![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rncoss | Structured version Visualization version GIF version |
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.) |
Ref | Expression |
---|---|
rncoss | ⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmcoss 5997 | . 2 ⊢ dom (◡𝐵 ∘ ◡𝐴) ⊆ dom ◡𝐴 | |
2 | df-rn 5711 | . . 3 ⊢ ran (𝐴 ∘ 𝐵) = dom ◡(𝐴 ∘ 𝐵) | |
3 | cnvco 5910 | . . . 4 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) | |
4 | 3 | dmeqi 5929 | . . 3 ⊢ dom ◡(𝐴 ∘ 𝐵) = dom (◡𝐵 ∘ ◡𝐴) |
5 | 2, 4 | eqtri 2768 | . 2 ⊢ ran (𝐴 ∘ 𝐵) = dom (◡𝐵 ∘ ◡𝐴) |
6 | df-rn 5711 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
7 | 1, 5, 6 | 3sstr4i 4052 | 1 ⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3976 ◡ccnv 5699 dom cdm 5700 ran crn 5701 ∘ ccom 5704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 |
This theorem is referenced by: cossxp 6303 fcof 6770 fcoOLD 6772 fco3OLD 6781 fin23lem29 10410 fin23lem30 10411 wunco 10802 imasless 17600 gsumzf1o 19954 znleval 21596 pi1xfrcnvlem 25108 pjss1coi 32195 pj3i 32240 smatrcl 33742 mblfinlem3 37619 mblfinlem4 37620 ismblfin 37621 relexp0a 43678 rntrclfv 43694 stoweidlem27 45948 fourierdlem42 46070 hoicvr 46469 |
Copyright terms: Public domain | W3C validator |