MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rncoss Structured version   Visualization version   GIF version

Theorem rncoss 5979
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
rncoss ran (𝐴𝐵) ⊆ ran 𝐴

Proof of Theorem rncoss
StepHypRef Expression
1 dmcoss 5978 . 2 dom (𝐵𝐴) ⊆ dom 𝐴
2 df-rn 5693 . . 3 ran (𝐴𝐵) = dom (𝐴𝐵)
3 cnvco 5892 . . . 4 (𝐴𝐵) = (𝐵𝐴)
43dmeqi 5911 . . 3 dom (𝐴𝐵) = dom (𝐵𝐴)
52, 4eqtri 2754 . 2 ran (𝐴𝐵) = dom (𝐵𝐴)
6 df-rn 5693 . 2 ran 𝐴 = dom 𝐴
71, 5, 63sstr4i 4023 1 ran (𝐴𝐵) ⊆ ran 𝐴
Colors of variables: wff setvar class
Syntax hints:  wss 3947  ccnv 5681  dom cdm 5682  ran crn 5683  ccom 5686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-br 5154  df-opab 5216  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693
This theorem is referenced by:  cossxp  6283  fcof  6751  fcoOLD  6753  fco3OLD  6762  fin23lem29  10384  fin23lem30  10385  wunco  10776  imasless  17555  gsumzf1o  19910  znleval  21552  pi1xfrcnvlem  25074  pjss1coi  32096  pj3i  32141  smatrcl  33611  mblfinlem3  37360  mblfinlem4  37361  ismblfin  37362  relexp0a  43383  rntrclfv  43399  stoweidlem27  45648  fourierdlem42  45770  hoicvr  46169
  Copyright terms: Public domain W3C validator