Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngcbas Structured version   Visualization version   GIF version

Theorem rngcbas 46863
Description: Set of objects of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.)
Hypotheses
Ref Expression
rngcbas.c ๐ถ = (RngCatโ€˜๐‘ˆ)
rngcbas.b ๐ต = (Baseโ€˜๐ถ)
rngcbas.u (๐œ‘ โ†’ ๐‘ˆ โˆˆ ๐‘‰)
Assertion
Ref Expression
rngcbas (๐œ‘ โ†’ ๐ต = (๐‘ˆ โˆฉ Rng))

Proof of Theorem rngcbas
StepHypRef Expression
1 rngcbas.c . . . 4 ๐ถ = (RngCatโ€˜๐‘ˆ)
2 rngcbas.u . . . 4 (๐œ‘ โ†’ ๐‘ˆ โˆˆ ๐‘‰)
3 eqidd 2734 . . . 4 (๐œ‘ โ†’ (๐‘ˆ โˆฉ Rng) = (๐‘ˆ โˆฉ Rng))
4 eqidd 2734 . . . 4 (๐œ‘ โ†’ ( RngHomo โ†พ ((๐‘ˆ โˆฉ Rng) ร— (๐‘ˆ โˆฉ Rng))) = ( RngHomo โ†พ ((๐‘ˆ โˆฉ Rng) ร— (๐‘ˆ โˆฉ Rng))))
51, 2, 3, 4rngcval 46860 . . 3 (๐œ‘ โ†’ ๐ถ = ((ExtStrCatโ€˜๐‘ˆ) โ†พcat ( RngHomo โ†พ ((๐‘ˆ โˆฉ Rng) ร— (๐‘ˆ โˆฉ Rng)))))
65fveq2d 6896 . 2 (๐œ‘ โ†’ (Baseโ€˜๐ถ) = (Baseโ€˜((ExtStrCatโ€˜๐‘ˆ) โ†พcat ( RngHomo โ†พ ((๐‘ˆ โˆฉ Rng) ร— (๐‘ˆ โˆฉ Rng))))))
7 rngcbas.b . . 3 ๐ต = (Baseโ€˜๐ถ)
87a1i 11 . 2 (๐œ‘ โ†’ ๐ต = (Baseโ€˜๐ถ))
9 eqid 2733 . . 3 ((ExtStrCatโ€˜๐‘ˆ) โ†พcat ( RngHomo โ†พ ((๐‘ˆ โˆฉ Rng) ร— (๐‘ˆ โˆฉ Rng)))) = ((ExtStrCatโ€˜๐‘ˆ) โ†พcat ( RngHomo โ†พ ((๐‘ˆ โˆฉ Rng) ร— (๐‘ˆ โˆฉ Rng))))
10 eqid 2733 . . 3 (Baseโ€˜(ExtStrCatโ€˜๐‘ˆ)) = (Baseโ€˜(ExtStrCatโ€˜๐‘ˆ))
11 fvexd 6907 . . 3 (๐œ‘ โ†’ (ExtStrCatโ€˜๐‘ˆ) โˆˆ V)
123, 4rnghmresfn 46861 . . 3 (๐œ‘ โ†’ ( RngHomo โ†พ ((๐‘ˆ โˆฉ Rng) ร— (๐‘ˆ โˆฉ Rng))) Fn ((๐‘ˆ โˆฉ Rng) ร— (๐‘ˆ โˆฉ Rng)))
13 inss1 4229 . . . 4 (๐‘ˆ โˆฉ Rng) โŠ† ๐‘ˆ
14 eqid 2733 . . . . 5 (ExtStrCatโ€˜๐‘ˆ) = (ExtStrCatโ€˜๐‘ˆ)
1514, 2estrcbas 18076 . . . 4 (๐œ‘ โ†’ ๐‘ˆ = (Baseโ€˜(ExtStrCatโ€˜๐‘ˆ)))
1613, 15sseqtrid 4035 . . 3 (๐œ‘ โ†’ (๐‘ˆ โˆฉ Rng) โŠ† (Baseโ€˜(ExtStrCatโ€˜๐‘ˆ)))
179, 10, 11, 12, 16rescbas 17776 . 2 (๐œ‘ โ†’ (๐‘ˆ โˆฉ Rng) = (Baseโ€˜((ExtStrCatโ€˜๐‘ˆ) โ†พcat ( RngHomo โ†พ ((๐‘ˆ โˆฉ Rng) ร— (๐‘ˆ โˆฉ Rng))))))
186, 8, 173eqtr4d 2783 1 (๐œ‘ โ†’ ๐ต = (๐‘ˆ โˆฉ Rng))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   = wceq 1542   โˆˆ wcel 2107  Vcvv 3475   โˆฉ cin 3948   ร— cxp 5675   โ†พ cres 5679  โ€˜cfv 6544  (class class class)co 7409  Basecbs 17144   โ†พcat cresc 17755  ExtStrCatcestrc 18073  Rngcrng 46648   RngHomo crngh 46683  RngCatcrngc 46855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-fz 13485  df-struct 17080  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-hom 17221  df-cco 17222  df-resc 17758  df-estrc 18074  df-rnghomo 46685  df-rngc 46857
This theorem is referenced by:  rngchomfval  46864  rngchomfeqhom  46867  rngccofval  46868  rnghmsubcsetclem1  46873  rngcid  46877  rngcsect  46878  rngcifuestrc  46895  funcrngcsetc  46896  funcrngcsetcALT  46897  zrinitorngc  46898  zrtermorngc  46899  zrzeroorngc  46900  rhmsubcrngclem1  46925  rhmsubcrngc  46927  rhmsubclem3  46986  rhmsubc  46988
  Copyright terms: Public domain W3C validator