MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rncoss Structured version   Visualization version   GIF version

Theorem rncoss 5986
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
rncoss ran (𝐴𝐵) ⊆ ran 𝐴

Proof of Theorem rncoss
StepHypRef Expression
1 dmcoss 5985 . 2 dom (𝐵𝐴) ⊆ dom 𝐴
2 df-rn 5696 . . 3 ran (𝐴𝐵) = dom (𝐴𝐵)
3 cnvco 5896 . . . 4 (𝐴𝐵) = (𝐵𝐴)
43dmeqi 5915 . . 3 dom (𝐴𝐵) = dom (𝐵𝐴)
52, 4eqtri 2765 . 2 ran (𝐴𝐵) = dom (𝐵𝐴)
6 df-rn 5696 . 2 ran 𝐴 = dom 𝐴
71, 5, 63sstr4i 4035 1 ran (𝐴𝐵) ⊆ ran 𝐴
Colors of variables: wff setvar class
Syntax hints:  wss 3951  ccnv 5684  dom cdm 5685  ran crn 5686  ccom 5689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696
This theorem is referenced by:  cossxp  6292  fcof  6759  fin23lem29  10381  fin23lem30  10382  wunco  10773  imasless  17585  gsumzf1o  19930  znleval  21573  pi1xfrcnvlem  25089  pjss1coi  32182  pj3i  32227  smatrcl  33795  mblfinlem3  37666  mblfinlem4  37667  ismblfin  37668  relexp0a  43729  rntrclfv  43745  stoweidlem27  46042  fourierdlem42  46164  hoicvr  46563
  Copyright terms: Public domain W3C validator