| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovres | Structured version Visualization version GIF version | ||
| Description: The value of a restricted operation. (Contributed by FL, 10-Nov-2006.) |
| Ref | Expression |
|---|---|
| ovres | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 5691 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | |
| 2 | 1 | fvresd 6895 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((𝐹 ↾ (𝐶 × 𝐷))‘〈𝐴, 𝐵〉) = (𝐹‘〈𝐴, 𝐵〉)) |
| 3 | df-ov 7406 | . 2 ⊢ (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = ((𝐹 ↾ (𝐶 × 𝐷))‘〈𝐴, 𝐵〉) | |
| 4 | df-ov 7406 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 5 | 2, 3, 4 | 3eqtr4g 2795 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 〈cop 4607 × cxp 5652 ↾ cres 5656 ‘cfv 6530 (class class class)co 7403 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-res 5666 df-iota 6483 df-fv 6538 df-ov 7406 |
| This theorem is referenced by: ovresd 7572 oprres 7573 oprssov 7574 ofmresval 7685 cantnfval2 9681 mulnzcnf 11881 prdsdsval3 17497 mgmsscl 18621 frmdplusg 18830 frmdadd 18831 grpissubg 19127 gaid 19280 gass 19282 gasubg 19283 rnghmresel 20578 rnghmsscmap2 20587 rnghmsscmap 20588 rnghmsubcsetclem2 20590 rngcifuestrc 20597 rhmresel 20607 rhmsscmap2 20616 rhmsscmap 20617 rhmsubcsetclem2 20619 rhmsscrnghm 20623 rhmsubcrngclem2 20625 rhmsubclem4 20646 mplsubrglem 21962 mamures 22333 mdetrlin 22538 mdetrsca 22539 pmatcollpw3lem 22719 tsmsxplem1 24089 tsmsxplem2 24090 xmetres2 24298 ressprdsds 24308 blres 24368 xmetresbl 24374 mscl 24398 xmscl 24399 xmsge0 24400 xmseq0 24401 nmfval0 24527 nmval2 24529 isngp3 24535 ngpds 24541 ngpocelbl 24641 xrsdsre 24748 divcnOLD 24806 divcn 24808 cncfmet 24851 cfilresi 25245 cfilres 25246 mpodvdsmulf1o 27154 dvdsmulf1o 27156 sspgval 30656 sspsval 30658 sspmlem 30659 hhssabloilem 31188 hhssabloi 31189 hhssnv 31191 hhssmetdval 31204 raddcn 33906 xrge0pluscn 33917 cvmlift2lem9 35279 icoreval 37317 icoreelrnab 37318 equivbnd2 37762 ismtyres 37778 iccbnd 37810 exidreslem 37847 divrngcl 37927 isdrngo2 37928 ofoafo 43327 ofoacl 43328 naddcnfcl 43336 fuco11b 49196 |
| Copyright terms: Public domain | W3C validator |