MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnghmresel Structured version   Visualization version   GIF version

Theorem rnghmresel 20637
Description: An element of the non-unital ring homomorphisms restricted to a subset of non-unital rings is a non-unital ring homomorphisms. (Contributed by AV, 9-Mar-2020.)
Hypothesis
Ref Expression
rnghmresel.h (𝜑𝐻 = ( RngHom ↾ (𝐵 × 𝐵)))
Assertion
Ref Expression
rnghmresel ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → 𝐹 ∈ (𝑋 RngHom 𝑌))

Proof of Theorem rnghmresel
StepHypRef Expression
1 rnghmresel.h . . . . . 6 (𝜑𝐻 = ( RngHom ↾ (𝐵 × 𝐵)))
21adantr 480 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵)))
32oveqd 7448 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐻𝑌) = (𝑋( RngHom ↾ (𝐵 × 𝐵))𝑌))
4 ovres 7599 . . . . 5 ((𝑋𝐵𝑌𝐵) → (𝑋( RngHom ↾ (𝐵 × 𝐵))𝑌) = (𝑋 RngHom 𝑌))
54adantl 481 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋( RngHom ↾ (𝐵 × 𝐵))𝑌) = (𝑋 RngHom 𝑌))
63, 5eqtrd 2775 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐻𝑌) = (𝑋 RngHom 𝑌))
76eleq2d 2825 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹 ∈ (𝑋𝐻𝑌) ↔ 𝐹 ∈ (𝑋 RngHom 𝑌)))
87biimp3a 1468 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → 𝐹 ∈ (𝑋 RngHom 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106   × cxp 5687  cres 5691  (class class class)co 7431   RngHom crnghm 20451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-xp 5695  df-res 5701  df-iota 6516  df-fv 6571  df-ov 7434
This theorem is referenced by:  rnghmsubcsetclem2  20649
  Copyright terms: Public domain W3C validator