Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcosscnvcoss Structured version   Visualization version   GIF version

Theorem brcosscnvcoss 38398
Description: For sets, the 𝐴 and 𝐵 cosets by 𝑅 binary relation and the 𝐵 and 𝐴 cosets by 𝑅 binary relation are the same. (Contributed by Peter Mazsa, 27-Dec-2018.)
Assertion
Ref Expression
brcosscnvcoss ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵𝐵𝑅𝐴))

Proof of Theorem brcosscnvcoss
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 exancom 1861 . . 3 (∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐵) ↔ ∃𝑢(𝑢𝑅𝐵𝑢𝑅𝐴))
21a1i 11 . 2 ((𝐴𝑉𝐵𝑊) → (∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐵) ↔ ∃𝑢(𝑢𝑅𝐵𝑢𝑅𝐴)))
3 brcoss 38395 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐵)))
4 brcoss 38395 . . 3 ((𝐵𝑊𝐴𝑉) → (𝐵𝑅𝐴 ↔ ∃𝑢(𝑢𝑅𝐵𝑢𝑅𝐴)))
54ancoms 458 . 2 ((𝐴𝑉𝐵𝑊) → (𝐵𝑅𝐴 ↔ ∃𝑢(𝑢𝑅𝐵𝑢𝑅𝐴)))
62, 3, 53bitr4d 311 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵𝐵𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1779  wcel 2109   class class class wbr 5102  ccoss 38142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-coss 38375
This theorem is referenced by:  cocossss  38400  cnvcosseq  38401  rncossdmcoss  38419  symrelcoss3  38429  eleccossin  38447
  Copyright terms: Public domain W3C validator