| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovres | Structured version Visualization version GIF version | ||
| Description: The value of a restricted operation. (Contributed by FL, 10-Nov-2006.) |
| Ref | Expression |
|---|---|
| ovres | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 5678 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | |
| 2 | 1 | fvresd 6881 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((𝐹 ↾ (𝐶 × 𝐷))‘〈𝐴, 𝐵〉) = (𝐹‘〈𝐴, 𝐵〉)) |
| 3 | df-ov 7393 | . 2 ⊢ (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = ((𝐹 ↾ (𝐶 × 𝐷))‘〈𝐴, 𝐵〉) | |
| 4 | df-ov 7393 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 5 | 2, 3, 4 | 3eqtr4g 2790 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4598 × cxp 5639 ↾ cres 5643 ‘cfv 6514 (class class class)co 7390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-res 5653 df-iota 6467 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: ovresd 7559 oprres 7560 oprssov 7561 ofmresval 7672 cantnfval2 9629 mulnzcnf 11831 prdsdsval3 17455 mgmsscl 18579 frmdplusg 18788 frmdadd 18789 grpissubg 19085 gaid 19238 gass 19240 gasubg 19241 rnghmresel 20536 rnghmsscmap2 20545 rnghmsscmap 20546 rnghmsubcsetclem2 20548 rngcifuestrc 20555 rhmresel 20565 rhmsscmap2 20574 rhmsscmap 20575 rhmsubcsetclem2 20577 rhmsscrnghm 20581 rhmsubcrngclem2 20583 rhmsubclem4 20604 mplsubrglem 21920 mamures 22291 mdetrlin 22496 mdetrsca 22497 pmatcollpw3lem 22677 tsmsxplem1 24047 tsmsxplem2 24048 xmetres2 24256 ressprdsds 24266 blres 24326 xmetresbl 24332 mscl 24356 xmscl 24357 xmsge0 24358 xmseq0 24359 nmfval0 24485 nmval2 24487 isngp3 24493 ngpds 24499 ngpocelbl 24599 xrsdsre 24706 divcnOLD 24764 divcn 24766 cncfmet 24809 cfilresi 25202 cfilres 25203 mpodvdsmulf1o 27111 dvdsmulf1o 27113 sspgval 30665 sspsval 30667 sspmlem 30668 hhssabloilem 31197 hhssabloi 31198 hhssnv 31200 hhssmetdval 31213 raddcn 33926 xrge0pluscn 33937 cvmlift2lem9 35305 icoreval 37348 icoreelrnab 37349 equivbnd2 37793 ismtyres 37809 iccbnd 37841 exidreslem 37878 divrngcl 37958 isdrngo2 37959 ofoafo 43352 ofoacl 43353 naddcnfcl 43361 fuco11b 49330 |
| Copyright terms: Public domain | W3C validator |