| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brcosscnvcoss | Structured version Visualization version GIF version | ||
| Description: For sets, the 𝐴 and 𝐵 cosets by 𝑅 binary relation and the 𝐵 and 𝐴 cosets by 𝑅 binary relation are the same. (Contributed by Peter Mazsa, 27-Dec-2018.) |
| Ref | Expression |
|---|---|
| brcosscnvcoss | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ 𝐵 ≀ 𝑅𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exancom 1861 | . . 3 ⊢ (∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵) ↔ ∃𝑢(𝑢𝑅𝐵 ∧ 𝑢𝑅𝐴)) | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵) ↔ ∃𝑢(𝑢𝑅𝐵 ∧ 𝑢𝑅𝐴))) |
| 3 | brcoss 38454 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) | |
| 4 | brcoss 38454 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝐵 ≀ 𝑅𝐴 ↔ ∃𝑢(𝑢𝑅𝐵 ∧ 𝑢𝑅𝐴))) | |
| 5 | 4 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ≀ 𝑅𝐴 ↔ ∃𝑢(𝑢𝑅𝐵 ∧ 𝑢𝑅𝐴))) |
| 6 | 2, 3, 5 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ 𝐵 ≀ 𝑅𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 class class class wbr 5124 ≀ ccoss 38204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-coss 38434 |
| This theorem is referenced by: cocossss 38459 cnvcosseq 38460 rncossdmcoss 38478 symrelcoss3 38488 eleccossin 38506 |
| Copyright terms: Public domain | W3C validator |