![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rncoss | Structured version Visualization version GIF version |
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.) |
Ref | Expression |
---|---|
rncoss | ⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmcoss 5988 | . 2 ⊢ dom (◡𝐵 ∘ ◡𝐴) ⊆ dom ◡𝐴 | |
2 | df-rn 5700 | . . 3 ⊢ ran (𝐴 ∘ 𝐵) = dom ◡(𝐴 ∘ 𝐵) | |
3 | cnvco 5899 | . . . 4 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) | |
4 | 3 | dmeqi 5918 | . . 3 ⊢ dom ◡(𝐴 ∘ 𝐵) = dom (◡𝐵 ∘ ◡𝐴) |
5 | 2, 4 | eqtri 2763 | . 2 ⊢ ran (𝐴 ∘ 𝐵) = dom (◡𝐵 ∘ ◡𝐴) |
6 | df-rn 5700 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
7 | 1, 5, 6 | 3sstr4i 4039 | 1 ⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3963 ◡ccnv 5688 dom cdm 5689 ran crn 5690 ∘ ccom 5693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 |
This theorem is referenced by: cossxp 6294 fcof 6760 fin23lem29 10379 fin23lem30 10380 wunco 10771 imasless 17587 gsumzf1o 19945 znleval 21591 pi1xfrcnvlem 25103 pjss1coi 32192 pj3i 32237 smatrcl 33757 mblfinlem3 37646 mblfinlem4 37647 ismblfin 37648 relexp0a 43706 rntrclfv 43722 stoweidlem27 45983 fourierdlem42 46105 hoicvr 46504 |
Copyright terms: Public domain | W3C validator |