MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rncoss Structured version   Visualization version   GIF version

Theorem rncoss 5870
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
rncoss ran (𝐴𝐵) ⊆ ran 𝐴

Proof of Theorem rncoss
StepHypRef Expression
1 dmcoss 5869 . 2 dom (𝐵𝐴) ⊆ dom 𝐴
2 df-rn 5591 . . 3 ran (𝐴𝐵) = dom (𝐴𝐵)
3 cnvco 5783 . . . 4 (𝐴𝐵) = (𝐵𝐴)
43dmeqi 5802 . . 3 dom (𝐴𝐵) = dom (𝐵𝐴)
52, 4eqtri 2766 . 2 ran (𝐴𝐵) = dom (𝐵𝐴)
6 df-rn 5591 . 2 ran 𝐴 = dom 𝐴
71, 5, 63sstr4i 3960 1 ran (𝐴𝐵) ⊆ ran 𝐴
Colors of variables: wff setvar class
Syntax hints:  wss 3883  ccnv 5579  dom cdm 5580  ran crn 5581  ccom 5584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591
This theorem is referenced by:  cossxp  6164  fcof  6607  fcoOLD  6609  fco3OLD  6618  fin23lem29  10028  fin23lem30  10029  wunco  10420  imasless  17168  gsumzf1o  19428  znleval  20674  pi1xfrcnvlem  24125  pjss1coi  30426  pj3i  30471  smatrcl  31648  mblfinlem3  35743  mblfinlem4  35744  ismblfin  35745  relexp0a  41213  rntrclfv  41229  stoweidlem27  43458  fourierdlem42  43580  hoicvr  43976
  Copyright terms: Public domain W3C validator