MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnghmsubcsetclem2 Structured version   Visualization version   GIF version

Theorem rnghmsubcsetclem2 20548
Description: Lemma 2 for rnghmsubcsetc 20549. (Contributed by AV, 9-Mar-2020.)
Hypotheses
Ref Expression
rnghmsubcsetc.c 𝐶 = (ExtStrCat‘𝑈)
rnghmsubcsetc.u (𝜑𝑈𝑉)
rnghmsubcsetc.b (𝜑𝐵 = (Rng ∩ 𝑈))
rnghmsubcsetc.h (𝜑𝐻 = ( RngHom ↾ (𝐵 × 𝐵)))
Assertion
Ref Expression
rnghmsubcsetclem2 ((𝜑𝑥𝐵) → ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))
Distinct variable groups:   𝐵,𝑓,𝑔,𝑥,𝑦,𝑧   𝐶,𝑓,𝑔,𝑥,𝑦,𝑧   𝑓,𝐻,𝑔,𝑥,𝑦,𝑧   𝑥,𝑈,𝑦   𝜑,𝑓,𝑔,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑈(𝑧,𝑓,𝑔)   𝑉(𝑥,𝑦,𝑧,𝑓,𝑔)

Proof of Theorem rnghmsubcsetclem2
StepHypRef Expression
1 simpl 482 . . . . . . . 8 ((𝜑𝑥𝐵) → 𝜑)
21adantr 480 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝜑)
32adantr 480 . . . . . 6 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝜑)
4 simpr 484 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑦𝐵𝑧𝐵))
54adantr 480 . . . . . 6 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑦𝐵𝑧𝐵))
6 simpr 484 . . . . . . 7 ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔 ∈ (𝑦𝐻𝑧))
76adantl 481 . . . . . 6 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 ∈ (𝑦𝐻𝑧))
8 rnghmsubcsetc.h . . . . . . 7 (𝜑𝐻 = ( RngHom ↾ (𝐵 × 𝐵)))
98rnghmresel 20536 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔 ∈ (𝑦 RngHom 𝑧))
103, 5, 7, 9syl3anc 1373 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 ∈ (𝑦 RngHom 𝑧))
11 simpr 484 . . . . . . . 8 ((𝜑𝑥𝐵) → 𝑥𝐵)
12 simpl 482 . . . . . . . 8 ((𝑦𝐵𝑧𝐵) → 𝑦𝐵)
1311, 12anim12i 613 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑥𝐵𝑦𝐵))
1413adantr 480 . . . . . 6 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥𝐵𝑦𝐵))
15 simprl 770 . . . . . 6 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 ∈ (𝑥𝐻𝑦))
168rnghmresel 20536 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓 ∈ (𝑥 RngHom 𝑦))
173, 14, 15, 16syl3anc 1373 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 ∈ (𝑥 RngHom 𝑦))
18 rnghmco 20373 . . . . 5 ((𝑔 ∈ (𝑦 RngHom 𝑧) ∧ 𝑓 ∈ (𝑥 RngHom 𝑦)) → (𝑔𝑓) ∈ (𝑥 RngHom 𝑧))
1910, 17, 18syl2anc 584 . . . 4 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔𝑓) ∈ (𝑥 RngHom 𝑧))
20 rnghmsubcsetc.c . . . . 5 𝐶 = (ExtStrCat‘𝑈)
21 rnghmsubcsetc.u . . . . . 6 (𝜑𝑈𝑉)
2221ad3antrrr 730 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑈𝑉)
23 eqid 2730 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
24 rnghmsubcsetc.b . . . . . . . . . 10 (𝜑𝐵 = (Rng ∩ 𝑈))
2524eleq2d 2815 . . . . . . . . 9 (𝜑 → (𝑥𝐵𝑥 ∈ (Rng ∩ 𝑈)))
26 elinel2 4168 . . . . . . . . 9 (𝑥 ∈ (Rng ∩ 𝑈) → 𝑥𝑈)
2725, 26biimtrdi 253 . . . . . . . 8 (𝜑 → (𝑥𝐵𝑥𝑈))
2827imp 406 . . . . . . 7 ((𝜑𝑥𝐵) → 𝑥𝑈)
2928adantr 480 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑥𝑈)
3029adantr 480 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑥𝑈)
3124eleq2d 2815 . . . . . . . . . . 11 (𝜑 → (𝑦𝐵𝑦 ∈ (Rng ∩ 𝑈)))
32 elinel2 4168 . . . . . . . . . . 11 (𝑦 ∈ (Rng ∩ 𝑈) → 𝑦𝑈)
3331, 32biimtrdi 253 . . . . . . . . . 10 (𝜑 → (𝑦𝐵𝑦𝑈))
3433adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑦𝐵𝑦𝑈))
3534com12 32 . . . . . . . 8 (𝑦𝐵 → ((𝜑𝑥𝐵) → 𝑦𝑈))
3635adantr 480 . . . . . . 7 ((𝑦𝐵𝑧𝐵) → ((𝜑𝑥𝐵) → 𝑦𝑈))
3736impcom 407 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑦𝑈)
3837adantr 480 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑦𝑈)
3924eleq2d 2815 . . . . . . . . . 10 (𝜑 → (𝑧𝐵𝑧 ∈ (Rng ∩ 𝑈)))
40 elinel2 4168 . . . . . . . . . 10 (𝑧 ∈ (Rng ∩ 𝑈) → 𝑧𝑈)
4139, 40biimtrdi 253 . . . . . . . . 9 (𝜑 → (𝑧𝐵𝑧𝑈))
4241adantr 480 . . . . . . . 8 ((𝜑𝑥𝐵) → (𝑧𝐵𝑧𝑈))
4342adantld 490 . . . . . . 7 ((𝜑𝑥𝐵) → ((𝑦𝐵𝑧𝐵) → 𝑧𝑈))
4443imp 406 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑧𝑈)
4544adantr 480 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑧𝑈)
46 eqid 2730 . . . . 5 (Base‘𝑥) = (Base‘𝑥)
47 eqid 2730 . . . . 5 (Base‘𝑦) = (Base‘𝑦)
48 eqid 2730 . . . . 5 (Base‘𝑧) = (Base‘𝑧)
49 simprl 770 . . . . . . . . . . . . . . 15 ((𝑦𝐵 ∧ (𝜑𝑥𝐵)) → 𝜑)
5049adantr 480 . . . . . . . . . . . . . 14 (((𝑦𝐵 ∧ (𝜑𝑥𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝜑)
5111anim1i 615 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → (𝑥𝐵𝑦𝐵))
5251ancoms 458 . . . . . . . . . . . . . . 15 ((𝑦𝐵 ∧ (𝜑𝑥𝐵)) → (𝑥𝐵𝑦𝐵))
5352adantr 480 . . . . . . . . . . . . . 14 (((𝑦𝐵 ∧ (𝜑𝑥𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → (𝑥𝐵𝑦𝐵))
54 simpr 484 . . . . . . . . . . . . . 14 (((𝑦𝐵 ∧ (𝜑𝑥𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓 ∈ (𝑥𝐻𝑦))
5550, 53, 54, 16syl3anc 1373 . . . . . . . . . . . . 13 (((𝑦𝐵 ∧ (𝜑𝑥𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓 ∈ (𝑥 RngHom 𝑦))
5646, 47rnghmf 20364 . . . . . . . . . . . . 13 (𝑓 ∈ (𝑥 RngHom 𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))
5755, 56syl 17 . . . . . . . . . . . 12 (((𝑦𝐵 ∧ (𝜑𝑥𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))
5857ex 412 . . . . . . . . . . 11 ((𝑦𝐵 ∧ (𝜑𝑥𝐵)) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)))
5958ex 412 . . . . . . . . . 10 (𝑦𝐵 → ((𝜑𝑥𝐵) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))))
6059adantr 480 . . . . . . . . 9 ((𝑦𝐵𝑧𝐵) → ((𝜑𝑥𝐵) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))))
6160impcom 407 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)))
6261com12 32 . . . . . . 7 (𝑓 ∈ (𝑥𝐻𝑦) → (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)))
6362adantr 480 . . . . . 6 ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)))
6463impcom 407 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))
6593expa 1118 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔 ∈ (𝑦 RngHom 𝑧))
6647, 48rnghmf 20364 . . . . . . . . . 10 (𝑔 ∈ (𝑦 RngHom 𝑧) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧))
6765, 66syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧))
6867ex 412 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑔 ∈ (𝑦𝐻𝑧) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧)))
6968adantlr 715 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑔 ∈ (𝑦𝐻𝑧) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧)))
7069adantld 490 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧)))
7170imp 406 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧))
7220, 22, 23, 30, 38, 45, 46, 47, 48, 64, 71estrcco 18098 . . . 4 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔𝑓))
738adantr 480 . . . . . . 7 ((𝜑𝑥𝐵) → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵)))
7473oveqdr 7418 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑥𝐻𝑧) = (𝑥( RngHom ↾ (𝐵 × 𝐵))𝑧))
75 ovres 7558 . . . . . . 7 ((𝑥𝐵𝑧𝐵) → (𝑥( RngHom ↾ (𝐵 × 𝐵))𝑧) = (𝑥 RngHom 𝑧))
7675ad2ant2l 746 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑥( RngHom ↾ (𝐵 × 𝐵))𝑧) = (𝑥 RngHom 𝑧))
7774, 76eqtrd 2765 . . . . 5 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑥𝐻𝑧) = (𝑥 RngHom 𝑧))
7877adantr 480 . . . 4 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥𝐻𝑧) = (𝑥 RngHom 𝑧))
7919, 72, 783eltr4d 2844 . . 3 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))
8079ralrimivva 3181 . 2 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))
8180ralrimivva 3181 1 ((𝜑𝑥𝐵) → ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  cin 3916  cop 4598   × cxp 5639  cres 5643  ccom 5645  wf 6510  cfv 6514  (class class class)co 7390  Basecbs 17186  compcco 17239  ExtStrCatcestrc 18090  Rngcrng 20068   RngHom crnghm 20350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-hom 17251  df-cco 17252  df-0g 17411  df-estrc 18091  df-mgm 18574  df-mgmhm 18626  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-grp 18875  df-ghm 19152  df-abl 19720  df-mgp 20057  df-rng 20069  df-rnghm 20352
This theorem is referenced by:  rnghmsubcsetc  20549
  Copyright terms: Public domain W3C validator