| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rncoss | Structured version Visualization version GIF version | ||
| Description: Range of a composition. (Contributed by NM, 19-Mar-1998.) |
| Ref | Expression |
|---|---|
| rncoss | ⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmcoss 5941 | . 2 ⊢ dom (◡𝐵 ∘ ◡𝐴) ⊆ dom ◡𝐴 | |
| 2 | df-rn 5652 | . . 3 ⊢ ran (𝐴 ∘ 𝐵) = dom ◡(𝐴 ∘ 𝐵) | |
| 3 | cnvco 5852 | . . . 4 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) | |
| 4 | 3 | dmeqi 5871 | . . 3 ⊢ dom ◡(𝐴 ∘ 𝐵) = dom (◡𝐵 ∘ ◡𝐴) |
| 5 | 2, 4 | eqtri 2753 | . 2 ⊢ ran (𝐴 ∘ 𝐵) = dom (◡𝐵 ∘ ◡𝐴) |
| 6 | df-rn 5652 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 7 | 1, 5, 6 | 3sstr4i 4001 | 1 ⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3917 ◡ccnv 5640 dom cdm 5641 ran crn 5642 ∘ ccom 5645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 |
| This theorem is referenced by: cossxp 6248 fcof 6714 fin23lem29 10301 fin23lem30 10302 wunco 10693 imasless 17510 gsumzf1o 19849 znleval 21471 pi1xfrcnvlem 24963 pjss1coi 32099 pj3i 32144 smatrcl 33793 mblfinlem3 37660 mblfinlem4 37661 ismblfin 37662 relexp0a 43712 rntrclfv 43728 stoweidlem27 46032 fourierdlem42 46154 hoicvr 46553 |
| Copyright terms: Public domain | W3C validator |