![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovres | Structured version Visualization version GIF version |
Description: The value of a restricted operation. (Contributed by FL, 10-Nov-2006.) |
Ref | Expression |
---|---|
ovres | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5725 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | |
2 | 1 | fvresd 6926 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((𝐹 ↾ (𝐶 × 𝐷))‘〈𝐴, 𝐵〉) = (𝐹‘〈𝐴, 𝐵〉)) |
3 | df-ov 7433 | . 2 ⊢ (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = ((𝐹 ↾ (𝐶 × 𝐷))‘〈𝐴, 𝐵〉) | |
4 | df-ov 7433 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
5 | 2, 3, 4 | 3eqtr4g 2799 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 〈cop 4636 × cxp 5686 ↾ cres 5690 ‘cfv 6562 (class class class)co 7430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-xp 5694 df-res 5700 df-iota 6515 df-fv 6570 df-ov 7433 |
This theorem is referenced by: ovresd 7599 oprres 7600 oprssov 7601 ofmresval 7712 cantnfval2 9706 mulnzcnf 11906 prdsdsval3 17531 mgmsscl 18670 frmdplusg 18879 frmdadd 18880 grpissubg 19176 gaid 19329 gass 19331 gasubg 19332 rnghmresel 20636 rnghmsscmap2 20645 rnghmsscmap 20646 rnghmsubcsetclem2 20648 rngcifuestrc 20655 rhmresel 20665 rhmsscmap2 20674 rhmsscmap 20675 rhmsubcsetclem2 20677 rhmsscrnghm 20681 rhmsubcrngclem2 20683 rhmsubclem4 20704 mplsubrglem 22041 mamures 22416 mdetrlin 22623 mdetrsca 22624 pmatcollpw3lem 22804 tsmsxplem1 24176 tsmsxplem2 24177 xmetres2 24386 ressprdsds 24396 blres 24456 xmetresbl 24462 mscl 24486 xmscl 24487 xmsge0 24488 xmseq0 24489 nmfval0 24618 nmval2 24620 isngp3 24626 ngpds 24632 ngpocelbl 24740 xrsdsre 24845 divcnOLD 24903 divcn 24905 cncfmet 24948 cfilresi 25342 cfilres 25343 mpodvdsmulf1o 27251 dvdsmulf1o 27253 sspgval 30757 sspsval 30759 sspmlem 30760 hhssabloilem 31289 hhssabloi 31290 hhssnv 31292 hhssmetdval 31305 raddcn 33889 xrge0pluscn 33900 cvmlift2lem9 35295 icoreval 37335 icoreelrnab 37336 equivbnd2 37778 ismtyres 37794 iccbnd 37826 exidreslem 37863 divrngcl 37943 isdrngo2 37944 ofoafo 43345 ofoacl 43346 naddcnfcl 43354 |
Copyright terms: Public domain | W3C validator |