MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rncoss Structured version   Visualization version   GIF version

Theorem rncoss 5939
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
rncoss ran (𝐴𝐵) ⊆ ran 𝐴

Proof of Theorem rncoss
StepHypRef Expression
1 dmcoss 5938 . 2 dom (𝐵𝐴) ⊆ dom 𝐴
2 df-rn 5649 . . 3 ran (𝐴𝐵) = dom (𝐴𝐵)
3 cnvco 5849 . . . 4 (𝐴𝐵) = (𝐵𝐴)
43dmeqi 5868 . . 3 dom (𝐴𝐵) = dom (𝐵𝐴)
52, 4eqtri 2752 . 2 ran (𝐴𝐵) = dom (𝐵𝐴)
6 df-rn 5649 . 2 ran 𝐴 = dom 𝐴
71, 5, 63sstr4i 3998 1 ran (𝐴𝐵) ⊆ ran 𝐴
Colors of variables: wff setvar class
Syntax hints:  wss 3914  ccnv 5637  dom cdm 5638  ran crn 5639  ccom 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649
This theorem is referenced by:  cossxp  6245  fcof  6711  fin23lem29  10294  fin23lem30  10295  wunco  10686  imasless  17503  gsumzf1o  19842  znleval  21464  pi1xfrcnvlem  24956  pjss1coi  32092  pj3i  32137  smatrcl  33786  mblfinlem3  37653  mblfinlem4  37654  ismblfin  37655  relexp0a  43705  rntrclfv  43721  stoweidlem27  46025  fourierdlem42  46147  hoicvr  46546
  Copyright terms: Public domain W3C validator