Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brcosscnvcoss | Structured version Visualization version GIF version |
Description: For sets, the 𝐴 and 𝐵 cosets by 𝑅 binary relation and the 𝐵 and 𝐴 cosets by 𝑅 binary relation are the same. (Contributed by Peter Mazsa, 27-Dec-2018.) |
Ref | Expression |
---|---|
brcosscnvcoss | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ 𝐵 ≀ 𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exancom 1865 | . . 3 ⊢ (∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵) ↔ ∃𝑢(𝑢𝑅𝐵 ∧ 𝑢𝑅𝐴)) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵) ↔ ∃𝑢(𝑢𝑅𝐵 ∧ 𝑢𝑅𝐴))) |
3 | brcoss 36481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) | |
4 | brcoss 36481 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝐵 ≀ 𝑅𝐴 ↔ ∃𝑢(𝑢𝑅𝐵 ∧ 𝑢𝑅𝐴))) | |
5 | 4 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ≀ 𝑅𝐴 ↔ ∃𝑢(𝑢𝑅𝐵 ∧ 𝑢𝑅𝐴))) |
6 | 2, 3, 5 | 3bitr4d 310 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ 𝐵 ≀ 𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∃wex 1783 ∈ wcel 2108 class class class wbr 5070 ≀ ccoss 36260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-coss 36464 |
This theorem is referenced by: cocossss 36486 cnvcosseq 36487 rncossdmcoss 36500 symrelcoss3 36510 eleccossin 36528 |
Copyright terms: Public domain | W3C validator |