Proof of Theorem rnghmsubcsetclem2
Step | Hyp | Ref
| Expression |
1 | | simpl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝜑) |
2 | 1 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝜑) |
3 | 2 | adantr 480 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝜑) |
4 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) |
5 | 4 | adantr 480 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) |
6 | | simpr 484 |
. . . . . . 7
⊢ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔 ∈ (𝑦𝐻𝑧)) |
7 | 6 | adantl 481 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 ∈ (𝑦𝐻𝑧)) |
8 | | rnghmsubcsetc.h |
. . . . . . 7
⊢ (𝜑 → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵))) |
9 | 8 | rnghmresel 45410 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔 ∈ (𝑦 RngHomo 𝑧)) |
10 | 3, 5, 7, 9 | syl3anc 1369 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 ∈ (𝑦 RngHomo 𝑧)) |
11 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
12 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
13 | 11, 12 | anim12i 612 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
14 | 13 | adantr 480 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
15 | | simprl 767 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 ∈ (𝑥𝐻𝑦)) |
16 | 8 | rnghmresel 45410 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓 ∈ (𝑥 RngHomo 𝑦)) |
17 | 3, 14, 15, 16 | syl3anc 1369 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 ∈ (𝑥 RngHomo 𝑦)) |
18 | | rnghmco 45353 |
. . . . 5
⊢ ((𝑔 ∈ (𝑦 RngHomo 𝑧) ∧ 𝑓 ∈ (𝑥 RngHomo 𝑦)) → (𝑔 ∘ 𝑓) ∈ (𝑥 RngHomo 𝑧)) |
19 | 10, 17, 18 | syl2anc 583 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔 ∘ 𝑓) ∈ (𝑥 RngHomo 𝑧)) |
20 | | rnghmsubcsetc.c |
. . . . 5
⊢ 𝐶 = (ExtStrCat‘𝑈) |
21 | | rnghmsubcsetc.u |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ 𝑉) |
22 | 21 | ad3antrrr 726 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑈 ∈ 𝑉) |
23 | | eqid 2738 |
. . . . 5
⊢
(comp‘𝐶) =
(comp‘𝐶) |
24 | | rnghmsubcsetc.b |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) |
25 | 24 | eleq2d 2824 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Rng ∩ 𝑈))) |
26 | | elinel2 4126 |
. . . . . . . . 9
⊢ (𝑥 ∈ (Rng ∩ 𝑈) → 𝑥 ∈ 𝑈) |
27 | 25, 26 | syl6bi 252 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝑈)) |
28 | 27 | imp 406 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝑈) |
29 | 28 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑥 ∈ 𝑈) |
30 | 29 | adantr 480 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑥 ∈ 𝑈) |
31 | 24 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ (Rng ∩ 𝑈))) |
32 | | elinel2 4126 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (Rng ∩ 𝑈) → 𝑦 ∈ 𝑈) |
33 | 31, 32 | syl6bi 252 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝑈)) |
34 | 33 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝑈)) |
35 | 34 | com12 32 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐵 → ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑦 ∈ 𝑈)) |
36 | 35 | adantr 480 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑦 ∈ 𝑈)) |
37 | 36 | impcom 407 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝑈) |
38 | 37 | adantr 480 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑦 ∈ 𝑈) |
39 | 24 | eleq2d 2824 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ (Rng ∩ 𝑈))) |
40 | | elinel2 4126 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (Rng ∩ 𝑈) → 𝑧 ∈ 𝑈) |
41 | 39, 40 | syl6bi 252 |
. . . . . . . . 9
⊢ (𝜑 → (𝑧 ∈ 𝐵 → 𝑧 ∈ 𝑈)) |
42 | 41 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑧 ∈ 𝐵 → 𝑧 ∈ 𝑈)) |
43 | 42 | adantld 490 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ 𝑈)) |
44 | 43 | imp 406 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝑈) |
45 | 44 | adantr 480 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑧 ∈ 𝑈) |
46 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝑥) =
(Base‘𝑥) |
47 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝑦) =
(Base‘𝑦) |
48 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝑧) =
(Base‘𝑧) |
49 | | simprl 767 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ 𝐵 ∧ (𝜑 ∧ 𝑥 ∈ 𝐵)) → 𝜑) |
50 | 49 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∈ 𝐵 ∧ (𝜑 ∧ 𝑥 ∈ 𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝜑) |
51 | 11 | anim1i 614 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
52 | 51 | ancoms 458 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ 𝐵 ∧ (𝜑 ∧ 𝑥 ∈ 𝐵)) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
53 | 52 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∈ 𝐵 ∧ (𝜑 ∧ 𝑥 ∈ 𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
54 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∈ 𝐵 ∧ (𝜑 ∧ 𝑥 ∈ 𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓 ∈ (𝑥𝐻𝑦)) |
55 | 50, 53, 54, 16 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ 𝐵 ∧ (𝜑 ∧ 𝑥 ∈ 𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓 ∈ (𝑥 RngHomo 𝑦)) |
56 | 46, 47 | rnghmf 45345 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ (𝑥 RngHomo 𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)) |
57 | 55, 56 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ 𝐵 ∧ (𝜑 ∧ 𝑥 ∈ 𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)) |
58 | 57 | ex 412 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝐵 ∧ (𝜑 ∧ 𝑥 ∈ 𝐵)) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))) |
59 | 58 | ex 412 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐵 → ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)))) |
60 | 59 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)))) |
61 | 60 | impcom 407 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))) |
62 | 61 | com12 32 |
. . . . . . 7
⊢ (𝑓 ∈ (𝑥𝐻𝑦) → (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))) |
63 | 62 | adantr 480 |
. . . . . 6
⊢ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))) |
64 | 63 | impcom 407 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)) |
65 | 9 | 3expa 1116 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔 ∈ (𝑦 RngHomo 𝑧)) |
66 | 47, 48 | rnghmf 45345 |
. . . . . . . . . 10
⊢ (𝑔 ∈ (𝑦 RngHomo 𝑧) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧)) |
67 | 65, 66 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧)) |
68 | 67 | ex 412 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑔 ∈ (𝑦𝐻𝑧) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧))) |
69 | 68 | adantlr 711 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑔 ∈ (𝑦𝐻𝑧) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧))) |
70 | 69 | adantld 490 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧))) |
71 | 70 | imp 406 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧)) |
72 | 20, 22, 23, 30, 38, 45, 46, 47, 48, 64, 71 | estrcco 17762 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔 ∘ 𝑓)) |
73 | 8 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵))) |
74 | 73 | oveqdr 7283 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥𝐻𝑧) = (𝑥( RngHomo ↾ (𝐵 × 𝐵))𝑧)) |
75 | | ovres 7416 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑥( RngHomo ↾ (𝐵 × 𝐵))𝑧) = (𝑥 RngHomo 𝑧)) |
76 | 75 | ad2ant2l 742 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥( RngHomo ↾ (𝐵 × 𝐵))𝑧) = (𝑥 RngHomo 𝑧)) |
77 | 74, 76 | eqtrd 2778 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥𝐻𝑧) = (𝑥 RngHomo 𝑧)) |
78 | 77 | adantr 480 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥𝐻𝑧) = (𝑥 RngHomo 𝑧)) |
79 | 19, 72, 78 | 3eltr4d 2854 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
80 | 79 | ralrimivva 3114 |
. 2
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
81 | 80 | ralrimivva 3114 |
1
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |