MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnghmresel Structured version   Visualization version   GIF version

Theorem rnghmresel 20642
Description: An element of the non-unital ring homomorphisms restricted to a subset of non-unital rings is a non-unital ring homomorphisms. (Contributed by AV, 9-Mar-2020.)
Hypothesis
Ref Expression
rnghmresel.h (𝜑𝐻 = ( RngHom ↾ (𝐵 × 𝐵)))
Assertion
Ref Expression
rnghmresel ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → 𝐹 ∈ (𝑋 RngHom 𝑌))

Proof of Theorem rnghmresel
StepHypRef Expression
1 rnghmresel.h . . . . . 6 (𝜑𝐻 = ( RngHom ↾ (𝐵 × 𝐵)))
21adantr 480 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵)))
32oveqd 7465 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐻𝑌) = (𝑋( RngHom ↾ (𝐵 × 𝐵))𝑌))
4 ovres 7616 . . . . 5 ((𝑋𝐵𝑌𝐵) → (𝑋( RngHom ↾ (𝐵 × 𝐵))𝑌) = (𝑋 RngHom 𝑌))
54adantl 481 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋( RngHom ↾ (𝐵 × 𝐵))𝑌) = (𝑋 RngHom 𝑌))
63, 5eqtrd 2780 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐻𝑌) = (𝑋 RngHom 𝑌))
76eleq2d 2830 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹 ∈ (𝑋𝐻𝑌) ↔ 𝐹 ∈ (𝑋 RngHom 𝑌)))
87biimp3a 1469 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → 𝐹 ∈ (𝑋 RngHom 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108   × cxp 5698  cres 5702  (class class class)co 7448   RngHom crnghm 20460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-res 5712  df-iota 6525  df-fv 6581  df-ov 7451
This theorem is referenced by:  rnghmsubcsetclem2  20654
  Copyright terms: Public domain W3C validator