Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovres | Structured version Visualization version GIF version |
Description: The value of a restricted operation. (Contributed by FL, 10-Nov-2006.) |
Ref | Expression |
---|---|
ovres | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5617 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | |
2 | 1 | fvresd 6776 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((𝐹 ↾ (𝐶 × 𝐷))‘〈𝐴, 𝐵〉) = (𝐹‘〈𝐴, 𝐵〉)) |
3 | df-ov 7258 | . 2 ⊢ (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = ((𝐹 ↾ (𝐶 × 𝐷))‘〈𝐴, 𝐵〉) | |
4 | df-ov 7258 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
5 | 2, 3, 4 | 3eqtr4g 2804 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 〈cop 4564 × cxp 5578 ↾ cres 5582 ‘cfv 6418 (class class class)co 7255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-res 5592 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: ovresd 7417 oprres 7418 oprssov 7419 ofmresval 7527 cantnfval2 9357 mulnzcnopr 11551 prdsdsval3 17113 mgmsscl 18246 frmdplusg 18408 frmdadd 18409 grpissubg 18690 gaid 18820 gass 18822 gasubg 18823 mplsubrglem 21120 mamures 21449 mdetrlin 21659 mdetrsca 21660 pmatcollpw3lem 21840 tsmsxplem1 23212 tsmsxplem2 23213 xmetres2 23422 ressprdsds 23432 blres 23492 xmetresbl 23498 mscl 23522 xmscl 23523 xmsge0 23524 xmseq0 23525 nmfval0 23652 nmval2 23654 isngp3 23660 ngpds 23666 ngpocelbl 23774 xrsdsre 23879 divcn 23937 cncfmet 23978 cfilresi 24364 cfilres 24365 dvdsmulf1o 26248 sspgval 28992 sspsval 28994 sspmlem 28995 hhssabloilem 29524 hhssabloi 29525 hhssnv 29527 hhssmetdval 29540 raddcn 31781 xrge0pluscn 31792 cvmlift2lem9 33173 icoreval 35451 icoreelrnab 35452 equivbnd2 35877 ismtyres 35893 iccbnd 35925 exidreslem 35962 divrngcl 36042 isdrngo2 36043 rnghmresel 45410 rnghmsscmap2 45419 rnghmsscmap 45420 rnghmsubcsetclem2 45422 rngcifuestrc 45443 rhmresel 45456 rhmsscmap2 45465 rhmsscmap 45466 rhmsubcsetclem2 45468 rhmsscrnghm 45472 rhmsubcrngclem2 45474 rhmsubclem4 45535 |
Copyright terms: Public domain | W3C validator |