Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcosscnvcoss Structured version   Visualization version   GIF version

Theorem brcosscnvcoss 38416
Description: For sets, the 𝐴 and 𝐵 cosets by 𝑅 binary relation and the 𝐵 and 𝐴 cosets by 𝑅 binary relation are the same. (Contributed by Peter Mazsa, 27-Dec-2018.)
Assertion
Ref Expression
brcosscnvcoss ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵𝐵𝑅𝐴))

Proof of Theorem brcosscnvcoss
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 exancom 1859 . . 3 (∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐵) ↔ ∃𝑢(𝑢𝑅𝐵𝑢𝑅𝐴))
21a1i 11 . 2 ((𝐴𝑉𝐵𝑊) → (∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐵) ↔ ∃𝑢(𝑢𝑅𝐵𝑢𝑅𝐴)))
3 brcoss 38413 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐵)))
4 brcoss 38413 . . 3 ((𝐵𝑊𝐴𝑉) → (𝐵𝑅𝐴 ↔ ∃𝑢(𝑢𝑅𝐵𝑢𝑅𝐴)))
54ancoms 458 . 2 ((𝐴𝑉𝐵𝑊) → (𝐵𝑅𝐴 ↔ ∃𝑢(𝑢𝑅𝐵𝑢𝑅𝐴)))
62, 3, 53bitr4d 311 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵𝐵𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1776  wcel 2106   class class class wbr 5148  ccoss 38162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-coss 38393
This theorem is referenced by:  cocossss  38418  cnvcosseq  38419  rncossdmcoss  38437  symrelcoss3  38447  eleccossin  38465
  Copyright terms: Public domain W3C validator