| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovres | Structured version Visualization version GIF version | ||
| Description: The value of a restricted operation. (Contributed by FL, 10-Nov-2006.) |
| Ref | Expression |
|---|---|
| ovres | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 5656 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | |
| 2 | 1 | fvresd 6842 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((𝐹 ↾ (𝐶 × 𝐷))‘〈𝐴, 𝐵〉) = (𝐹‘〈𝐴, 𝐵〉)) |
| 3 | df-ov 7352 | . 2 ⊢ (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = ((𝐹 ↾ (𝐶 × 𝐷))‘〈𝐴, 𝐵〉) | |
| 4 | df-ov 7352 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 5 | 2, 3, 4 | 3eqtr4g 2789 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4583 × cxp 5617 ↾ cres 5621 ‘cfv 6482 (class class class)co 7349 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-xp 5625 df-res 5631 df-iota 6438 df-fv 6490 df-ov 7352 |
| This theorem is referenced by: ovresd 7516 oprres 7517 oprssov 7518 ofmresval 7629 cantnfval2 9565 mulnzcnf 11766 prdsdsval3 17389 mgmsscl 18519 frmdplusg 18728 frmdadd 18729 grpissubg 19025 gaid 19178 gass 19180 gasubg 19181 rnghmresel 20505 rnghmsscmap2 20514 rnghmsscmap 20515 rnghmsubcsetclem2 20517 rngcifuestrc 20524 rhmresel 20534 rhmsscmap2 20543 rhmsscmap 20544 rhmsubcsetclem2 20546 rhmsscrnghm 20550 rhmsubcrngclem2 20552 rhmsubclem4 20573 mplsubrglem 21911 mamures 22282 mdetrlin 22487 mdetrsca 22488 pmatcollpw3lem 22668 tsmsxplem1 24038 tsmsxplem2 24039 xmetres2 24247 ressprdsds 24257 blres 24317 xmetresbl 24323 mscl 24347 xmscl 24348 xmsge0 24349 xmseq0 24350 nmfval0 24476 nmval2 24478 isngp3 24484 ngpds 24490 ngpocelbl 24590 xrsdsre 24697 divcnOLD 24755 divcn 24757 cncfmet 24800 cfilresi 25193 cfilres 25194 mpodvdsmulf1o 27102 dvdsmulf1o 27104 zsoring 28301 sspgval 30673 sspsval 30675 sspmlem 30676 hhssabloilem 31205 hhssabloi 31206 hhssnv 31208 hhssmetdval 31221 raddcn 33896 xrge0pluscn 33907 cvmlift2lem9 35284 icoreval 37327 icoreelrnab 37328 equivbnd2 37772 ismtyres 37788 iccbnd 37820 exidreslem 37857 divrngcl 37937 isdrngo2 37938 ofoafo 43329 ofoacl 43330 naddcnfcl 43338 fuco11b 49322 |
| Copyright terms: Public domain | W3C validator |