MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnghmresel Structured version   Visualization version   GIF version

Theorem rnghmresel 20506
Description: An element of the non-unital ring homomorphisms restricted to a subset of non-unital rings is a non-unital ring homomorphisms. (Contributed by AV, 9-Mar-2020.)
Hypothesis
Ref Expression
rnghmresel.h (𝜑𝐻 = ( RngHom ↾ (𝐵 × 𝐵)))
Assertion
Ref Expression
rnghmresel ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → 𝐹 ∈ (𝑋 RngHom 𝑌))

Proof of Theorem rnghmresel
StepHypRef Expression
1 rnghmresel.h . . . . . 6 (𝜑𝐻 = ( RngHom ↾ (𝐵 × 𝐵)))
21adantr 480 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵)))
32oveqd 7418 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐻𝑌) = (𝑋( RngHom ↾ (𝐵 × 𝐵))𝑌))
4 ovres 7566 . . . . 5 ((𝑋𝐵𝑌𝐵) → (𝑋( RngHom ↾ (𝐵 × 𝐵))𝑌) = (𝑋 RngHom 𝑌))
54adantl 481 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋( RngHom ↾ (𝐵 × 𝐵))𝑌) = (𝑋 RngHom 𝑌))
63, 5eqtrd 2764 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐻𝑌) = (𝑋 RngHom 𝑌))
76eleq2d 2811 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹 ∈ (𝑋𝐻𝑌) ↔ 𝐹 ∈ (𝑋 RngHom 𝑌)))
87biimp3a 1465 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → 𝐹 ∈ (𝑋 RngHom 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098   × cxp 5664  cres 5668  (class class class)co 7401   RngHom crnghm 20326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-xp 5672  df-res 5678  df-iota 6485  df-fv 6541  df-ov 7404
This theorem is referenced by:  rnghmsubcsetclem2  20518
  Copyright terms: Public domain W3C validator