| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovres | Structured version Visualization version GIF version | ||
| Description: The value of a restricted operation. (Contributed by FL, 10-Nov-2006.) |
| Ref | Expression |
|---|---|
| ovres | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 5668 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | |
| 2 | 1 | fvresd 6860 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((𝐹 ↾ (𝐶 × 𝐷))‘〈𝐴, 𝐵〉) = (𝐹‘〈𝐴, 𝐵〉)) |
| 3 | df-ov 7372 | . 2 ⊢ (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = ((𝐹 ↾ (𝐶 × 𝐷))‘〈𝐴, 𝐵〉) | |
| 4 | df-ov 7372 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 5 | 2, 3, 4 | 3eqtr4g 2789 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4591 × cxp 5629 ↾ cres 5633 ‘cfv 6499 (class class class)co 7369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-res 5643 df-iota 6452 df-fv 6507 df-ov 7372 |
| This theorem is referenced by: ovresd 7536 oprres 7537 oprssov 7538 ofmresval 7649 cantnfval2 9598 mulnzcnf 11800 prdsdsval3 17424 mgmsscl 18548 frmdplusg 18757 frmdadd 18758 grpissubg 19054 gaid 19207 gass 19209 gasubg 19210 rnghmresel 20505 rnghmsscmap2 20514 rnghmsscmap 20515 rnghmsubcsetclem2 20517 rngcifuestrc 20524 rhmresel 20534 rhmsscmap2 20543 rhmsscmap 20544 rhmsubcsetclem2 20546 rhmsscrnghm 20550 rhmsubcrngclem2 20552 rhmsubclem4 20573 mplsubrglem 21889 mamures 22260 mdetrlin 22465 mdetrsca 22466 pmatcollpw3lem 22646 tsmsxplem1 24016 tsmsxplem2 24017 xmetres2 24225 ressprdsds 24235 blres 24295 xmetresbl 24301 mscl 24325 xmscl 24326 xmsge0 24327 xmseq0 24328 nmfval0 24454 nmval2 24456 isngp3 24462 ngpds 24468 ngpocelbl 24568 xrsdsre 24675 divcnOLD 24733 divcn 24735 cncfmet 24778 cfilresi 25171 cfilres 25172 mpodvdsmulf1o 27080 dvdsmulf1o 27082 sspgval 30631 sspsval 30633 sspmlem 30634 hhssabloilem 31163 hhssabloi 31164 hhssnv 31166 hhssmetdval 31179 raddcn 33892 xrge0pluscn 33903 cvmlift2lem9 35271 icoreval 37314 icoreelrnab 37315 equivbnd2 37759 ismtyres 37775 iccbnd 37807 exidreslem 37844 divrngcl 37924 isdrngo2 37925 ofoafo 43318 ofoacl 43319 naddcnfcl 43327 fuco11b 49299 |
| Copyright terms: Public domain | W3C validator |