MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rncoss Structured version   Visualization version   GIF version

Theorem rncoss 5922
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
rncoss ran (𝐴𝐵) ⊆ ran 𝐴

Proof of Theorem rncoss
StepHypRef Expression
1 dmcoss 5920 . 2 dom (𝐵𝐴) ⊆ dom 𝐴
2 df-rn 5634 . . 3 ran (𝐴𝐵) = dom (𝐴𝐵)
3 cnvco 5832 . . . 4 (𝐴𝐵) = (𝐵𝐴)
43dmeqi 5851 . . 3 dom (𝐴𝐵) = dom (𝐵𝐴)
52, 4eqtri 2752 . 2 ran (𝐴𝐵) = dom (𝐵𝐴)
6 df-rn 5634 . 2 ran 𝐴 = dom 𝐴
71, 5, 63sstr4i 3989 1 ran (𝐴𝐵) ⊆ ran 𝐴
Colors of variables: wff setvar class
Syntax hints:  wss 3905  ccnv 5622  dom cdm 5623  ran crn 5624  ccom 5627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634
This theorem is referenced by:  cossxp  6224  fcof  6679  fin23lem29  10254  fin23lem30  10255  wunco  10646  imasless  17462  gsumzf1o  19809  znleval  21479  pi1xfrcnvlem  24972  pjss1coi  32125  pj3i  32170  smatrcl  33762  mblfinlem3  37638  mblfinlem4  37639  ismblfin  37640  relexp0a  43689  rntrclfv  43705  stoweidlem27  46009  fourierdlem42  46131  hoicvr  46530
  Copyright terms: Public domain W3C validator