| Step | Hyp | Ref
| Expression |
| 1 | | metucn.u |
. . . . . 6
⊢ 𝑈 = (metUnif‘𝐶) |
| 2 | | metucn.c |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ (PsMet‘𝑋)) |
| 3 | | metuval 24493 |
. . . . . . 7
⊢ (𝐶 ∈ (PsMet‘𝑋) → (metUnif‘𝐶) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐶 “ (0[,)𝑎))))) |
| 4 | 2, 3 | syl 17 |
. . . . . 6
⊢ (𝜑 → (metUnif‘𝐶) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐶 “ (0[,)𝑎))))) |
| 5 | 1, 4 | eqtrid 2783 |
. . . . 5
⊢ (𝜑 → 𝑈 = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐶 “ (0[,)𝑎))))) |
| 6 | | metucn.v |
. . . . . 6
⊢ 𝑉 = (metUnif‘𝐷) |
| 7 | | metucn.d |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ (PsMet‘𝑌)) |
| 8 | | metuval 24493 |
. . . . . . 7
⊢ (𝐷 ∈ (PsMet‘𝑌) → (metUnif‘𝐷) = ((𝑌 × 𝑌)filGenran (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏))))) |
| 9 | 7, 8 | syl 17 |
. . . . . 6
⊢ (𝜑 → (metUnif‘𝐷) = ((𝑌 × 𝑌)filGenran (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏))))) |
| 10 | 6, 9 | eqtrid 2783 |
. . . . 5
⊢ (𝜑 → 𝑉 = ((𝑌 × 𝑌)filGenran (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏))))) |
| 11 | 5, 10 | oveq12d 7428 |
. . . 4
⊢ (𝜑 → (𝑈 Cnu𝑉) = (((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐶 “ (0[,)𝑎)))) Cnu((𝑌 × 𝑌)filGenran (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏)))))) |
| 12 | 11 | eleq2d 2821 |
. . 3
⊢ (𝜑 → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ 𝐹 ∈ (((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐶 “ (0[,)𝑎)))) Cnu((𝑌 × 𝑌)filGenran (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏))))))) |
| 13 | | eqid 2736 |
. . . 4
⊢ ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐶 “ (0[,)𝑎)))) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐶 “ (0[,)𝑎)))) |
| 14 | | eqid 2736 |
. . . 4
⊢ ((𝑌 × 𝑌)filGenran (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏)))) = ((𝑌 × 𝑌)filGenran (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏)))) |
| 15 | | metucn.x |
. . . . 5
⊢ (𝜑 → 𝑋 ≠ ∅) |
| 16 | | oveq2 7418 |
. . . . . . . . 9
⊢ (𝑎 = 𝑐 → (0[,)𝑎) = (0[,)𝑐)) |
| 17 | 16 | imaeq2d 6052 |
. . . . . . . 8
⊢ (𝑎 = 𝑐 → (◡𝐶 “ (0[,)𝑎)) = (◡𝐶 “ (0[,)𝑐))) |
| 18 | 17 | cbvmptv 5230 |
. . . . . . 7
⊢ (𝑎 ∈ ℝ+
↦ (◡𝐶 “ (0[,)𝑎))) = (𝑐 ∈ ℝ+ ↦ (◡𝐶 “ (0[,)𝑐))) |
| 19 | 18 | rneqi 5922 |
. . . . . 6
⊢ ran
(𝑎 ∈
ℝ+ ↦ (◡𝐶 “ (0[,)𝑎))) = ran (𝑐 ∈ ℝ+ ↦ (◡𝐶 “ (0[,)𝑐))) |
| 20 | 19 | metust 24502 |
. . . . 5
⊢ ((𝑋 ≠ ∅ ∧ 𝐶 ∈ (PsMet‘𝑋)) → ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐶 “ (0[,)𝑎)))) ∈ (UnifOn‘𝑋)) |
| 21 | 15, 2, 20 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐶 “ (0[,)𝑎)))) ∈ (UnifOn‘𝑋)) |
| 22 | | metucn.y |
. . . . 5
⊢ (𝜑 → 𝑌 ≠ ∅) |
| 23 | | oveq2 7418 |
. . . . . . . . 9
⊢ (𝑏 = 𝑑 → (0[,)𝑏) = (0[,)𝑑)) |
| 24 | 23 | imaeq2d 6052 |
. . . . . . . 8
⊢ (𝑏 = 𝑑 → (◡𝐷 “ (0[,)𝑏)) = (◡𝐷 “ (0[,)𝑑))) |
| 25 | 24 | cbvmptv 5230 |
. . . . . . 7
⊢ (𝑏 ∈ ℝ+
↦ (◡𝐷 “ (0[,)𝑏))) = (𝑑 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑑))) |
| 26 | 25 | rneqi 5922 |
. . . . . 6
⊢ ran
(𝑏 ∈
ℝ+ ↦ (◡𝐷 “ (0[,)𝑏))) = ran (𝑑 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑑))) |
| 27 | 26 | metust 24502 |
. . . . 5
⊢ ((𝑌 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑌)) → ((𝑌 × 𝑌)filGenran (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏)))) ∈ (UnifOn‘𝑌)) |
| 28 | 22, 7, 27 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ((𝑌 × 𝑌)filGenran (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏)))) ∈ (UnifOn‘𝑌)) |
| 29 | | oveq2 7418 |
. . . . . . . . 9
⊢ (𝑎 = 𝑒 → (0[,)𝑎) = (0[,)𝑒)) |
| 30 | 29 | imaeq2d 6052 |
. . . . . . . 8
⊢ (𝑎 = 𝑒 → (◡𝐶 “ (0[,)𝑎)) = (◡𝐶 “ (0[,)𝑒))) |
| 31 | 30 | cbvmptv 5230 |
. . . . . . 7
⊢ (𝑎 ∈ ℝ+
↦ (◡𝐶 “ (0[,)𝑎))) = (𝑒 ∈ ℝ+ ↦ (◡𝐶 “ (0[,)𝑒))) |
| 32 | 31 | rneqi 5922 |
. . . . . 6
⊢ ran
(𝑎 ∈
ℝ+ ↦ (◡𝐶 “ (0[,)𝑎))) = ran (𝑒 ∈ ℝ+ ↦ (◡𝐶 “ (0[,)𝑒))) |
| 33 | 32 | metustfbas 24501 |
. . . . 5
⊢ ((𝑋 ≠ ∅ ∧ 𝐶 ∈ (PsMet‘𝑋)) → ran (𝑎 ∈ ℝ+
↦ (◡𝐶 “ (0[,)𝑎))) ∈ (fBas‘(𝑋 × 𝑋))) |
| 34 | 15, 2, 33 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ran (𝑎 ∈ ℝ+ ↦ (◡𝐶 “ (0[,)𝑎))) ∈ (fBas‘(𝑋 × 𝑋))) |
| 35 | | oveq2 7418 |
. . . . . . . . 9
⊢ (𝑏 = 𝑓 → (0[,)𝑏) = (0[,)𝑓)) |
| 36 | 35 | imaeq2d 6052 |
. . . . . . . 8
⊢ (𝑏 = 𝑓 → (◡𝐷 “ (0[,)𝑏)) = (◡𝐷 “ (0[,)𝑓))) |
| 37 | 36 | cbvmptv 5230 |
. . . . . . 7
⊢ (𝑏 ∈ ℝ+
↦ (◡𝐷 “ (0[,)𝑏))) = (𝑓 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑓))) |
| 38 | 37 | rneqi 5922 |
. . . . . 6
⊢ ran
(𝑏 ∈
ℝ+ ↦ (◡𝐷 “ (0[,)𝑏))) = ran (𝑓 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑓))) |
| 39 | 38 | metustfbas 24501 |
. . . . 5
⊢ ((𝑌 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑌)) → ran (𝑏 ∈ ℝ+
↦ (◡𝐷 “ (0[,)𝑏))) ∈ (fBas‘(𝑌 × 𝑌))) |
| 40 | 22, 7, 39 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ran (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏))) ∈ (fBas‘(𝑌 × 𝑌))) |
| 41 | 13, 14, 21, 28, 34, 40 | isucn2 24222 |
. . 3
⊢ (𝜑 → (𝐹 ∈ (((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐶 “ (0[,)𝑎)))) Cnu((𝑌 × 𝑌)filGenran (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏))))) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑣 ∈ ran (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏)))∃𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐶 “ (0[,)𝑎)))∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))))) |
| 42 | 12, 41 | bitrd 279 |
. 2
⊢ (𝜑 → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑣 ∈ ran (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏)))∃𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐶 “ (0[,)𝑎)))∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))))) |
| 43 | | eqid 2736 |
. . . . . . . . . 10
⊢ (◡𝐷 “ (0[,)𝑑)) = (◡𝐷 “ (0[,)𝑑)) |
| 44 | | oveq2 7418 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑑 → (0[,)𝑓) = (0[,)𝑑)) |
| 45 | 44 | imaeq2d 6052 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑑 → (◡𝐷 “ (0[,)𝑓)) = (◡𝐷 “ (0[,)𝑑))) |
| 46 | 45 | rspceeqv 3629 |
. . . . . . . . . 10
⊢ ((𝑑 ∈ ℝ+
∧ (◡𝐷 “ (0[,)𝑑)) = (◡𝐷 “ (0[,)𝑑))) → ∃𝑓 ∈ ℝ+ (◡𝐷 “ (0[,)𝑑)) = (◡𝐷 “ (0[,)𝑓))) |
| 47 | 43, 46 | mpan2 691 |
. . . . . . . . 9
⊢ (𝑑 ∈ ℝ+
→ ∃𝑓 ∈
ℝ+ (◡𝐷 “ (0[,)𝑑)) = (◡𝐷 “ (0[,)𝑓))) |
| 48 | 47 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ ℝ+) →
∃𝑓 ∈
ℝ+ (◡𝐷 “ (0[,)𝑑)) = (◡𝐷 “ (0[,)𝑓))) |
| 49 | 38 | metustel 24494 |
. . . . . . . . . 10
⊢ (𝐷 ∈ (PsMet‘𝑌) → ((◡𝐷 “ (0[,)𝑑)) ∈ ran (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏))) ↔ ∃𝑓 ∈ ℝ+ (◡𝐷 “ (0[,)𝑑)) = (◡𝐷 “ (0[,)𝑓)))) |
| 50 | 7, 49 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((◡𝐷 “ (0[,)𝑑)) ∈ ran (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏))) ↔ ∃𝑓 ∈ ℝ+ (◡𝐷 “ (0[,)𝑑)) = (◡𝐷 “ (0[,)𝑓)))) |
| 51 | 50 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ ℝ+) → ((◡𝐷 “ (0[,)𝑑)) ∈ ran (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏))) ↔ ∃𝑓 ∈ ℝ+ (◡𝐷 “ (0[,)𝑑)) = (◡𝐷 “ (0[,)𝑓)))) |
| 52 | 48, 51 | mpbird 257 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ ℝ+) → (◡𝐷 “ (0[,)𝑑)) ∈ ran (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏)))) |
| 53 | 26 | metustel 24494 |
. . . . . . . 8
⊢ (𝐷 ∈ (PsMet‘𝑌) → (𝑣 ∈ ran (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏))) ↔ ∃𝑑 ∈ ℝ+ 𝑣 = (◡𝐷 “ (0[,)𝑑)))) |
| 54 | 7, 53 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑣 ∈ ran (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏))) ↔ ∃𝑑 ∈ ℝ+ 𝑣 = (◡𝐷 “ (0[,)𝑑)))) |
| 55 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 = (◡𝐷 “ (0[,)𝑑))) → 𝑣 = (◡𝐷 “ (0[,)𝑑))) |
| 56 | 55 | breqd 5135 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 = (◡𝐷 “ (0[,)𝑑))) → ((𝐹‘𝑥)𝑣(𝐹‘𝑦) ↔ (𝐹‘𝑥)(◡𝐷 “ (0[,)𝑑))(𝐹‘𝑦))) |
| 57 | 56 | imbi2d 340 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 = (◡𝐷 “ (0[,)𝑑))) → ((𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦)) ↔ (𝑥𝑢𝑦 → (𝐹‘𝑥)(◡𝐷 “ (0[,)𝑑))(𝐹‘𝑦)))) |
| 58 | 57 | ralbidv 3164 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 = (◡𝐷 “ (0[,)𝑑))) → (∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦)) ↔ ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)(◡𝐷 “ (0[,)𝑑))(𝐹‘𝑦)))) |
| 59 | 58 | rexralbidv 3211 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 = (◡𝐷 “ (0[,)𝑑))) → (∃𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐶 “ (0[,)𝑎)))∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦)) ↔ ∃𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐶 “ (0[,)𝑎)))∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)(◡𝐷 “ (0[,)𝑑))(𝐹‘𝑦)))) |
| 60 | 52, 54, 59 | ralxfr2d 5385 |
. . . . . 6
⊢ (𝜑 → (∀𝑣 ∈ ran (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏)))∃𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐶 “ (0[,)𝑎)))∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦)) ↔ ∀𝑑 ∈ ℝ+ ∃𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐶 “ (0[,)𝑎)))∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)(◡𝐷 “ (0[,)𝑑))(𝐹‘𝑦)))) |
| 61 | | eqid 2736 |
. . . . . . . . . . 11
⊢ (◡𝐶 “ (0[,)𝑐)) = (◡𝐶 “ (0[,)𝑐)) |
| 62 | | oveq2 7418 |
. . . . . . . . . . . . 13
⊢ (𝑒 = 𝑐 → (0[,)𝑒) = (0[,)𝑐)) |
| 63 | 62 | imaeq2d 6052 |
. . . . . . . . . . . 12
⊢ (𝑒 = 𝑐 → (◡𝐶 “ (0[,)𝑒)) = (◡𝐶 “ (0[,)𝑐))) |
| 64 | 63 | rspceeqv 3629 |
. . . . . . . . . . 11
⊢ ((𝑐 ∈ ℝ+
∧ (◡𝐶 “ (0[,)𝑐)) = (◡𝐶 “ (0[,)𝑐))) → ∃𝑒 ∈ ℝ+ (◡𝐶 “ (0[,)𝑐)) = (◡𝐶 “ (0[,)𝑒))) |
| 65 | 61, 64 | mpan2 691 |
. . . . . . . . . 10
⊢ (𝑐 ∈ ℝ+
→ ∃𝑒 ∈
ℝ+ (◡𝐶 “ (0[,)𝑐)) = (◡𝐶 “ (0[,)𝑒))) |
| 66 | 65 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ ℝ+) →
∃𝑒 ∈
ℝ+ (◡𝐶 “ (0[,)𝑐)) = (◡𝐶 “ (0[,)𝑒))) |
| 67 | 32 | metustel 24494 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ (PsMet‘𝑋) → ((◡𝐶 “ (0[,)𝑐)) ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐶 “ (0[,)𝑎))) ↔ ∃𝑒 ∈ ℝ+ (◡𝐶 “ (0[,)𝑐)) = (◡𝐶 “ (0[,)𝑒)))) |
| 68 | 2, 67 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((◡𝐶 “ (0[,)𝑐)) ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐶 “ (0[,)𝑎))) ↔ ∃𝑒 ∈ ℝ+ (◡𝐶 “ (0[,)𝑐)) = (◡𝐶 “ (0[,)𝑒)))) |
| 69 | 68 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ ℝ+) → ((◡𝐶 “ (0[,)𝑐)) ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐶 “ (0[,)𝑎))) ↔ ∃𝑒 ∈ ℝ+ (◡𝐶 “ (0[,)𝑐)) = (◡𝐶 “ (0[,)𝑒)))) |
| 70 | 66, 69 | mpbird 257 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ ℝ+) → (◡𝐶 “ (0[,)𝑐)) ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐶 “ (0[,)𝑎)))) |
| 71 | 19 | metustel 24494 |
. . . . . . . . 9
⊢ (𝐶 ∈ (PsMet‘𝑋) → (𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐶 “ (0[,)𝑎))) ↔ ∃𝑐 ∈ ℝ+ 𝑢 = (◡𝐶 “ (0[,)𝑐)))) |
| 72 | 2, 71 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐶 “ (0[,)𝑎))) ↔ ∃𝑐 ∈ ℝ+ 𝑢 = (◡𝐶 “ (0[,)𝑐)))) |
| 73 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 = (◡𝐶 “ (0[,)𝑐))) → 𝑢 = (◡𝐶 “ (0[,)𝑐))) |
| 74 | 73 | breqd 5135 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 = (◡𝐶 “ (0[,)𝑐))) → (𝑥𝑢𝑦 ↔ 𝑥(◡𝐶 “ (0[,)𝑐))𝑦)) |
| 75 | 74 | imbi1d 341 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 = (◡𝐶 “ (0[,)𝑐))) → ((𝑥𝑢𝑦 → (𝐹‘𝑥)(◡𝐷 “ (0[,)𝑑))(𝐹‘𝑦)) ↔ (𝑥(◡𝐶 “ (0[,)𝑐))𝑦 → (𝐹‘𝑥)(◡𝐷 “ (0[,)𝑑))(𝐹‘𝑦)))) |
| 76 | 75 | 2ralbidv 3209 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 = (◡𝐶 “ (0[,)𝑐))) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)(◡𝐷 “ (0[,)𝑑))(𝐹‘𝑦)) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥(◡𝐶 “ (0[,)𝑐))𝑦 → (𝐹‘𝑥)(◡𝐷 “ (0[,)𝑑))(𝐹‘𝑦)))) |
| 77 | 70, 72, 76 | rexxfr2d 5386 |
. . . . . . 7
⊢ (𝜑 → (∃𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐶 “ (0[,)𝑎)))∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)(◡𝐷 “ (0[,)𝑑))(𝐹‘𝑦)) ↔ ∃𝑐 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥(◡𝐶 “ (0[,)𝑐))𝑦 → (𝐹‘𝑥)(◡𝐷 “ (0[,)𝑑))(𝐹‘𝑦)))) |
| 78 | 77 | ralbidv 3164 |
. . . . . 6
⊢ (𝜑 → (∀𝑑 ∈ ℝ+
∃𝑢 ∈ ran (𝑎 ∈ ℝ+
↦ (◡𝐶 “ (0[,)𝑎)))∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)(◡𝐷 “ (0[,)𝑑))(𝐹‘𝑦)) ↔ ∀𝑑 ∈ ℝ+ ∃𝑐 ∈ ℝ+
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥(◡𝐶 “ (0[,)𝑐))𝑦 → (𝐹‘𝑥)(◡𝐷 “ (0[,)𝑑))(𝐹‘𝑦)))) |
| 79 | 60, 78 | bitrd 279 |
. . . . 5
⊢ (𝜑 → (∀𝑣 ∈ ran (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏)))∃𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐶 “ (0[,)𝑎)))∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦)) ↔ ∀𝑑 ∈ ℝ+ ∃𝑐 ∈ ℝ+
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥(◡𝐶 “ (0[,)𝑐))𝑦 → (𝐹‘𝑥)(◡𝐷 “ (0[,)𝑑))(𝐹‘𝑦)))) |
| 80 | 79 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐹:𝑋⟶𝑌) → (∀𝑣 ∈ ran (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏)))∃𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐶 “ (0[,)𝑎)))∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦)) ↔ ∀𝑑 ∈ ℝ+ ∃𝑐 ∈ ℝ+
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥(◡𝐶 “ (0[,)𝑐))𝑦 → (𝐹‘𝑥)(◡𝐷 “ (0[,)𝑑))(𝐹‘𝑦)))) |
| 81 | 2 | ad4antr 732 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+)
∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝐶 ∈ (PsMet‘𝑋)) |
| 82 | | simplr 768 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+)
∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑐 ∈ ℝ+) |
| 83 | | simprr 772 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+)
∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑦 ∈ 𝑋) |
| 84 | | simprl 770 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+)
∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑥 ∈ 𝑋) |
| 85 | | elbl4 24507 |
. . . . . . . . . 10
⊢ (((𝐶 ∈ (PsMet‘𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝑥 ∈ (𝑦(ball‘𝐶)𝑐) ↔ 𝑥(◡𝐶 “ (0[,)𝑐))𝑦)) |
| 86 | | rpxr 13023 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ ℝ+
→ 𝑐 ∈
ℝ*) |
| 87 | | elbl3ps 24335 |
. . . . . . . . . . 11
⊢ (((𝐶 ∈ (PsMet‘𝑋) ∧ 𝑐 ∈ ℝ*) ∧ (𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝑥 ∈ (𝑦(ball‘𝐶)𝑐) ↔ (𝑥𝐶𝑦) < 𝑐)) |
| 88 | 86, 87 | sylanl2 681 |
. . . . . . . . . 10
⊢ (((𝐶 ∈ (PsMet‘𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝑥 ∈ (𝑦(ball‘𝐶)𝑐) ↔ (𝑥𝐶𝑦) < 𝑐)) |
| 89 | 85, 88 | bitr3d 281 |
. . . . . . . . 9
⊢ (((𝐶 ∈ (PsMet‘𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝑥(◡𝐶 “ (0[,)𝑐))𝑦 ↔ (𝑥𝐶𝑦) < 𝑐)) |
| 90 | 81, 82, 83, 84, 89 | syl22anc 838 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+)
∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥(◡𝐶 “ (0[,)𝑐))𝑦 ↔ (𝑥𝐶𝑦) < 𝑐)) |
| 91 | 7 | ad4antr 732 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+)
∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝐷 ∈ (PsMet‘𝑌)) |
| 92 | | simpllr 775 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+)
∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑑 ∈ ℝ+) |
| 93 | | simp-4r 783 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+)
∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝐹:𝑋⟶𝑌) |
| 94 | 93, 83 | ffvelcdmd 7080 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+)
∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘𝑦) ∈ 𝑌) |
| 95 | 93, 84 | ffvelcdmd 7080 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+)
∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘𝑥) ∈ 𝑌) |
| 96 | | elbl4 24507 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ (PsMet‘𝑌) ∧ 𝑑 ∈ ℝ+) ∧ ((𝐹‘𝑦) ∈ 𝑌 ∧ (𝐹‘𝑥) ∈ 𝑌)) → ((𝐹‘𝑥) ∈ ((𝐹‘𝑦)(ball‘𝐷)𝑑) ↔ (𝐹‘𝑥)(◡𝐷 “ (0[,)𝑑))(𝐹‘𝑦))) |
| 97 | | rpxr 13023 |
. . . . . . . . . . 11
⊢ (𝑑 ∈ ℝ+
→ 𝑑 ∈
ℝ*) |
| 98 | | elbl3ps 24335 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (PsMet‘𝑌) ∧ 𝑑 ∈ ℝ*) ∧ ((𝐹‘𝑦) ∈ 𝑌 ∧ (𝐹‘𝑥) ∈ 𝑌)) → ((𝐹‘𝑥) ∈ ((𝐹‘𝑦)(ball‘𝐷)𝑑) ↔ ((𝐹‘𝑥)𝐷(𝐹‘𝑦)) < 𝑑)) |
| 99 | 97, 98 | sylanl2 681 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ (PsMet‘𝑌) ∧ 𝑑 ∈ ℝ+) ∧ ((𝐹‘𝑦) ∈ 𝑌 ∧ (𝐹‘𝑥) ∈ 𝑌)) → ((𝐹‘𝑥) ∈ ((𝐹‘𝑦)(ball‘𝐷)𝑑) ↔ ((𝐹‘𝑥)𝐷(𝐹‘𝑦)) < 𝑑)) |
| 100 | 96, 99 | bitr3d 281 |
. . . . . . . . 9
⊢ (((𝐷 ∈ (PsMet‘𝑌) ∧ 𝑑 ∈ ℝ+) ∧ ((𝐹‘𝑦) ∈ 𝑌 ∧ (𝐹‘𝑥) ∈ 𝑌)) → ((𝐹‘𝑥)(◡𝐷 “ (0[,)𝑑))(𝐹‘𝑦) ↔ ((𝐹‘𝑥)𝐷(𝐹‘𝑦)) < 𝑑)) |
| 101 | 91, 92, 94, 95, 100 | syl22anc 838 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+)
∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝐹‘𝑥)(◡𝐷 “ (0[,)𝑑))(𝐹‘𝑦) ↔ ((𝐹‘𝑥)𝐷(𝐹‘𝑦)) < 𝑑)) |
| 102 | 90, 101 | imbi12d 344 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+)
∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥(◡𝐶 “ (0[,)𝑐))𝑦 → (𝐹‘𝑥)(◡𝐷 “ (0[,)𝑑))(𝐹‘𝑦)) ↔ ((𝑥𝐶𝑦) < 𝑐 → ((𝐹‘𝑥)𝐷(𝐹‘𝑦)) < 𝑑))) |
| 103 | 102 | 2ralbidva 3207 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+)
→ (∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑋 (𝑥(◡𝐶 “ (0[,)𝑐))𝑦 → (𝐹‘𝑥)(◡𝐷 “ (0[,)𝑑))(𝐹‘𝑦)) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐶𝑦) < 𝑐 → ((𝐹‘𝑥)𝐷(𝐹‘𝑦)) < 𝑑))) |
| 104 | 103 | rexbidva 3163 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑑 ∈ ℝ+) →
(∃𝑐 ∈
ℝ+ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥(◡𝐶 “ (0[,)𝑐))𝑦 → (𝐹‘𝑥)(◡𝐷 “ (0[,)𝑑))(𝐹‘𝑦)) ↔ ∃𝑐 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐶𝑦) < 𝑐 → ((𝐹‘𝑥)𝐷(𝐹‘𝑦)) < 𝑑))) |
| 105 | 104 | ralbidva 3162 |
. . . 4
⊢ ((𝜑 ∧ 𝐹:𝑋⟶𝑌) → (∀𝑑 ∈ ℝ+ ∃𝑐 ∈ ℝ+
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥(◡𝐶 “ (0[,)𝑐))𝑦 → (𝐹‘𝑥)(◡𝐷 “ (0[,)𝑑))(𝐹‘𝑦)) ↔ ∀𝑑 ∈ ℝ+ ∃𝑐 ∈ ℝ+
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐶𝑦) < 𝑐 → ((𝐹‘𝑥)𝐷(𝐹‘𝑦)) < 𝑑))) |
| 106 | 80, 105 | bitrd 279 |
. . 3
⊢ ((𝜑 ∧ 𝐹:𝑋⟶𝑌) → (∀𝑣 ∈ ran (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏)))∃𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐶 “ (0[,)𝑎)))∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦)) ↔ ∀𝑑 ∈ ℝ+ ∃𝑐 ∈ ℝ+
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐶𝑦) < 𝑐 → ((𝐹‘𝑥)𝐷(𝐹‘𝑦)) < 𝑑))) |
| 107 | 106 | pm5.32da 579 |
. 2
⊢ (𝜑 → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑣 ∈ ran (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏)))∃𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐶 “ (0[,)𝑎)))∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑑 ∈ ℝ+ ∃𝑐 ∈ ℝ+
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐶𝑦) < 𝑐 → ((𝐹‘𝑥)𝐷(𝐹‘𝑦)) < 𝑑)))) |
| 108 | 42, 107 | bitrd 279 |
1
⊢ (𝜑 → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑑 ∈ ℝ+ ∃𝑐 ∈ ℝ+
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐶𝑦) < 𝑐 → ((𝐹‘𝑥)𝐷(𝐹‘𝑦)) < 𝑑)))) |