| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rncoss | Structured version Visualization version GIF version | ||
| Description: Range of a composition. (Contributed by NM, 19-Mar-1998.) |
| Ref | Expression |
|---|---|
| rncoss | ⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmcoss 5914 | . 2 ⊢ dom (◡𝐵 ∘ ◡𝐴) ⊆ dom ◡𝐴 | |
| 2 | df-rn 5627 | . . 3 ⊢ ran (𝐴 ∘ 𝐵) = dom ◡(𝐴 ∘ 𝐵) | |
| 3 | cnvco 5825 | . . . 4 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) | |
| 4 | 3 | dmeqi 5844 | . . 3 ⊢ dom ◡(𝐴 ∘ 𝐵) = dom (◡𝐵 ∘ ◡𝐴) |
| 5 | 2, 4 | eqtri 2754 | . 2 ⊢ ran (𝐴 ∘ 𝐵) = dom (◡𝐵 ∘ ◡𝐴) |
| 6 | df-rn 5627 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 7 | 1, 5, 6 | 3sstr4i 3986 | 1 ⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3902 ◡ccnv 5615 dom cdm 5616 ran crn 5617 ∘ ccom 5620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 |
| This theorem is referenced by: cossxp 6219 fcof 6674 fin23lem29 10229 fin23lem30 10230 wunco 10621 imasless 17441 gsumzf1o 19822 znleval 21489 pi1xfrcnvlem 24981 pjss1coi 32138 pj3i 32183 smatrcl 33804 mblfinlem3 37698 mblfinlem4 37699 ismblfin 37700 relexp0a 43748 rntrclfv 43764 stoweidlem27 46064 fourierdlem42 46186 hoicvr 46585 |
| Copyright terms: Public domain | W3C validator |