![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brcosscnvcoss | Structured version Visualization version GIF version |
Description: For sets, the 𝐴 and 𝐵 cosets by 𝑅 binary relation and the 𝐵 and 𝐴 cosets by 𝑅 binary relation are the same. (Contributed by Peter Mazsa, 27-Dec-2018.) |
Ref | Expression |
---|---|
brcosscnvcoss | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ 𝐵 ≀ 𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exancom 1822 | . . 3 ⊢ (∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵) ↔ ∃𝑢(𝑢𝑅𝐵 ∧ 𝑢𝑅𝐴)) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵) ↔ ∃𝑢(𝑢𝑅𝐵 ∧ 𝑢𝑅𝐴))) |
3 | brcoss 35150 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) | |
4 | brcoss 35150 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝐵 ≀ 𝑅𝐴 ↔ ∃𝑢(𝑢𝑅𝐵 ∧ 𝑢𝑅𝐴))) | |
5 | 4 | ancoms 451 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ≀ 𝑅𝐴 ↔ ∃𝑢(𝑢𝑅𝐵 ∧ 𝑢𝑅𝐴))) |
6 | 2, 3, 5 | 3bitr4d 303 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ 𝐵 ≀ 𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∃wex 1742 ∈ wcel 2050 class class class wbr 4925 ≀ ccoss 34926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5056 ax-nul 5063 ax-pr 5182 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-rab 3091 df-v 3411 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-br 4926 df-opab 4988 df-coss 35133 |
This theorem is referenced by: cocossss 35155 cnvcosseq 35156 rncossdmcoss 35169 symrelcoss3 35179 eleccossin 35197 |
Copyright terms: Public domain | W3C validator |