Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnghmsubcsetclem2 Structured version   Visualization version   GIF version

Theorem rnghmsubcsetclem2 45545
Description: Lemma 2 for rnghmsubcsetc 45546. (Contributed by AV, 9-Mar-2020.)
Hypotheses
Ref Expression
rnghmsubcsetc.c 𝐶 = (ExtStrCat‘𝑈)
rnghmsubcsetc.u (𝜑𝑈𝑉)
rnghmsubcsetc.b (𝜑𝐵 = (Rng ∩ 𝑈))
rnghmsubcsetc.h (𝜑𝐻 = ( RngHomo ↾ (𝐵 × 𝐵)))
Assertion
Ref Expression
rnghmsubcsetclem2 ((𝜑𝑥𝐵) → ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))
Distinct variable groups:   𝐵,𝑓,𝑔,𝑥,𝑦,𝑧   𝐶,𝑓,𝑔,𝑥,𝑦,𝑧   𝑓,𝐻,𝑔,𝑥,𝑦,𝑧   𝑥,𝑈,𝑦   𝜑,𝑓,𝑔,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑈(𝑧,𝑓,𝑔)   𝑉(𝑥,𝑦,𝑧,𝑓,𝑔)

Proof of Theorem rnghmsubcsetclem2
StepHypRef Expression
1 simpl 483 . . . . . . . 8 ((𝜑𝑥𝐵) → 𝜑)
21adantr 481 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝜑)
32adantr 481 . . . . . 6 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝜑)
4 simpr 485 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑦𝐵𝑧𝐵))
54adantr 481 . . . . . 6 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑦𝐵𝑧𝐵))
6 simpr 485 . . . . . . 7 ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔 ∈ (𝑦𝐻𝑧))
76adantl 482 . . . . . 6 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 ∈ (𝑦𝐻𝑧))
8 rnghmsubcsetc.h . . . . . . 7 (𝜑𝐻 = ( RngHomo ↾ (𝐵 × 𝐵)))
98rnghmresel 45533 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔 ∈ (𝑦 RngHomo 𝑧))
103, 5, 7, 9syl3anc 1370 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 ∈ (𝑦 RngHomo 𝑧))
11 simpr 485 . . . . . . . 8 ((𝜑𝑥𝐵) → 𝑥𝐵)
12 simpl 483 . . . . . . . 8 ((𝑦𝐵𝑧𝐵) → 𝑦𝐵)
1311, 12anim12i 613 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑥𝐵𝑦𝐵))
1413adantr 481 . . . . . 6 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥𝐵𝑦𝐵))
15 simprl 768 . . . . . 6 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 ∈ (𝑥𝐻𝑦))
168rnghmresel 45533 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓 ∈ (𝑥 RngHomo 𝑦))
173, 14, 15, 16syl3anc 1370 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 ∈ (𝑥 RngHomo 𝑦))
18 rnghmco 45476 . . . . 5 ((𝑔 ∈ (𝑦 RngHomo 𝑧) ∧ 𝑓 ∈ (𝑥 RngHomo 𝑦)) → (𝑔𝑓) ∈ (𝑥 RngHomo 𝑧))
1910, 17, 18syl2anc 584 . . . 4 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔𝑓) ∈ (𝑥 RngHomo 𝑧))
20 rnghmsubcsetc.c . . . . 5 𝐶 = (ExtStrCat‘𝑈)
21 rnghmsubcsetc.u . . . . . 6 (𝜑𝑈𝑉)
2221ad3antrrr 727 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑈𝑉)
23 eqid 2739 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
24 rnghmsubcsetc.b . . . . . . . . . 10 (𝜑𝐵 = (Rng ∩ 𝑈))
2524eleq2d 2825 . . . . . . . . 9 (𝜑 → (𝑥𝐵𝑥 ∈ (Rng ∩ 𝑈)))
26 elinel2 4131 . . . . . . . . 9 (𝑥 ∈ (Rng ∩ 𝑈) → 𝑥𝑈)
2725, 26syl6bi 252 . . . . . . . 8 (𝜑 → (𝑥𝐵𝑥𝑈))
2827imp 407 . . . . . . 7 ((𝜑𝑥𝐵) → 𝑥𝑈)
2928adantr 481 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑥𝑈)
3029adantr 481 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑥𝑈)
3124eleq2d 2825 . . . . . . . . . . 11 (𝜑 → (𝑦𝐵𝑦 ∈ (Rng ∩ 𝑈)))
32 elinel2 4131 . . . . . . . . . . 11 (𝑦 ∈ (Rng ∩ 𝑈) → 𝑦𝑈)
3331, 32syl6bi 252 . . . . . . . . . 10 (𝜑 → (𝑦𝐵𝑦𝑈))
3433adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑦𝐵𝑦𝑈))
3534com12 32 . . . . . . . 8 (𝑦𝐵 → ((𝜑𝑥𝐵) → 𝑦𝑈))
3635adantr 481 . . . . . . 7 ((𝑦𝐵𝑧𝐵) → ((𝜑𝑥𝐵) → 𝑦𝑈))
3736impcom 408 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑦𝑈)
3837adantr 481 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑦𝑈)
3924eleq2d 2825 . . . . . . . . . 10 (𝜑 → (𝑧𝐵𝑧 ∈ (Rng ∩ 𝑈)))
40 elinel2 4131 . . . . . . . . . 10 (𝑧 ∈ (Rng ∩ 𝑈) → 𝑧𝑈)
4139, 40syl6bi 252 . . . . . . . . 9 (𝜑 → (𝑧𝐵𝑧𝑈))
4241adantr 481 . . . . . . . 8 ((𝜑𝑥𝐵) → (𝑧𝐵𝑧𝑈))
4342adantld 491 . . . . . . 7 ((𝜑𝑥𝐵) → ((𝑦𝐵𝑧𝐵) → 𝑧𝑈))
4443imp 407 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑧𝑈)
4544adantr 481 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑧𝑈)
46 eqid 2739 . . . . 5 (Base‘𝑥) = (Base‘𝑥)
47 eqid 2739 . . . . 5 (Base‘𝑦) = (Base‘𝑦)
48 eqid 2739 . . . . 5 (Base‘𝑧) = (Base‘𝑧)
49 simprl 768 . . . . . . . . . . . . . . 15 ((𝑦𝐵 ∧ (𝜑𝑥𝐵)) → 𝜑)
5049adantr 481 . . . . . . . . . . . . . 14 (((𝑦𝐵 ∧ (𝜑𝑥𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝜑)
5111anim1i 615 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → (𝑥𝐵𝑦𝐵))
5251ancoms 459 . . . . . . . . . . . . . . 15 ((𝑦𝐵 ∧ (𝜑𝑥𝐵)) → (𝑥𝐵𝑦𝐵))
5352adantr 481 . . . . . . . . . . . . . 14 (((𝑦𝐵 ∧ (𝜑𝑥𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → (𝑥𝐵𝑦𝐵))
54 simpr 485 . . . . . . . . . . . . . 14 (((𝑦𝐵 ∧ (𝜑𝑥𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓 ∈ (𝑥𝐻𝑦))
5550, 53, 54, 16syl3anc 1370 . . . . . . . . . . . . 13 (((𝑦𝐵 ∧ (𝜑𝑥𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓 ∈ (𝑥 RngHomo 𝑦))
5646, 47rnghmf 45468 . . . . . . . . . . . . 13 (𝑓 ∈ (𝑥 RngHomo 𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))
5755, 56syl 17 . . . . . . . . . . . 12 (((𝑦𝐵 ∧ (𝜑𝑥𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))
5857ex 413 . . . . . . . . . . 11 ((𝑦𝐵 ∧ (𝜑𝑥𝐵)) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)))
5958ex 413 . . . . . . . . . 10 (𝑦𝐵 → ((𝜑𝑥𝐵) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))))
6059adantr 481 . . . . . . . . 9 ((𝑦𝐵𝑧𝐵) → ((𝜑𝑥𝐵) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))))
6160impcom 408 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)))
6261com12 32 . . . . . . 7 (𝑓 ∈ (𝑥𝐻𝑦) → (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)))
6362adantr 481 . . . . . 6 ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)))
6463impcom 408 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))
6593expa 1117 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔 ∈ (𝑦 RngHomo 𝑧))
6647, 48rnghmf 45468 . . . . . . . . . 10 (𝑔 ∈ (𝑦 RngHomo 𝑧) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧))
6765, 66syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧))
6867ex 413 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑔 ∈ (𝑦𝐻𝑧) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧)))
6968adantlr 712 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑔 ∈ (𝑦𝐻𝑧) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧)))
7069adantld 491 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧)))
7170imp 407 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧))
7220, 22, 23, 30, 38, 45, 46, 47, 48, 64, 71estrcco 17855 . . . 4 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔𝑓))
738adantr 481 . . . . . . 7 ((𝜑𝑥𝐵) → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵)))
7473oveqdr 7312 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑥𝐻𝑧) = (𝑥( RngHomo ↾ (𝐵 × 𝐵))𝑧))
75 ovres 7447 . . . . . . 7 ((𝑥𝐵𝑧𝐵) → (𝑥( RngHomo ↾ (𝐵 × 𝐵))𝑧) = (𝑥 RngHomo 𝑧))
7675ad2ant2l 743 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑥( RngHomo ↾ (𝐵 × 𝐵))𝑧) = (𝑥 RngHomo 𝑧))
7774, 76eqtrd 2779 . . . . 5 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑥𝐻𝑧) = (𝑥 RngHomo 𝑧))
7877adantr 481 . . . 4 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥𝐻𝑧) = (𝑥 RngHomo 𝑧))
7919, 72, 783eltr4d 2855 . . 3 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))
8079ralrimivva 3124 . 2 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))
8180ralrimivva 3124 1 ((𝜑𝑥𝐵) → ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2107  wral 3065  cin 3887  cop 4568   × cxp 5588  cres 5592  ccom 5594  wf 6433  cfv 6437  (class class class)co 7284  Basecbs 16921  compcco 16983  ExtStrCatcestrc 17847  Rngcrng 45443   RngHomo crngh 45454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-1st 7840  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-er 8507  df-map 8626  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-z 12329  df-dec 12447  df-uz 12592  df-fz 13249  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-plusg 16984  df-hom 16995  df-cco 16996  df-0g 17161  df-estrc 17848  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-mhm 18439  df-grp 18589  df-ghm 18841  df-abl 19398  df-mgp 19730  df-mgmhm 45344  df-rng0 45444  df-rnghomo 45456
This theorem is referenced by:  rnghmsubcsetc  45546
  Copyright terms: Public domain W3C validator