![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovres | Structured version Visualization version GIF version |
Description: The value of a restricted operation. (Contributed by FL, 10-Nov-2006.) |
Ref | Expression |
---|---|
ovres | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5737 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | |
2 | 1 | fvresd 6940 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((𝐹 ↾ (𝐶 × 𝐷))‘〈𝐴, 𝐵〉) = (𝐹‘〈𝐴, 𝐵〉)) |
3 | df-ov 7451 | . 2 ⊢ (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = ((𝐹 ↾ (𝐶 × 𝐷))‘〈𝐴, 𝐵〉) | |
4 | df-ov 7451 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
5 | 2, 3, 4 | 3eqtr4g 2805 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 〈cop 4654 × cxp 5698 ↾ cres 5702 ‘cfv 6573 (class class class)co 7448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-res 5712 df-iota 6525 df-fv 6581 df-ov 7451 |
This theorem is referenced by: ovresd 7617 oprres 7618 oprssov 7619 ofmresval 7730 cantnfval2 9738 mulnzcnf 11936 prdsdsval3 17545 mgmsscl 18683 frmdplusg 18889 frmdadd 18890 grpissubg 19186 gaid 19339 gass 19341 gasubg 19342 rnghmresel 20642 rnghmsscmap2 20651 rnghmsscmap 20652 rnghmsubcsetclem2 20654 rngcifuestrc 20661 rhmresel 20671 rhmsscmap2 20680 rhmsscmap 20681 rhmsubcsetclem2 20683 rhmsscrnghm 20687 rhmsubcrngclem2 20689 rhmsubclem4 20710 mplsubrglem 22047 mamures 22422 mdetrlin 22629 mdetrsca 22630 pmatcollpw3lem 22810 tsmsxplem1 24182 tsmsxplem2 24183 xmetres2 24392 ressprdsds 24402 blres 24462 xmetresbl 24468 mscl 24492 xmscl 24493 xmsge0 24494 xmseq0 24495 nmfval0 24624 nmval2 24626 isngp3 24632 ngpds 24638 ngpocelbl 24746 xrsdsre 24851 divcnOLD 24909 divcn 24911 cncfmet 24954 cfilresi 25348 cfilres 25349 mpodvdsmulf1o 27255 dvdsmulf1o 27257 sspgval 30761 sspsval 30763 sspmlem 30764 hhssabloilem 31293 hhssabloi 31294 hhssnv 31296 hhssmetdval 31309 raddcn 33875 xrge0pluscn 33886 cvmlift2lem9 35279 icoreval 37319 icoreelrnab 37320 equivbnd2 37752 ismtyres 37768 iccbnd 37800 exidreslem 37837 divrngcl 37917 isdrngo2 37918 ofoafo 43318 ofoacl 43319 naddcnfcl 43327 |
Copyright terms: Public domain | W3C validator |