| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rncoss | Structured version Visualization version GIF version | ||
| Description: Range of a composition. (Contributed by NM, 19-Mar-1998.) |
| Ref | Expression |
|---|---|
| rncoss | ⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmcoss 5938 | . 2 ⊢ dom (◡𝐵 ∘ ◡𝐴) ⊆ dom ◡𝐴 | |
| 2 | df-rn 5649 | . . 3 ⊢ ran (𝐴 ∘ 𝐵) = dom ◡(𝐴 ∘ 𝐵) | |
| 3 | cnvco 5849 | . . . 4 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) | |
| 4 | 3 | dmeqi 5868 | . . 3 ⊢ dom ◡(𝐴 ∘ 𝐵) = dom (◡𝐵 ∘ ◡𝐴) |
| 5 | 2, 4 | eqtri 2752 | . 2 ⊢ ran (𝐴 ∘ 𝐵) = dom (◡𝐵 ∘ ◡𝐴) |
| 6 | df-rn 5649 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 7 | 1, 5, 6 | 3sstr4i 3998 | 1 ⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3914 ◡ccnv 5637 dom cdm 5638 ran crn 5639 ∘ ccom 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 |
| This theorem is referenced by: cossxp 6245 fcof 6711 fin23lem29 10294 fin23lem30 10295 wunco 10686 imasless 17503 gsumzf1o 19842 znleval 21464 pi1xfrcnvlem 24956 pjss1coi 32092 pj3i 32137 smatrcl 33786 mblfinlem3 37653 mblfinlem4 37654 ismblfin 37655 relexp0a 43705 rntrclfv 43721 stoweidlem27 46025 fourierdlem42 46147 hoicvr 46546 |
| Copyright terms: Public domain | W3C validator |