![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rncoss | Structured version Visualization version GIF version |
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.) |
Ref | Expression |
---|---|
rncoss | ⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmcoss 5978 | . 2 ⊢ dom (◡𝐵 ∘ ◡𝐴) ⊆ dom ◡𝐴 | |
2 | df-rn 5693 | . . 3 ⊢ ran (𝐴 ∘ 𝐵) = dom ◡(𝐴 ∘ 𝐵) | |
3 | cnvco 5892 | . . . 4 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) | |
4 | 3 | dmeqi 5911 | . . 3 ⊢ dom ◡(𝐴 ∘ 𝐵) = dom (◡𝐵 ∘ ◡𝐴) |
5 | 2, 4 | eqtri 2754 | . 2 ⊢ ran (𝐴 ∘ 𝐵) = dom (◡𝐵 ∘ ◡𝐴) |
6 | df-rn 5693 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
7 | 1, 5, 6 | 3sstr4i 4023 | 1 ⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3947 ◡ccnv 5681 dom cdm 5682 ran crn 5683 ∘ ccom 5686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-br 5154 df-opab 5216 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 |
This theorem is referenced by: cossxp 6283 fcof 6751 fcoOLD 6753 fco3OLD 6762 fin23lem29 10384 fin23lem30 10385 wunco 10776 imasless 17555 gsumzf1o 19910 znleval 21552 pi1xfrcnvlem 25074 pjss1coi 32096 pj3i 32141 smatrcl 33611 mblfinlem3 37360 mblfinlem4 37361 ismblfin 37362 relexp0a 43383 rntrclfv 43399 stoweidlem27 45648 fourierdlem42 45770 hoicvr 46169 |
Copyright terms: Public domain | W3C validator |