𝑒 , 𝐹)‘𝑛) ∈ ℝ*) → ran seq1( +𝑒 , 𝐹) ⊆ ℝ*)
326, 30, 31sylancr 587 . . 3 (𝐹:ℕ⟶(0[,]+∞) → ran seq1( +𝑒 , 𝐹) ⊆ ℝ*)
33 nnex 12270 . . . . 5 ℕ ∈ V
34 ffvelcdm 7101 . . . . . . 7 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ (0[,]+∞))
3534ex 412 . . . . . 6 (𝐹:ℕ⟶(0[,]+∞) → (𝑘 ∈ ℕ → (𝐹𝑘) ∈ (0[,]+∞)))
3613, 35ralrimi 3255 . . . . 5 (𝐹:ℕ⟶(0[,]+∞) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ (0[,]+∞))
3711esumcl 34011 . . . . 5 ((ℕ ∈ V ∧ ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ (0[,]+∞)) → Σ*𝑘 ∈ ℕ(𝐹𝑘) ∈ (0[,]+∞))
3833, 36, 37sylancr 587 . . . 4 (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ ℕ(𝐹𝑘) ∈ (0[,]+∞))
397, 38sselid 3993 . . 3 (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ ℕ(𝐹𝑘) ∈ ℝ*)
40 fvelrnb 6969 . . . . . . . . 9 (seq1( +𝑒 , 𝐹) Fn ℕ → (𝑥 ∈ ran seq1( +𝑒 , 𝐹) ↔ ∃𝑛 ∈ ℕ (seq1( +𝑒 , 𝐹)‘𝑛) = 𝑥))
416, 40mp1i 13 . . . . . . . 8 (𝐹:ℕ⟶(0[,]+∞) → (𝑥 ∈ ran seq1( +𝑒 , 𝐹) ↔ ∃𝑛 ∈ ℕ (seq1( +𝑒 , 𝐹)‘𝑛) = 𝑥))
42 eqcom 2742 . . . . . . . . . 10 *𝑘 ∈ (1...𝑛)(𝐹𝑘) = 𝑥𝑥 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
439eqeq1d 2737 . . . . . . . . . 10 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = 𝑥 ↔ (seq1( +𝑒 , 𝐹)‘𝑛) = 𝑥))
4442, 43bitr3id 285 . . . . . . . . 9 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (𝑥 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ↔ (seq1( +𝑒 , 𝐹)‘𝑛) = 𝑥))
4544rexbidva 3175 . . . . . . . 8 (𝐹:ℕ⟶(0[,]+∞) → (∃𝑛 ∈ ℕ 𝑥 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ↔ ∃𝑛 ∈ ℕ (seq1( +𝑒 , 𝐹)‘𝑛) = 𝑥))
4641, 45bitr4d 282 . . . . . . 7 (𝐹:ℕ⟶(0[,]+∞) → (𝑥 ∈ ran seq1( +𝑒 , 𝐹) ↔ ∃𝑛 ∈ ℕ 𝑥 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
4746biimpa 476 . . . . . 6 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ran seq1( +𝑒 , 𝐹)) → ∃𝑛 ∈ ℕ 𝑥 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
4833a1i 11 . . . . . . . . 9 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → ℕ ∈ V)
4934adantlr 715 . . . . . . . . 9 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ (0[,]+∞))
5017, 18mp1i 13 . . . . . . . . 9 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ⊆ ℕ)
5115, 48, 49, 50esummono 34035 . . . . . . . 8 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘))
5251ralrimiva 3144 . . . . . . 7 (𝐹:ℕ⟶(0[,]+∞) → ∀𝑛 ∈ ℕ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘))
5352adantr 480 . . . . . 6 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ran seq1( +𝑒 , 𝐹)) → ∀𝑛 ∈ ℕ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘))
5447, 53jca 511 . . . . 5 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ran seq1( +𝑒 , 𝐹)) → (∃𝑛 ∈ ℕ 𝑥 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ∧ ∀𝑛 ∈ ℕ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘)))
55 r19.29r 3114 . . . . 5 ((∃𝑛 ∈ ℕ 𝑥 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ∧ ∀𝑛 ∈ ℕ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘)) → ∃𝑛 ∈ ℕ (𝑥 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘)))
56 breq1 5151 . . . . . . 7 (𝑥 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) → (𝑥 ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘) ↔ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘)))
5756biimpar 477 . . . . . 6 ((𝑥 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘)) → 𝑥 ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘))
5857rexlimivw 3149 . . . . 5 (∃𝑛 ∈ ℕ (𝑥 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘)) → 𝑥 ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘))
5954, 55, 583syl 18 . . . 4 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ran seq1( +𝑒 , 𝐹)) → 𝑥 ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘))
6059ralrimiva 3144 . . 3 (𝐹:ℕ⟶(0[,]+∞) → ∀𝑥 ∈ ran seq1( +𝑒 , 𝐹)𝑥 ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘))
61 nfv 1912 . . . . . . . . . . 11 𝑘 𝑥 ∈ ℝ
6213, 61nfan 1897 . . . . . . . . . 10 𝑘(𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ)
63 nfcv 2903 . . . . . . . . . . 11 𝑘𝑥
64 nfcv 2903 . . . . . . . . . . 11 𝑘 <
6511nfesum1 34021 . . . . . . . . . . 11 𝑘Σ*𝑘 ∈ ℕ(𝐹𝑘)
6663, 64, 65nfbr 5195 . . . . . . . . . 10 𝑘 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)
6762, 66nfan 1897 . . . . . . . . 9 𝑘((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘))
6833a1i 11 . . . . . . . . 9 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) → ℕ ∈ V)
69 simplll 775 . . . . . . . . . 10 ((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑘 ∈ ℕ) → 𝐹:ℕ⟶(0[,]+∞))
7069, 34sylancom 588 . . . . . . . . 9 ((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ (0[,]+∞))
71 simplr 769 . . . . . . . . . 10 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) → 𝑥 ∈ ℝ)
7271rexrd 11309 . . . . . . . . 9 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) → 𝑥 ∈ ℝ*)
73 simpr 484 . . . . . . . . 9 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) → 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘))
7467, 68, 70, 72, 73esumlub 34041 . . . . . . . 8 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) → ∃𝑎 ∈ (𝒫 ℕ ∩ Fin)𝑥 < Σ*𝑘𝑎(𝐹𝑘))
75 ssnnssfz 32796 . . . . . . . . . 10 (𝑎 ∈ (𝒫 ℕ ∩ Fin) → ∃𝑛 ∈ ℕ 𝑎 ⊆ (1...𝑛))
76 r19.42v 3189 . . . . . . . . . . 11 (∃𝑛 ∈ ℕ (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ⊆ (1...𝑛)) ↔ (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ ∃𝑛 ∈ ℕ 𝑎 ⊆ (1...𝑛)))
77 nfv 1912 . . . . . . . . . . . . . 14 𝑘 𝑎 ⊆ (1...𝑛)
7867, 77nfan 1897 . . . . . . . . . . . . 13 𝑘(((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ⊆ (1...𝑛))
7910a1i 11 . . . . . . . . . . . . 13 ((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ⊆ (1...𝑛)) → (1...𝑛) ∈ V)
80 simp-4l 783 . . . . . . . . . . . . . 14 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ⊆ (1...𝑛)) ∧ 𝑘 ∈ (1...𝑛)) → 𝐹:ℕ⟶(0[,]+∞))
8117, 18ax-mp 5 . . . . . . . . . . . . . . 15 (1...𝑛) ⊆ ℕ
82 simpr 484 . . . . . . . . . . . . . . 15 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ⊆ (1...𝑛)) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ (1...𝑛))
8381, 82sselid 3993 . . . . . . . . . . . . . 14 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ⊆ (1...𝑛)) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
8480, 83ffvelcdmd 7105 . . . . . . . . . . . . 13 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ⊆ (1...𝑛)) ∧ 𝑘 ∈ (1...𝑛)) → (𝐹𝑘) ∈ (0[,]+∞))
85 simpr 484 . . . . . . . . . . . . 13 ((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ⊆ (1...𝑛)) → 𝑎 ⊆ (1...𝑛))
8678, 79, 84, 85esummono 34035 . . . . . . . . . . . 12 ((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ⊆ (1...𝑛)) → Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
8786reximi 3082 . . . . . . . . . . 11 (∃𝑛 ∈ ℕ (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ⊆ (1...𝑛)) → ∃𝑛 ∈ ℕ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
8876, 87sylbir 235 . . . . . . . . . 10 ((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ ∃𝑛 ∈ ℕ 𝑎 ⊆ (1...𝑛)) → ∃𝑛 ∈ ℕ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
8975, 88sylan2 593 . . . . . . . . 9 ((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) → ∃𝑛 ∈ ℕ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
9089ralrimiva 3144 . . . . . . . 8 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) → ∀𝑎 ∈ (𝒫 ℕ ∩ Fin)∃𝑛 ∈ ℕ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
91 r19.29r 3114 . . . . . . . . 9 ((∃𝑎 ∈ (𝒫 ℕ ∩ Fin)𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ ∀𝑎 ∈ (𝒫 ℕ ∩ Fin)∃𝑛 ∈ ℕ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)) → ∃𝑎 ∈ (𝒫 ℕ ∩ Fin)(𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ ∃𝑛 ∈ ℕ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
92 r19.42v 3189 . . . . . . . . . 10 (∃𝑛 ∈ ℕ (𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)) ↔ (𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ ∃𝑛 ∈ ℕ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
9392rexbii 3092 . . . . . . . . 9 (∃𝑎 ∈ (𝒫 ℕ ∩ Fin)∃𝑛 ∈ ℕ (𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)) ↔ ∃𝑎 ∈ (𝒫 ℕ ∩ Fin)(𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ ∃𝑛 ∈ ℕ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
9491, 93sylibr 234 . . . . . . . 8 ((∃𝑎 ∈ (𝒫 ℕ ∩ Fin)𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ ∀𝑎 ∈ (𝒫 ℕ ∩ Fin)∃𝑛 ∈ ℕ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)) → ∃𝑎 ∈ (𝒫 ℕ ∩ Fin)∃𝑛 ∈ ℕ (𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
9574, 90, 94syl2anc 584 . . . . . . 7 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) → ∃𝑎 ∈ (𝒫 ℕ ∩ Fin)∃𝑛 ∈ ℕ (𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
96 simp-4r 784 . . . . . . . . . . 11 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ)
9796rexrd 11309 . . . . . . . . . 10 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ*)
98 vex 3482 . . . . . . . . . . . 12 𝑎 ∈ V
99 nfcv 2903 . . . . . . . . . . . . . . . 16 𝑘𝑎
10099nfel1 2920 . . . . . . . . . . . . . . 15 𝑘 𝑎 ∈ (𝒫 ℕ ∩ Fin)
10167, 100nfan 1897 . . . . . . . . . . . . . 14 𝑘(((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin))
102101, 14nfan 1897 . . . . . . . . . . . . 13 𝑘((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ)
103 simp-5l 785 . . . . . . . . . . . . . . 15 ((((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘𝑎) → 𝐹:ℕ⟶(0[,]+∞))
104 simpllr 776 . . . . . . . . . . . . . . . . 17 ((((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘𝑎) → 𝑎 ∈ (𝒫 ℕ ∩ Fin))
105 inss1 4245 . . . . . . . . . . . . . . . . . 18 (𝒫 ℕ ∩ Fin) ⊆ 𝒫 ℕ
106105sseli 3991 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (𝒫 ℕ ∩ Fin) → 𝑎 ∈ 𝒫 ℕ)
107 elpwi 4612 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ 𝒫 ℕ → 𝑎 ⊆ ℕ)
108104, 106, 1073syl 18 . . . . . . . . . . . . . . . 16 ((((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘𝑎) → 𝑎 ⊆ ℕ)
109 simpr 484 . . . . . . . . . . . . . . . 16 ((((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘𝑎) → 𝑘𝑎)
110108, 109sseldd 3996 . . . . . . . . . . . . . . 15 ((((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘𝑎) → 𝑘 ∈ ℕ)
111103, 110ffvelcdmd 7105 . . . . . . . . . . . . . 14 ((((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘𝑎) → (𝐹𝑘) ∈ (0[,]+∞))
112111ex 412 . . . . . . . . . . . . 13 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) → (𝑘𝑎 → (𝐹𝑘) ∈ (0[,]+∞)))
113102, 112ralrimi 3255 . . . . . . . . . . . 12 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) → ∀𝑘𝑎 (𝐹𝑘) ∈ (0[,]+∞))
11499esumcl 34011 . . . . . . . . . . . 12 ((𝑎 ∈ V ∧ ∀𝑘𝑎 (𝐹𝑘) ∈ (0[,]+∞)) → Σ*𝑘𝑎(𝐹𝑘) ∈ (0[,]+∞))
11598, 113, 114sylancr 587 . . . . . . . . . . 11 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) → Σ*𝑘𝑎(𝐹𝑘) ∈ (0[,]+∞))
1167, 115sselid 3993 . . . . . . . . . 10 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) → Σ*𝑘𝑎(𝐹𝑘) ∈ ℝ*)
117 simp-5l 785 . . . . . . . . . . . . . . 15 ((((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐹:ℕ⟶(0[,]+∞))
118 simpr 484 . . . . . . . . . . . . . . . 16 ((((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ (1...𝑛))
11981, 118sselid 3993 . . . . . . . . . . . . . . 15 ((((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
120117, 119ffvelcdmd 7105 . . . . . . . . . . . . . 14 ((((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝐹𝑘) ∈ (0[,]+∞))
121120ex 412 . . . . . . . . . . . . 13 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ (1...𝑛) → (𝐹𝑘) ∈ (0[,]+∞)))
122102, 121ralrimi 3255 . . . . . . . . . . . 12 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ (1...𝑛)(𝐹𝑘) ∈ (0[,]+∞))
12310, 122, 26sylancr 587 . . . . . . . . . . 11 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ∈ (0[,]+∞))
1247, 123sselid 3993 . . . . . . . . . 10 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ∈ ℝ*)
125 xrltletr 13196 . . . . . . . . . 10 ((𝑥 ∈ ℝ* ∧ Σ*𝑘𝑎(𝐹𝑘) ∈ ℝ* ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ∈ ℝ*) → ((𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)) → 𝑥 < Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
12697, 116, 124, 125syl3anc 1370 . . . . . . . . 9 (((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑛 ∈ ℕ) → ((𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)) → 𝑥 < Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
127126reximdva 3166 . . . . . . . 8 ((((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) ∧ 𝑎 ∈ (𝒫 ℕ ∩ Fin)) → (∃𝑛 ∈ ℕ (𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)) → ∃𝑛 ∈ ℕ 𝑥 < Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
128127rexlimdva 3153 . . . . . . 7 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) → (∃𝑎 ∈ (𝒫 ℕ ∩ Fin)∃𝑛 ∈ ℕ (𝑥 < Σ*𝑘𝑎(𝐹𝑘) ∧ Σ*𝑘𝑎(𝐹𝑘) ≤ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)) → ∃𝑛 ∈ ℕ 𝑥 < Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
12995, 128mpd 15 . . . . . 6 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) → ∃𝑛 ∈ ℕ 𝑥 < Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
130 fvelrnb 6969 . . . . . . . . . 10 (seq1( +𝑒 , 𝐹) Fn ℕ → (𝑦 ∈ ran seq1( +𝑒 , 𝐹) ↔ ∃𝑛 ∈ ℕ (seq1( +𝑒 , 𝐹)‘𝑛) = 𝑦))
1316, 130mp1i 13 . . . . . . . . 9 (𝐹:ℕ⟶(0[,]+∞) → (𝑦 ∈ ran seq1( +𝑒 , 𝐹) ↔ ∃𝑛 ∈ ℕ (seq1( +𝑒 , 𝐹)‘𝑛) = 𝑦))
132 eqcom 2742 . . . . . . . . . . 11 *𝑘 ∈ (1...𝑛)(𝐹𝑘) = 𝑦𝑦 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
1339eqeq1d 2737 . . . . . . . . . . 11 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = 𝑦 ↔ (seq1( +𝑒 , 𝐹)‘𝑛) = 𝑦))
134132, 133bitr3id 285 . . . . . . . . . 10 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (𝑦 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ↔ (seq1( +𝑒 , 𝐹)‘𝑛) = 𝑦))
135134rexbidva 3175 . . . . . . . . 9 (𝐹:ℕ⟶(0[,]+∞) → (∃𝑛 ∈ ℕ 𝑦 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) ↔ ∃𝑛 ∈ ℕ (seq1( +𝑒 , 𝐹)‘𝑛) = 𝑦))
136131, 135bitr4d 282 . . . . . . . 8 (𝐹:ℕ⟶(0[,]+∞) → (𝑦 ∈ ran seq1( +𝑒 , 𝐹) ↔ ∃𝑛 ∈ ℕ 𝑦 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
137 simpr 484 . . . . . . . . 9 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑦 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)) → 𝑦 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
138137breq2d 5160 . . . . . . . 8 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑦 = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)) → (𝑥 < 𝑦𝑥 < Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
13927, 136, 138rexxfr2d 5417 . . . . . . 7 (𝐹:ℕ⟶(0[,]+∞) → (∃𝑦 ∈ ran seq1( +𝑒 , 𝐹)𝑥 < 𝑦 ↔ ∃𝑛 ∈ ℕ 𝑥 < Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
140139ad2antrr 726 . . . . . 6 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) → (∃𝑦 ∈ ran seq1( +𝑒 , 𝐹)𝑥 < 𝑦 ↔ ∃𝑛 ∈ ℕ 𝑥 < Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘)))
141129, 140mpbird 257 . . . . 5 (((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘)) → ∃𝑦 ∈ ran seq1( +𝑒 , 𝐹)𝑥 < 𝑦)
142141ex 412 . . . 4 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘) → ∃𝑦 ∈ ran seq1( +𝑒 , 𝐹)𝑥 < 𝑦))
143142ralrimiva 3144 . . 3 (𝐹:ℕ⟶(0[,]+∞) → ∀𝑥 ∈ ℝ (𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘) → ∃𝑦 ∈ ran seq1( +𝑒 , 𝐹)𝑥 < 𝑦))
144 supxr2 13353 . . 3 (((ran seq1( +𝑒 , 𝐹) ⊆ ℝ* ∧ Σ*𝑘 ∈ ℕ(𝐹𝑘) ∈ ℝ*) ∧ (∀𝑥 ∈ ran seq1( +𝑒 , 𝐹)𝑥 ≤ Σ*𝑘 ∈ ℕ(𝐹𝑘) ∧ ∀𝑥 ∈ ℝ (𝑥 < Σ*𝑘 ∈ ℕ(𝐹𝑘) → ∃𝑦 ∈ ran seq1( +𝑒 , 𝐹)𝑥 < 𝑦))) → sup(ran seq1( +𝑒 , 𝐹), ℝ*, < ) = Σ*𝑘 ∈ ℕ(𝐹𝑘))
14532, 39, 60, 143, 144syl22anc 839 . 2 (𝐹:ℕ⟶(0[,]+∞) → sup(ran seq1( +𝑒 , 𝐹), ℝ*, < ) = Σ*𝑘 ∈ ℕ(𝐹𝑘))
146145eqcomd 2741 1 (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ ℕ(𝐹𝑘) = sup(ran seq1( +𝑒 , 𝐹), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wnfc 2888  wral 3059  wrex 3068  Vcvv 3478  cin 3962  wss 3963  𝒫 cpw 4605   class class class wbr 5148  ran crn 5690   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  Fincfn 8984  supcsup 9478  cr 11152  0cc0 11153  1c1 11154  +∞cpnf 11290  *cxr 11292   < clt 11293  cle 11294  cn 12264  cz 12611  cuz 12876   +𝑒 cxad 13150  [,]cicc 13387  ...cfz 13544  seqcseq 14039  Σ*cesum 34008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103  df-pi 16105  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-ordt 17548  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-ps 18624  df-tsr 18625  df-plusf 18665  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-subrng 20563  df-subrg 20587  df-abv 20827  df-lmod 20877  df-scaf 20878  df-sra 21190  df-rgmod 21191  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-tmd 24096  df-tgp 24097  df-tsms 24151  df-trg 24184  df-xms 24346  df-ms 24347  df-tms 24348  df-nm 24611  df-ngp 24612  df-nrg 24614  df-nlm 24615  df-ii 24917  df-cncf 24918  df-limc 25916  df-dv 25917  df-log 26613  df-esum 34009
This theorem is referenced by:  esumfsupre  34052  esumsup  34070
  Copyright terms: Public domain W3C validator