MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rncoss Structured version   Visualization version   GIF version

Theorem rncoss 5998
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
rncoss ran (𝐴𝐵) ⊆ ran 𝐴

Proof of Theorem rncoss
StepHypRef Expression
1 dmcoss 5997 . 2 dom (𝐵𝐴) ⊆ dom 𝐴
2 df-rn 5711 . . 3 ran (𝐴𝐵) = dom (𝐴𝐵)
3 cnvco 5910 . . . 4 (𝐴𝐵) = (𝐵𝐴)
43dmeqi 5929 . . 3 dom (𝐴𝐵) = dom (𝐵𝐴)
52, 4eqtri 2768 . 2 ran (𝐴𝐵) = dom (𝐵𝐴)
6 df-rn 5711 . 2 ran 𝐴 = dom 𝐴
71, 5, 63sstr4i 4052 1 ran (𝐴𝐵) ⊆ ran 𝐴
Colors of variables: wff setvar class
Syntax hints:  wss 3976  ccnv 5699  dom cdm 5700  ran crn 5701  ccom 5704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711
This theorem is referenced by:  cossxp  6303  fcof  6770  fcoOLD  6772  fco3OLD  6781  fin23lem29  10410  fin23lem30  10411  wunco  10802  imasless  17600  gsumzf1o  19954  znleval  21596  pi1xfrcnvlem  25108  pjss1coi  32195  pj3i  32240  smatrcl  33742  mblfinlem3  37619  mblfinlem4  37620  ismblfin  37621  relexp0a  43678  rntrclfv  43694  stoweidlem27  45948  fourierdlem42  46070  hoicvr  46469
  Copyright terms: Public domain W3C validator