Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnghmresel Structured version   Visualization version   GIF version

Theorem rnghmresel 44220
Description: An element of the non-unital ring homomorphisms restricted to a subset of non-unital rings is a non-unital ring homomorphisms. (Contributed by AV, 9-Mar-2020.)
Hypothesis
Ref Expression
rnghmresel.h (𝜑𝐻 = ( RngHomo ↾ (𝐵 × 𝐵)))
Assertion
Ref Expression
rnghmresel ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → 𝐹 ∈ (𝑋 RngHomo 𝑌))

Proof of Theorem rnghmresel
StepHypRef Expression
1 rnghmresel.h . . . . . 6 (𝜑𝐻 = ( RngHomo ↾ (𝐵 × 𝐵)))
21adantr 483 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵)))
32oveqd 7165 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐻𝑌) = (𝑋( RngHomo ↾ (𝐵 × 𝐵))𝑌))
4 ovres 7306 . . . . 5 ((𝑋𝐵𝑌𝐵) → (𝑋( RngHomo ↾ (𝐵 × 𝐵))𝑌) = (𝑋 RngHomo 𝑌))
54adantl 484 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋( RngHomo ↾ (𝐵 × 𝐵))𝑌) = (𝑋 RngHomo 𝑌))
63, 5eqtrd 2854 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐻𝑌) = (𝑋 RngHomo 𝑌))
76eleq2d 2896 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹 ∈ (𝑋𝐻𝑌) ↔ 𝐹 ∈ (𝑋 RngHomo 𝑌)))
87biimp3a 1462 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → 𝐹 ∈ (𝑋 RngHomo 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1081   = wceq 1530  wcel 2107   × cxp 5546  cres 5550  (class class class)co 7148   RngHomo crngh 44141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-xp 5554  df-res 5560  df-iota 6307  df-fv 6356  df-ov 7151
This theorem is referenced by:  rnghmsubcsetclem2  44232
  Copyright terms: Public domain W3C validator