MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rncoss Structured version   Visualization version   GIF version

Theorem rncoss 5920
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
rncoss ran (𝐴𝐵) ⊆ ran 𝐴

Proof of Theorem rncoss
StepHypRef Expression
1 dmcoss 5918 . 2 dom (𝐵𝐴) ⊆ dom 𝐴
2 df-rn 5630 . . 3 ran (𝐴𝐵) = dom (𝐴𝐵)
3 cnvco 5829 . . . 4 (𝐴𝐵) = (𝐵𝐴)
43dmeqi 5848 . . 3 dom (𝐴𝐵) = dom (𝐵𝐴)
52, 4eqtri 2756 . 2 ran (𝐴𝐵) = dom (𝐵𝐴)
6 df-rn 5630 . 2 ran 𝐴 = dom 𝐴
71, 5, 63sstr4i 3982 1 ran (𝐴𝐵) ⊆ ran 𝐴
Colors of variables: wff setvar class
Syntax hints:  wss 3898  ccnv 5618  dom cdm 5619  ran crn 5620  ccom 5623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630
This theorem is referenced by:  cossxp  6224  fcof  6679  fin23lem29  10239  fin23lem30  10240  wunco  10631  imasless  17446  gsumzf1o  19826  znleval  21493  pi1xfrcnvlem  24984  pjss1coi  32145  pj3i  32190  smatrcl  33830  mblfinlem3  37719  mblfinlem4  37720  ismblfin  37721  relexp0a  43833  rntrclfv  43849  stoweidlem27  46149  fourierdlem42  46271  hoicvr  46670
  Copyright terms: Public domain W3C validator