MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rncoss Structured version   Visualization version   GIF version

Theorem rncoss 5881
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
rncoss ran (𝐴𝐵) ⊆ ran 𝐴

Proof of Theorem rncoss
StepHypRef Expression
1 dmcoss 5880 . 2 dom (𝐵𝐴) ⊆ dom 𝐴
2 df-rn 5600 . . 3 ran (𝐴𝐵) = dom (𝐴𝐵)
3 cnvco 5794 . . . 4 (𝐴𝐵) = (𝐵𝐴)
43dmeqi 5813 . . 3 dom (𝐴𝐵) = dom (𝐵𝐴)
52, 4eqtri 2766 . 2 ran (𝐴𝐵) = dom (𝐵𝐴)
6 df-rn 5600 . 2 ran 𝐴 = dom 𝐴
71, 5, 63sstr4i 3964 1 ran (𝐴𝐵) ⊆ ran 𝐴
Colors of variables: wff setvar class
Syntax hints:  wss 3887  ccnv 5588  dom cdm 5589  ran crn 5590  ccom 5593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600
This theorem is referenced by:  cossxp  6175  fcof  6623  fcoOLD  6625  fco3OLD  6634  fin23lem29  10097  fin23lem30  10098  wunco  10489  imasless  17251  gsumzf1o  19513  znleval  20762  pi1xfrcnvlem  24219  pjss1coi  30525  pj3i  30570  smatrcl  31746  mblfinlem3  35816  mblfinlem4  35817  ismblfin  35818  relexp0a  41324  rntrclfv  41340  stoweidlem27  43568  fourierdlem42  43690  hoicvr  44086
  Copyright terms: Public domain W3C validator