Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovres | Structured version Visualization version GIF version |
Description: The value of a restricted operation. (Contributed by FL, 10-Nov-2006.) |
Ref | Expression |
---|---|
ovres | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5626 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | |
2 | 1 | fvresd 6794 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((𝐹 ↾ (𝐶 × 𝐷))‘〈𝐴, 𝐵〉) = (𝐹‘〈𝐴, 𝐵〉)) |
3 | df-ov 7278 | . 2 ⊢ (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = ((𝐹 ↾ (𝐶 × 𝐷))‘〈𝐴, 𝐵〉) | |
4 | df-ov 7278 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
5 | 2, 3, 4 | 3eqtr4g 2803 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 〈cop 4567 × cxp 5587 ↾ cres 5591 ‘cfv 6433 (class class class)co 7275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-res 5601 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: ovresd 7439 oprres 7440 oprssov 7441 ofmresval 7549 cantnfval2 9427 mulnzcnopr 11621 prdsdsval3 17196 mgmsscl 18331 frmdplusg 18493 frmdadd 18494 grpissubg 18775 gaid 18905 gass 18907 gasubg 18908 mplsubrglem 21210 mamures 21539 mdetrlin 21751 mdetrsca 21752 pmatcollpw3lem 21932 tsmsxplem1 23304 tsmsxplem2 23305 xmetres2 23514 ressprdsds 23524 blres 23584 xmetresbl 23590 mscl 23614 xmscl 23615 xmsge0 23616 xmseq0 23617 nmfval0 23746 nmval2 23748 isngp3 23754 ngpds 23760 ngpocelbl 23868 xrsdsre 23973 divcn 24031 cncfmet 24072 cfilresi 24459 cfilres 24460 dvdsmulf1o 26343 sspgval 29091 sspsval 29093 sspmlem 29094 hhssabloilem 29623 hhssabloi 29624 hhssnv 29626 hhssmetdval 29639 raddcn 31879 xrge0pluscn 31890 cvmlift2lem9 33273 icoreval 35524 icoreelrnab 35525 equivbnd2 35950 ismtyres 35966 iccbnd 35998 exidreslem 36035 divrngcl 36115 isdrngo2 36116 rnghmresel 45522 rnghmsscmap2 45531 rnghmsscmap 45532 rnghmsubcsetclem2 45534 rngcifuestrc 45555 rhmresel 45568 rhmsscmap2 45577 rhmsscmap 45578 rhmsubcsetclem2 45580 rhmsscrnghm 45584 rhmsubcrngclem2 45586 rhmsubclem4 45647 |
Copyright terms: Public domain | W3C validator |