![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brcosscnvcoss | Structured version Visualization version GIF version |
Description: For sets, the 𝐴 and 𝐵 cosets by 𝑅 binary relation and the 𝐵 and 𝐴 cosets by 𝑅 binary relation are the same. (Contributed by Peter Mazsa, 27-Dec-2018.) |
Ref | Expression |
---|---|
brcosscnvcoss | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ 𝐵 ≀ 𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exancom 1859 | . . 3 ⊢ (∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵) ↔ ∃𝑢(𝑢𝑅𝐵 ∧ 𝑢𝑅𝐴)) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵) ↔ ∃𝑢(𝑢𝑅𝐵 ∧ 𝑢𝑅𝐴))) |
3 | brcoss 38413 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) | |
4 | brcoss 38413 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝐵 ≀ 𝑅𝐴 ↔ ∃𝑢(𝑢𝑅𝐵 ∧ 𝑢𝑅𝐴))) | |
5 | 4 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ≀ 𝑅𝐴 ↔ ∃𝑢(𝑢𝑅𝐵 ∧ 𝑢𝑅𝐴))) |
6 | 2, 3, 5 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ 𝐵 ≀ 𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1776 ∈ wcel 2106 class class class wbr 5148 ≀ ccoss 38162 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-coss 38393 |
This theorem is referenced by: cocossss 38418 cnvcosseq 38419 rncossdmcoss 38437 symrelcoss3 38447 eleccossin 38465 |
Copyright terms: Public domain | W3C validator |