MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rncoss Structured version   Visualization version   GIF version

Theorem rncoss 5989
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
rncoss ran (𝐴𝐵) ⊆ ran 𝐴

Proof of Theorem rncoss
StepHypRef Expression
1 dmcoss 5988 . 2 dom (𝐵𝐴) ⊆ dom 𝐴
2 df-rn 5700 . . 3 ran (𝐴𝐵) = dom (𝐴𝐵)
3 cnvco 5899 . . . 4 (𝐴𝐵) = (𝐵𝐴)
43dmeqi 5918 . . 3 dom (𝐴𝐵) = dom (𝐵𝐴)
52, 4eqtri 2763 . 2 ran (𝐴𝐵) = dom (𝐵𝐴)
6 df-rn 5700 . 2 ran 𝐴 = dom 𝐴
71, 5, 63sstr4i 4039 1 ran (𝐴𝐵) ⊆ ran 𝐴
Colors of variables: wff setvar class
Syntax hints:  wss 3963  ccnv 5688  dom cdm 5689  ran crn 5690  ccom 5693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700
This theorem is referenced by:  cossxp  6294  fcof  6760  fin23lem29  10379  fin23lem30  10380  wunco  10771  imasless  17587  gsumzf1o  19945  znleval  21591  pi1xfrcnvlem  25103  pjss1coi  32192  pj3i  32237  smatrcl  33757  mblfinlem3  37646  mblfinlem4  37647  ismblfin  37648  relexp0a  43706  rntrclfv  43722  stoweidlem27  45983  fourierdlem42  46105  hoicvr  46504
  Copyright terms: Public domain W3C validator