| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovres | Structured version Visualization version GIF version | ||
| Description: The value of a restricted operation. (Contributed by FL, 10-Nov-2006.) |
| Ref | Expression |
|---|---|
| ovres | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 5675 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | |
| 2 | 1 | fvresd 6878 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((𝐹 ↾ (𝐶 × 𝐷))‘〈𝐴, 𝐵〉) = (𝐹‘〈𝐴, 𝐵〉)) |
| 3 | df-ov 7390 | . 2 ⊢ (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = ((𝐹 ↾ (𝐶 × 𝐷))‘〈𝐴, 𝐵〉) | |
| 4 | df-ov 7390 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 5 | 2, 3, 4 | 3eqtr4g 2789 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4595 × cxp 5636 ↾ cres 5640 ‘cfv 6511 (class class class)co 7387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-res 5650 df-iota 6464 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: ovresd 7556 oprres 7557 oprssov 7558 ofmresval 7669 cantnfval2 9622 mulnzcnf 11824 prdsdsval3 17448 mgmsscl 18572 frmdplusg 18781 frmdadd 18782 grpissubg 19078 gaid 19231 gass 19233 gasubg 19234 rnghmresel 20529 rnghmsscmap2 20538 rnghmsscmap 20539 rnghmsubcsetclem2 20541 rngcifuestrc 20548 rhmresel 20558 rhmsscmap2 20567 rhmsscmap 20568 rhmsubcsetclem2 20570 rhmsscrnghm 20574 rhmsubcrngclem2 20576 rhmsubclem4 20597 mplsubrglem 21913 mamures 22284 mdetrlin 22489 mdetrsca 22490 pmatcollpw3lem 22670 tsmsxplem1 24040 tsmsxplem2 24041 xmetres2 24249 ressprdsds 24259 blres 24319 xmetresbl 24325 mscl 24349 xmscl 24350 xmsge0 24351 xmseq0 24352 nmfval0 24478 nmval2 24480 isngp3 24486 ngpds 24492 ngpocelbl 24592 xrsdsre 24699 divcnOLD 24757 divcn 24759 cncfmet 24802 cfilresi 25195 cfilres 25196 mpodvdsmulf1o 27104 dvdsmulf1o 27106 sspgval 30658 sspsval 30660 sspmlem 30661 hhssabloilem 31190 hhssabloi 31191 hhssnv 31193 hhssmetdval 31206 raddcn 33919 xrge0pluscn 33930 cvmlift2lem9 35298 icoreval 37341 icoreelrnab 37342 equivbnd2 37786 ismtyres 37802 iccbnd 37834 exidreslem 37871 divrngcl 37951 isdrngo2 37952 ofoafo 43345 ofoacl 43346 naddcnfcl 43354 fuco11b 49326 |
| Copyright terms: Public domain | W3C validator |