MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rncoss Structured version   Visualization version   GIF version

Theorem rncoss 5942
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
rncoss ran (𝐴𝐵) ⊆ ran 𝐴

Proof of Theorem rncoss
StepHypRef Expression
1 dmcoss 5941 . 2 dom (𝐵𝐴) ⊆ dom 𝐴
2 df-rn 5652 . . 3 ran (𝐴𝐵) = dom (𝐴𝐵)
3 cnvco 5852 . . . 4 (𝐴𝐵) = (𝐵𝐴)
43dmeqi 5871 . . 3 dom (𝐴𝐵) = dom (𝐵𝐴)
52, 4eqtri 2753 . 2 ran (𝐴𝐵) = dom (𝐵𝐴)
6 df-rn 5652 . 2 ran 𝐴 = dom 𝐴
71, 5, 63sstr4i 4001 1 ran (𝐴𝐵) ⊆ ran 𝐴
Colors of variables: wff setvar class
Syntax hints:  wss 3917  ccnv 5640  dom cdm 5641  ran crn 5642  ccom 5645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652
This theorem is referenced by:  cossxp  6248  fcof  6714  fin23lem29  10301  fin23lem30  10302  wunco  10693  imasless  17510  gsumzf1o  19849  znleval  21471  pi1xfrcnvlem  24963  pjss1coi  32099  pj3i  32144  smatrcl  33793  mblfinlem3  37660  mblfinlem4  37661  ismblfin  37662  relexp0a  43712  rntrclfv  43728  stoweidlem27  46032  fourierdlem42  46154  hoicvr  46553
  Copyright terms: Public domain W3C validator