MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rncoss Structured version   Visualization version   GIF version

Theorem rncoss 5916
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
rncoss ran (𝐴𝐵) ⊆ ran 𝐴

Proof of Theorem rncoss
StepHypRef Expression
1 dmcoss 5914 . 2 dom (𝐵𝐴) ⊆ dom 𝐴
2 df-rn 5627 . . 3 ran (𝐴𝐵) = dom (𝐴𝐵)
3 cnvco 5825 . . . 4 (𝐴𝐵) = (𝐵𝐴)
43dmeqi 5844 . . 3 dom (𝐴𝐵) = dom (𝐵𝐴)
52, 4eqtri 2754 . 2 ran (𝐴𝐵) = dom (𝐵𝐴)
6 df-rn 5627 . 2 ran 𝐴 = dom 𝐴
71, 5, 63sstr4i 3986 1 ran (𝐴𝐵) ⊆ ran 𝐴
Colors of variables: wff setvar class
Syntax hints:  wss 3902  ccnv 5615  dom cdm 5616  ran crn 5617  ccom 5620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627
This theorem is referenced by:  cossxp  6219  fcof  6674  fin23lem29  10229  fin23lem30  10230  wunco  10621  imasless  17441  gsumzf1o  19822  znleval  21489  pi1xfrcnvlem  24981  pjss1coi  32138  pj3i  32183  smatrcl  33804  mblfinlem3  37698  mblfinlem4  37699  ismblfin  37700  relexp0a  43748  rntrclfv  43764  stoweidlem27  46064  fourierdlem42  46186  hoicvr  46585
  Copyright terms: Public domain W3C validator