![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovres | Structured version Visualization version GIF version |
Description: The value of a restricted operation. (Contributed by FL, 10-Nov-2006.) |
Ref | Expression |
---|---|
ovres | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5712 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷)) | |
2 | 1 | fvresd 6910 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((𝐹 ↾ (𝐶 × 𝐷))‘⟨𝐴, 𝐵⟩) = (𝐹‘⟨𝐴, 𝐵⟩)) |
3 | df-ov 7414 | . 2 ⊢ (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = ((𝐹 ↾ (𝐶 × 𝐷))‘⟨𝐴, 𝐵⟩) | |
4 | df-ov 7414 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩) | |
5 | 2, 3, 4 | 3eqtr4g 2795 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ⟨cop 4633 × cxp 5673 ↾ cres 5677 ‘cfv 6542 (class class class)co 7411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-xp 5681 df-res 5687 df-iota 6494 df-fv 6550 df-ov 7414 |
This theorem is referenced by: ovresd 7576 oprres 7577 oprssov 7578 ofmresval 7688 cantnfval2 9666 mulnzcnopr 11864 prdsdsval3 17435 mgmsscl 18570 frmdplusg 18771 frmdadd 18772 grpissubg 19062 gaid 19204 gass 19206 gasubg 19207 mplsubrglem 21782 mamures 22112 mdetrlin 22324 mdetrsca 22325 pmatcollpw3lem 22505 tsmsxplem1 23877 tsmsxplem2 23878 xmetres2 24087 ressprdsds 24097 blres 24157 xmetresbl 24163 mscl 24187 xmscl 24188 xmsge0 24189 xmseq0 24190 nmfval0 24319 nmval2 24321 isngp3 24327 ngpds 24333 ngpocelbl 24441 xrsdsre 24546 divcnOLD 24604 divcn 24606 cncfmet 24649 cfilresi 25043 cfilres 25044 dvdsmulf1o 26934 sspgval 30249 sspsval 30251 sspmlem 30252 hhssabloilem 30781 hhssabloi 30782 hhssnv 30784 hhssmetdval 30797 raddcn 33207 xrge0pluscn 33218 cvmlift2lem9 34600 icoreval 36537 icoreelrnab 36538 equivbnd2 36963 ismtyres 36979 iccbnd 37011 exidreslem 37048 divrngcl 37128 isdrngo2 37129 ofoafo 42408 ofoacl 42409 naddcnfcl 42417 rnghmresel 46950 rnghmsscmap2 46959 rnghmsscmap 46960 rnghmsubcsetclem2 46962 rngcifuestrc 46983 rhmresel 46996 rhmsscmap2 47005 rhmsscmap 47006 rhmsubcsetclem2 47008 rhmsscrnghm 47012 rhmsubcrngclem2 47014 rhmsubclem4 47075 |
Copyright terms: Public domain | W3C validator |