MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rncoss Structured version   Visualization version   GIF version

Theorem rncoss 5955
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
rncoss ran (𝐴𝐵) ⊆ ran 𝐴

Proof of Theorem rncoss
StepHypRef Expression
1 dmcoss 5954 . 2 dom (𝐵𝐴) ⊆ dom 𝐴
2 df-rn 5665 . . 3 ran (𝐴𝐵) = dom (𝐴𝐵)
3 cnvco 5865 . . . 4 (𝐴𝐵) = (𝐵𝐴)
43dmeqi 5884 . . 3 dom (𝐴𝐵) = dom (𝐵𝐴)
52, 4eqtri 2758 . 2 ran (𝐴𝐵) = dom (𝐵𝐴)
6 df-rn 5665 . 2 ran 𝐴 = dom 𝐴
71, 5, 63sstr4i 4010 1 ran (𝐴𝐵) ⊆ ran 𝐴
Colors of variables: wff setvar class
Syntax hints:  wss 3926  ccnv 5653  dom cdm 5654  ran crn 5655  ccom 5658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665
This theorem is referenced by:  cossxp  6261  fcof  6729  fin23lem29  10355  fin23lem30  10356  wunco  10747  imasless  17554  gsumzf1o  19893  znleval  21515  pi1xfrcnvlem  25007  pjss1coi  32144  pj3i  32189  smatrcl  33827  mblfinlem3  37683  mblfinlem4  37684  ismblfin  37685  relexp0a  43740  rntrclfv  43756  stoweidlem27  46056  fourierdlem42  46178  hoicvr  46577
  Copyright terms: Public domain W3C validator