MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metucn Structured version   Visualization version   GIF version

Theorem metucn 24475
Description: Uniform continuity in metric spaces. Compare the order of the quantifiers with metcn 24447. (Contributed by Thierry Arnoux, 26-Jan-2018.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypotheses
Ref Expression
metucn.u 𝑈 = (metUnif‘𝐶)
metucn.v 𝑉 = (metUnif‘𝐷)
metucn.x (𝜑𝑋 ≠ ∅)
metucn.y (𝜑𝑌 ≠ ∅)
metucn.c (𝜑𝐶 ∈ (PsMet‘𝑋))
metucn.d (𝜑𝐷 ∈ (PsMet‘𝑌))
Assertion
Ref Expression
metucn (𝜑 → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑑 ∈ ℝ+𝑐 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐶𝑦) < 𝑐 → ((𝐹𝑥)𝐷(𝐹𝑦)) < 𝑑))))
Distinct variable groups:   𝑐,𝑑,𝑥,𝑦,𝐶   𝐷,𝑐,𝑑,𝑥,𝑦   𝐹,𝑐,𝑑,𝑥,𝑦   𝑥,𝑈,𝑦   𝑥,𝑉   𝑋,𝑐,𝑑,𝑥,𝑦   𝑌,𝑐,𝑑,𝑥,𝑦   𝜑,𝑐,𝑑,𝑥,𝑦
Allowed substitution hints:   𝑈(𝑐,𝑑)   𝑉(𝑦,𝑐,𝑑)

Proof of Theorem metucn
Dummy variables 𝑎 𝑒 𝑢 𝑣 𝑏 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metucn.u . . . . . 6 𝑈 = (metUnif‘𝐶)
2 metucn.c . . . . . . 7 (𝜑𝐶 ∈ (PsMet‘𝑋))
3 metuval 24453 . . . . . . 7 (𝐶 ∈ (PsMet‘𝑋) → (metUnif‘𝐶) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))))
42, 3syl 17 . . . . . 6 (𝜑 → (metUnif‘𝐶) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))))
51, 4eqtrid 2776 . . . . 5 (𝜑𝑈 = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))))
6 metucn.v . . . . . 6 𝑉 = (metUnif‘𝐷)
7 metucn.d . . . . . . 7 (𝜑𝐷 ∈ (PsMet‘𝑌))
8 metuval 24453 . . . . . . 7 (𝐷 ∈ (PsMet‘𝑌) → (metUnif‘𝐷) = ((𝑌 × 𝑌)filGenran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))))
97, 8syl 17 . . . . . 6 (𝜑 → (metUnif‘𝐷) = ((𝑌 × 𝑌)filGenran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))))
106, 9eqtrid 2776 . . . . 5 (𝜑𝑉 = ((𝑌 × 𝑌)filGenran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))))
115, 10oveq12d 7371 . . . 4 (𝜑 → (𝑈 Cnu𝑉) = (((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))) Cnu((𝑌 × 𝑌)filGenran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏))))))
1211eleq2d 2814 . . 3 (𝜑 → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ 𝐹 ∈ (((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))) Cnu((𝑌 × 𝑌)filGenran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))))))
13 eqid 2729 . . . 4 ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎))))
14 eqid 2729 . . . 4 ((𝑌 × 𝑌)filGenran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))) = ((𝑌 × 𝑌)filGenran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏))))
15 metucn.x . . . . 5 (𝜑𝑋 ≠ ∅)
16 oveq2 7361 . . . . . . . . 9 (𝑎 = 𝑐 → (0[,)𝑎) = (0[,)𝑐))
1716imaeq2d 6015 . . . . . . . 8 (𝑎 = 𝑐 → (𝐶 “ (0[,)𝑎)) = (𝐶 “ (0[,)𝑐)))
1817cbvmptv 5199 . . . . . . 7 (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎))) = (𝑐 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑐)))
1918rneqi 5883 . . . . . 6 ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎))) = ran (𝑐 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑐)))
2019metust 24462 . . . . 5 ((𝑋 ≠ ∅ ∧ 𝐶 ∈ (PsMet‘𝑋)) → ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))) ∈ (UnifOn‘𝑋))
2115, 2, 20syl2anc 584 . . . 4 (𝜑 → ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))) ∈ (UnifOn‘𝑋))
22 metucn.y . . . . 5 (𝜑𝑌 ≠ ∅)
23 oveq2 7361 . . . . . . . . 9 (𝑏 = 𝑑 → (0[,)𝑏) = (0[,)𝑑))
2423imaeq2d 6015 . . . . . . . 8 (𝑏 = 𝑑 → (𝐷 “ (0[,)𝑏)) = (𝐷 “ (0[,)𝑑)))
2524cbvmptv 5199 . . . . . . 7 (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏))) = (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))
2625rneqi 5883 . . . . . 6 ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏))) = ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))
2726metust 24462 . . . . 5 ((𝑌 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑌)) → ((𝑌 × 𝑌)filGenran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))) ∈ (UnifOn‘𝑌))
2822, 7, 27syl2anc 584 . . . 4 (𝜑 → ((𝑌 × 𝑌)filGenran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))) ∈ (UnifOn‘𝑌))
29 oveq2 7361 . . . . . . . . 9 (𝑎 = 𝑒 → (0[,)𝑎) = (0[,)𝑒))
3029imaeq2d 6015 . . . . . . . 8 (𝑎 = 𝑒 → (𝐶 “ (0[,)𝑎)) = (𝐶 “ (0[,)𝑒)))
3130cbvmptv 5199 . . . . . . 7 (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎))) = (𝑒 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑒)))
3231rneqi 5883 . . . . . 6 ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎))) = ran (𝑒 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑒)))
3332metustfbas 24461 . . . . 5 ((𝑋 ≠ ∅ ∧ 𝐶 ∈ (PsMet‘𝑋)) → ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎))) ∈ (fBas‘(𝑋 × 𝑋)))
3415, 2, 33syl2anc 584 . . . 4 (𝜑 → ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎))) ∈ (fBas‘(𝑋 × 𝑋)))
35 oveq2 7361 . . . . . . . . 9 (𝑏 = 𝑓 → (0[,)𝑏) = (0[,)𝑓))
3635imaeq2d 6015 . . . . . . . 8 (𝑏 = 𝑓 → (𝐷 “ (0[,)𝑏)) = (𝐷 “ (0[,)𝑓)))
3736cbvmptv 5199 . . . . . . 7 (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏))) = (𝑓 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑓)))
3837rneqi 5883 . . . . . 6 ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏))) = ran (𝑓 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑓)))
3938metustfbas 24461 . . . . 5 ((𝑌 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑌)) → ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏))) ∈ (fBas‘(𝑌 × 𝑌)))
4022, 7, 39syl2anc 584 . . . 4 (𝜑 → ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏))) ∈ (fBas‘(𝑌 × 𝑌)))
4113, 14, 21, 28, 34, 40isucn2 24182 . . 3 (𝜑 → (𝐹 ∈ (((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))) Cnu((𝑌 × 𝑌)filGenran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏))))) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑣 ∈ ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))∃𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦)))))
4212, 41bitrd 279 . 2 (𝜑 → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑣 ∈ ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))∃𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦)))))
43 eqid 2729 . . . . . . . . . 10 (𝐷 “ (0[,)𝑑)) = (𝐷 “ (0[,)𝑑))
44 oveq2 7361 . . . . . . . . . . . 12 (𝑓 = 𝑑 → (0[,)𝑓) = (0[,)𝑑))
4544imaeq2d 6015 . . . . . . . . . . 11 (𝑓 = 𝑑 → (𝐷 “ (0[,)𝑓)) = (𝐷 “ (0[,)𝑑)))
4645rspceeqv 3602 . . . . . . . . . 10 ((𝑑 ∈ ℝ+ ∧ (𝐷 “ (0[,)𝑑)) = (𝐷 “ (0[,)𝑑))) → ∃𝑓 ∈ ℝ+ (𝐷 “ (0[,)𝑑)) = (𝐷 “ (0[,)𝑓)))
4743, 46mpan2 691 . . . . . . . . 9 (𝑑 ∈ ℝ+ → ∃𝑓 ∈ ℝ+ (𝐷 “ (0[,)𝑑)) = (𝐷 “ (0[,)𝑓)))
4847adantl 481 . . . . . . . 8 ((𝜑𝑑 ∈ ℝ+) → ∃𝑓 ∈ ℝ+ (𝐷 “ (0[,)𝑑)) = (𝐷 “ (0[,)𝑓)))
4938metustel 24454 . . . . . . . . . 10 (𝐷 ∈ (PsMet‘𝑌) → ((𝐷 “ (0[,)𝑑)) ∈ ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏))) ↔ ∃𝑓 ∈ ℝ+ (𝐷 “ (0[,)𝑑)) = (𝐷 “ (0[,)𝑓))))
507, 49syl 17 . . . . . . . . 9 (𝜑 → ((𝐷 “ (0[,)𝑑)) ∈ ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏))) ↔ ∃𝑓 ∈ ℝ+ (𝐷 “ (0[,)𝑑)) = (𝐷 “ (0[,)𝑓))))
5150adantr 480 . . . . . . . 8 ((𝜑𝑑 ∈ ℝ+) → ((𝐷 “ (0[,)𝑑)) ∈ ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏))) ↔ ∃𝑓 ∈ ℝ+ (𝐷 “ (0[,)𝑑)) = (𝐷 “ (0[,)𝑓))))
5248, 51mpbird 257 . . . . . . 7 ((𝜑𝑑 ∈ ℝ+) → (𝐷 “ (0[,)𝑑)) ∈ ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏))))
5326metustel 24454 . . . . . . . 8 (𝐷 ∈ (PsMet‘𝑌) → (𝑣 ∈ ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏))) ↔ ∃𝑑 ∈ ℝ+ 𝑣 = (𝐷 “ (0[,)𝑑))))
547, 53syl 17 . . . . . . 7 (𝜑 → (𝑣 ∈ ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏))) ↔ ∃𝑑 ∈ ℝ+ 𝑣 = (𝐷 “ (0[,)𝑑))))
55 simpr 484 . . . . . . . . . . 11 ((𝜑𝑣 = (𝐷 “ (0[,)𝑑))) → 𝑣 = (𝐷 “ (0[,)𝑑)))
5655breqd 5106 . . . . . . . . . 10 ((𝜑𝑣 = (𝐷 “ (0[,)𝑑))) → ((𝐹𝑥)𝑣(𝐹𝑦) ↔ (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦)))
5756imbi2d 340 . . . . . . . . 9 ((𝜑𝑣 = (𝐷 “ (0[,)𝑑))) → ((𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦)) ↔ (𝑥𝑢𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦))))
5857ralbidv 3152 . . . . . . . 8 ((𝜑𝑣 = (𝐷 “ (0[,)𝑑))) → (∀𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦)) ↔ ∀𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦))))
5958rexralbidv 3195 . . . . . . 7 ((𝜑𝑣 = (𝐷 “ (0[,)𝑑))) → (∃𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦)) ↔ ∃𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦))))
6052, 54, 59ralxfr2d 5352 . . . . . 6 (𝜑 → (∀𝑣 ∈ ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))∃𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦)) ↔ ∀𝑑 ∈ ℝ+𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦))))
61 eqid 2729 . . . . . . . . . . 11 (𝐶 “ (0[,)𝑐)) = (𝐶 “ (0[,)𝑐))
62 oveq2 7361 . . . . . . . . . . . . 13 (𝑒 = 𝑐 → (0[,)𝑒) = (0[,)𝑐))
6362imaeq2d 6015 . . . . . . . . . . . 12 (𝑒 = 𝑐 → (𝐶 “ (0[,)𝑒)) = (𝐶 “ (0[,)𝑐)))
6463rspceeqv 3602 . . . . . . . . . . 11 ((𝑐 ∈ ℝ+ ∧ (𝐶 “ (0[,)𝑐)) = (𝐶 “ (0[,)𝑐))) → ∃𝑒 ∈ ℝ+ (𝐶 “ (0[,)𝑐)) = (𝐶 “ (0[,)𝑒)))
6561, 64mpan2 691 . . . . . . . . . 10 (𝑐 ∈ ℝ+ → ∃𝑒 ∈ ℝ+ (𝐶 “ (0[,)𝑐)) = (𝐶 “ (0[,)𝑒)))
6665adantl 481 . . . . . . . . 9 ((𝜑𝑐 ∈ ℝ+) → ∃𝑒 ∈ ℝ+ (𝐶 “ (0[,)𝑐)) = (𝐶 “ (0[,)𝑒)))
6732metustel 24454 . . . . . . . . . . 11 (𝐶 ∈ (PsMet‘𝑋) → ((𝐶 “ (0[,)𝑐)) ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎))) ↔ ∃𝑒 ∈ ℝ+ (𝐶 “ (0[,)𝑐)) = (𝐶 “ (0[,)𝑒))))
682, 67syl 17 . . . . . . . . . 10 (𝜑 → ((𝐶 “ (0[,)𝑐)) ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎))) ↔ ∃𝑒 ∈ ℝ+ (𝐶 “ (0[,)𝑐)) = (𝐶 “ (0[,)𝑒))))
6968adantr 480 . . . . . . . . 9 ((𝜑𝑐 ∈ ℝ+) → ((𝐶 “ (0[,)𝑐)) ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎))) ↔ ∃𝑒 ∈ ℝ+ (𝐶 “ (0[,)𝑐)) = (𝐶 “ (0[,)𝑒))))
7066, 69mpbird 257 . . . . . . . 8 ((𝜑𝑐 ∈ ℝ+) → (𝐶 “ (0[,)𝑐)) ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎))))
7119metustel 24454 . . . . . . . . 9 (𝐶 ∈ (PsMet‘𝑋) → (𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎))) ↔ ∃𝑐 ∈ ℝ+ 𝑢 = (𝐶 “ (0[,)𝑐))))
722, 71syl 17 . . . . . . . 8 (𝜑 → (𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎))) ↔ ∃𝑐 ∈ ℝ+ 𝑢 = (𝐶 “ (0[,)𝑐))))
73 simpr 484 . . . . . . . . . . 11 ((𝜑𝑢 = (𝐶 “ (0[,)𝑐))) → 𝑢 = (𝐶 “ (0[,)𝑐)))
7473breqd 5106 . . . . . . . . . 10 ((𝜑𝑢 = (𝐶 “ (0[,)𝑐))) → (𝑥𝑢𝑦𝑥(𝐶 “ (0[,)𝑐))𝑦))
7574imbi1d 341 . . . . . . . . 9 ((𝜑𝑢 = (𝐶 “ (0[,)𝑐))) → ((𝑥𝑢𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦)) ↔ (𝑥(𝐶 “ (0[,)𝑐))𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦))))
76752ralbidv 3193 . . . . . . . 8 ((𝜑𝑢 = (𝐶 “ (0[,)𝑐))) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦)) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥(𝐶 “ (0[,)𝑐))𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦))))
7770, 72, 76rexxfr2d 5353 . . . . . . 7 (𝜑 → (∃𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦)) ↔ ∃𝑐 ∈ ℝ+𝑥𝑋𝑦𝑋 (𝑥(𝐶 “ (0[,)𝑐))𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦))))
7877ralbidv 3152 . . . . . 6 (𝜑 → (∀𝑑 ∈ ℝ+𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦)) ↔ ∀𝑑 ∈ ℝ+𝑐 ∈ ℝ+𝑥𝑋𝑦𝑋 (𝑥(𝐶 “ (0[,)𝑐))𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦))))
7960, 78bitrd 279 . . . . 5 (𝜑 → (∀𝑣 ∈ ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))∃𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦)) ↔ ∀𝑑 ∈ ℝ+𝑐 ∈ ℝ+𝑥𝑋𝑦𝑋 (𝑥(𝐶 “ (0[,)𝑐))𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦))))
8079adantr 480 . . . 4 ((𝜑𝐹:𝑋𝑌) → (∀𝑣 ∈ ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))∃𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦)) ↔ ∀𝑑 ∈ ℝ+𝑐 ∈ ℝ+𝑥𝑋𝑦𝑋 (𝑥(𝐶 “ (0[,)𝑐))𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦))))
812ad4antr 732 . . . . . . . . 9 (((((𝜑𝐹:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 𝐶 ∈ (PsMet‘𝑋))
82 simplr 768 . . . . . . . . 9 (((((𝜑𝐹:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 𝑐 ∈ ℝ+)
83 simprr 772 . . . . . . . . 9 (((((𝜑𝐹:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 𝑦𝑋)
84 simprl 770 . . . . . . . . 9 (((((𝜑𝐹:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
85 elbl4 24467 . . . . . . . . . 10 (((𝐶 ∈ (PsMet‘𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑦𝑋𝑥𝑋)) → (𝑥 ∈ (𝑦(ball‘𝐶)𝑐) ↔ 𝑥(𝐶 “ (0[,)𝑐))𝑦))
86 rpxr 12921 . . . . . . . . . . 11 (𝑐 ∈ ℝ+𝑐 ∈ ℝ*)
87 elbl3ps 24295 . . . . . . . . . . 11 (((𝐶 ∈ (PsMet‘𝑋) ∧ 𝑐 ∈ ℝ*) ∧ (𝑦𝑋𝑥𝑋)) → (𝑥 ∈ (𝑦(ball‘𝐶)𝑐) ↔ (𝑥𝐶𝑦) < 𝑐))
8886, 87sylanl2 681 . . . . . . . . . 10 (((𝐶 ∈ (PsMet‘𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑦𝑋𝑥𝑋)) → (𝑥 ∈ (𝑦(ball‘𝐶)𝑐) ↔ (𝑥𝐶𝑦) < 𝑐))
8985, 88bitr3d 281 . . . . . . . . 9 (((𝐶 ∈ (PsMet‘𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑦𝑋𝑥𝑋)) → (𝑥(𝐶 “ (0[,)𝑐))𝑦 ↔ (𝑥𝐶𝑦) < 𝑐))
9081, 82, 83, 84, 89syl22anc 838 . . . . . . . 8 (((((𝜑𝐹:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(𝐶 “ (0[,)𝑐))𝑦 ↔ (𝑥𝐶𝑦) < 𝑐))
917ad4antr 732 . . . . . . . . 9 (((((𝜑𝐹:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 𝐷 ∈ (PsMet‘𝑌))
92 simpllr 775 . . . . . . . . 9 (((((𝜑𝐹:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 𝑑 ∈ ℝ+)
93 simp-4r 783 . . . . . . . . . 10 (((((𝜑𝐹:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 𝐹:𝑋𝑌)
9493, 83ffvelcdmd 7023 . . . . . . . . 9 (((((𝜑𝐹:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → (𝐹𝑦) ∈ 𝑌)
9593, 84ffvelcdmd 7023 . . . . . . . . 9 (((((𝜑𝐹:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → (𝐹𝑥) ∈ 𝑌)
96 elbl4 24467 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑌) ∧ 𝑑 ∈ ℝ+) ∧ ((𝐹𝑦) ∈ 𝑌 ∧ (𝐹𝑥) ∈ 𝑌)) → ((𝐹𝑥) ∈ ((𝐹𝑦)(ball‘𝐷)𝑑) ↔ (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦)))
97 rpxr 12921 . . . . . . . . . . 11 (𝑑 ∈ ℝ+𝑑 ∈ ℝ*)
98 elbl3ps 24295 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑌) ∧ 𝑑 ∈ ℝ*) ∧ ((𝐹𝑦) ∈ 𝑌 ∧ (𝐹𝑥) ∈ 𝑌)) → ((𝐹𝑥) ∈ ((𝐹𝑦)(ball‘𝐷)𝑑) ↔ ((𝐹𝑥)𝐷(𝐹𝑦)) < 𝑑))
9997, 98sylanl2 681 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑌) ∧ 𝑑 ∈ ℝ+) ∧ ((𝐹𝑦) ∈ 𝑌 ∧ (𝐹𝑥) ∈ 𝑌)) → ((𝐹𝑥) ∈ ((𝐹𝑦)(ball‘𝐷)𝑑) ↔ ((𝐹𝑥)𝐷(𝐹𝑦)) < 𝑑))
10096, 99bitr3d 281 . . . . . . . . 9 (((𝐷 ∈ (PsMet‘𝑌) ∧ 𝑑 ∈ ℝ+) ∧ ((𝐹𝑦) ∈ 𝑌 ∧ (𝐹𝑥) ∈ 𝑌)) → ((𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦) ↔ ((𝐹𝑥)𝐷(𝐹𝑦)) < 𝑑))
10191, 92, 94, 95, 100syl22anc 838 . . . . . . . 8 (((((𝜑𝐹:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦) ↔ ((𝐹𝑥)𝐷(𝐹𝑦)) < 𝑑))
10290, 101imbi12d 344 . . . . . . 7 (((((𝜑𝐹:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥(𝐶 “ (0[,)𝑐))𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦)) ↔ ((𝑥𝐶𝑦) < 𝑐 → ((𝐹𝑥)𝐷(𝐹𝑦)) < 𝑑)))
1031022ralbidva 3191 . . . . . 6 ((((𝜑𝐹:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+) → (∀𝑥𝑋𝑦𝑋 (𝑥(𝐶 “ (0[,)𝑐))𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦)) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥𝐶𝑦) < 𝑐 → ((𝐹𝑥)𝐷(𝐹𝑦)) < 𝑑)))
104103rexbidva 3151 . . . . 5 (((𝜑𝐹:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) → (∃𝑐 ∈ ℝ+𝑥𝑋𝑦𝑋 (𝑥(𝐶 “ (0[,)𝑐))𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦)) ↔ ∃𝑐 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐶𝑦) < 𝑐 → ((𝐹𝑥)𝐷(𝐹𝑦)) < 𝑑)))
105104ralbidva 3150 . . . 4 ((𝜑𝐹:𝑋𝑌) → (∀𝑑 ∈ ℝ+𝑐 ∈ ℝ+𝑥𝑋𝑦𝑋 (𝑥(𝐶 “ (0[,)𝑐))𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦)) ↔ ∀𝑑 ∈ ℝ+𝑐 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐶𝑦) < 𝑐 → ((𝐹𝑥)𝐷(𝐹𝑦)) < 𝑑)))
10680, 105bitrd 279 . . 3 ((𝜑𝐹:𝑋𝑌) → (∀𝑣 ∈ ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))∃𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦)) ↔ ∀𝑑 ∈ ℝ+𝑐 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐶𝑦) < 𝑐 → ((𝐹𝑥)𝐷(𝐹𝑦)) < 𝑑)))
107106pm5.32da 579 . 2 (𝜑 → ((𝐹:𝑋𝑌 ∧ ∀𝑣 ∈ ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))∃𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦))) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑑 ∈ ℝ+𝑐 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐶𝑦) < 𝑐 → ((𝐹𝑥)𝐷(𝐹𝑦)) < 𝑑))))
10842, 107bitrd 279 1 (𝜑 → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑑 ∈ ℝ+𝑐 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐶𝑦) < 𝑐 → ((𝐹𝑥)𝐷(𝐹𝑦)) < 𝑑))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  c0 4286   class class class wbr 5095  cmpt 5176   × cxp 5621  ccnv 5622  ran crn 5624  cima 5626  wf 6482  cfv 6486  (class class class)co 7353  0cc0 11028  *cxr 11167   < clt 11168  +crp 12911  [,)cico 13268  PsMetcpsmet 21263  ballcbl 21266  fBascfbas 21267  filGencfg 21268  metUnifcmetu 21270  UnifOncust 24103   Cnucucn 24178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ico 13272  df-psmet 21271  df-bl 21274  df-fbas 21276  df-fg 21277  df-metu 21278  df-fil 23749  df-ust 24104  df-ucn 24179
This theorem is referenced by:  qqhucn  33958  heicant  37634
  Copyright terms: Public domain W3C validator