| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovres | Structured version Visualization version GIF version | ||
| Description: The value of a restricted operation. (Contributed by FL, 10-Nov-2006.) |
| Ref | Expression |
|---|---|
| ovres | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 5648 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | |
| 2 | 1 | fvresd 6837 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((𝐹 ↾ (𝐶 × 𝐷))‘〈𝐴, 𝐵〉) = (𝐹‘〈𝐴, 𝐵〉)) |
| 3 | df-ov 7344 | . 2 ⊢ (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = ((𝐹 ↾ (𝐶 × 𝐷))‘〈𝐴, 𝐵〉) | |
| 4 | df-ov 7344 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 5 | 2, 3, 4 | 3eqtr4g 2791 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 〈cop 4577 × cxp 5609 ↾ cres 5613 ‘cfv 6476 (class class class)co 7341 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-xp 5617 df-res 5623 df-iota 6432 df-fv 6484 df-ov 7344 |
| This theorem is referenced by: ovresd 7508 oprres 7509 oprssov 7510 ofmresval 7621 cantnfval2 9554 mulnzcnf 11758 prdsdsval3 17384 mgmsscl 18548 frmdplusg 18757 frmdadd 18758 grpissubg 19054 gaid 19206 gass 19208 gasubg 19209 rnghmresel 20530 rnghmsscmap2 20539 rnghmsscmap 20540 rnghmsubcsetclem2 20542 rngcifuestrc 20549 rhmresel 20559 rhmsscmap2 20568 rhmsscmap 20569 rhmsubcsetclem2 20571 rhmsscrnghm 20575 rhmsubcrngclem2 20577 rhmsubclem4 20598 mplsubrglem 21936 mamures 22307 mdetrlin 22512 mdetrsca 22513 pmatcollpw3lem 22693 tsmsxplem1 24063 tsmsxplem2 24064 xmetres2 24271 ressprdsds 24281 blres 24341 xmetresbl 24347 mscl 24371 xmscl 24372 xmsge0 24373 xmseq0 24374 nmfval0 24500 nmval2 24502 isngp3 24508 ngpds 24514 ngpocelbl 24614 xrsdsre 24721 divcnOLD 24779 divcn 24781 cncfmet 24824 cfilresi 25217 cfilres 25218 mpodvdsmulf1o 27126 dvdsmulf1o 27128 zsoring 28327 sspgval 30701 sspsval 30703 sspmlem 30704 hhssabloilem 31233 hhssabloi 31234 hhssnv 31236 hhssmetdval 31249 raddcn 33934 xrge0pluscn 33945 cvmlift2lem9 35347 icoreval 37387 icoreelrnab 37388 equivbnd2 37832 ismtyres 37848 iccbnd 37880 exidreslem 37917 divrngcl 37997 isdrngo2 37998 ofoafo 43389 ofoacl 43390 naddcnfcl 43398 fuco11b 49369 |
| Copyright terms: Public domain | W3C validator |