| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rncoss | Structured version Visualization version GIF version | ||
| Description: Range of a composition. (Contributed by NM, 19-Mar-1998.) |
| Ref | Expression |
|---|---|
| rncoss | ⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmcoss 5954 | . 2 ⊢ dom (◡𝐵 ∘ ◡𝐴) ⊆ dom ◡𝐴 | |
| 2 | df-rn 5665 | . . 3 ⊢ ran (𝐴 ∘ 𝐵) = dom ◡(𝐴 ∘ 𝐵) | |
| 3 | cnvco 5865 | . . . 4 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) | |
| 4 | 3 | dmeqi 5884 | . . 3 ⊢ dom ◡(𝐴 ∘ 𝐵) = dom (◡𝐵 ∘ ◡𝐴) |
| 5 | 2, 4 | eqtri 2758 | . 2 ⊢ ran (𝐴 ∘ 𝐵) = dom (◡𝐵 ∘ ◡𝐴) |
| 6 | df-rn 5665 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 7 | 1, 5, 6 | 3sstr4i 4010 | 1 ⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3926 ◡ccnv 5653 dom cdm 5654 ran crn 5655 ∘ ccom 5658 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 |
| This theorem is referenced by: cossxp 6261 fcof 6729 fin23lem29 10355 fin23lem30 10356 wunco 10747 imasless 17554 gsumzf1o 19893 znleval 21515 pi1xfrcnvlem 25007 pjss1coi 32144 pj3i 32189 smatrcl 33827 mblfinlem3 37683 mblfinlem4 37684 ismblfin 37685 relexp0a 43740 rntrclfv 43756 stoweidlem27 46056 fourierdlem42 46178 hoicvr 46577 |
| Copyright terms: Public domain | W3C validator |