Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovres | Structured version Visualization version GIF version |
Description: The value of a restricted operation. (Contributed by FL, 10-Nov-2006.) |
Ref | Expression |
---|---|
ovres | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5644 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | |
2 | 1 | fvresd 6831 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((𝐹 ↾ (𝐶 × 𝐷))‘〈𝐴, 𝐵〉) = (𝐹‘〈𝐴, 𝐵〉)) |
3 | df-ov 7319 | . 2 ⊢ (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = ((𝐹 ↾ (𝐶 × 𝐷))‘〈𝐴, 𝐵〉) | |
4 | df-ov 7319 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
5 | 2, 3, 4 | 3eqtr4g 2801 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 〈cop 4576 × cxp 5605 ↾ cres 5609 ‘cfv 6465 (class class class)co 7316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-br 5087 df-opab 5149 df-xp 5613 df-res 5619 df-iota 6417 df-fv 6473 df-ov 7319 |
This theorem is referenced by: ovresd 7480 oprres 7481 oprssov 7482 ofmresval 7590 cantnfval2 9504 mulnzcnopr 11700 prdsdsval3 17270 mgmsscl 18405 frmdplusg 18566 frmdadd 18567 grpissubg 18848 gaid 18978 gass 18980 gasubg 18981 mplsubrglem 21290 mamures 21619 mdetrlin 21831 mdetrsca 21832 pmatcollpw3lem 22012 tsmsxplem1 23384 tsmsxplem2 23385 xmetres2 23594 ressprdsds 23604 blres 23664 xmetresbl 23670 mscl 23694 xmscl 23695 xmsge0 23696 xmseq0 23697 nmfval0 23826 nmval2 23828 isngp3 23834 ngpds 23840 ngpocelbl 23948 xrsdsre 24053 divcn 24111 cncfmet 24152 cfilresi 24539 cfilres 24540 dvdsmulf1o 26423 sspgval 29223 sspsval 29225 sspmlem 29226 hhssabloilem 29755 hhssabloi 29756 hhssnv 29758 hhssmetdval 29771 raddcn 32015 xrge0pluscn 32026 cvmlift2lem9 33408 icoreval 35601 icoreelrnab 35602 equivbnd2 36027 ismtyres 36043 iccbnd 36075 exidreslem 36112 divrngcl 36192 isdrngo2 36193 ofoafo 41273 ofoacl 41274 naddcnfcl 41282 rnghmresel 45792 rnghmsscmap2 45801 rnghmsscmap 45802 rnghmsubcsetclem2 45804 rngcifuestrc 45825 rhmresel 45838 rhmsscmap2 45847 rhmsscmap 45848 rhmsubcsetclem2 45850 rhmsscrnghm 45854 rhmsubcrngclem2 45856 rhmsubclem4 45917 |
Copyright terms: Public domain | W3C validator |