![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngcbas | Structured version Visualization version GIF version |
Description: Set of objects of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
Ref | Expression |
---|---|
rngcbas.c | โข ๐ถ = (RngCatโ๐) |
rngcbas.b | โข ๐ต = (Baseโ๐ถ) |
rngcbas.u | โข (๐ โ ๐ โ ๐) |
Ref | Expression |
---|---|
rngcbas | โข (๐ โ ๐ต = (๐ โฉ Rng)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcbas.c | . . . 4 โข ๐ถ = (RngCatโ๐) | |
2 | rngcbas.u | . . . 4 โข (๐ โ ๐ โ ๐) | |
3 | eqidd 2734 | . . . 4 โข (๐ โ (๐ โฉ Rng) = (๐ โฉ Rng)) | |
4 | eqidd 2734 | . . . 4 โข (๐ โ ( RngHomo โพ ((๐ โฉ Rng) ร (๐ โฉ Rng))) = ( RngHomo โพ ((๐ โฉ Rng) ร (๐ โฉ Rng)))) | |
5 | 1, 2, 3, 4 | rngcval 46860 | . . 3 โข (๐ โ ๐ถ = ((ExtStrCatโ๐) โพcat ( RngHomo โพ ((๐ โฉ Rng) ร (๐ โฉ Rng))))) |
6 | 5 | fveq2d 6896 | . 2 โข (๐ โ (Baseโ๐ถ) = (Baseโ((ExtStrCatโ๐) โพcat ( RngHomo โพ ((๐ โฉ Rng) ร (๐ โฉ Rng)))))) |
7 | rngcbas.b | . . 3 โข ๐ต = (Baseโ๐ถ) | |
8 | 7 | a1i 11 | . 2 โข (๐ โ ๐ต = (Baseโ๐ถ)) |
9 | eqid 2733 | . . 3 โข ((ExtStrCatโ๐) โพcat ( RngHomo โพ ((๐ โฉ Rng) ร (๐ โฉ Rng)))) = ((ExtStrCatโ๐) โพcat ( RngHomo โพ ((๐ โฉ Rng) ร (๐ โฉ Rng)))) | |
10 | eqid 2733 | . . 3 โข (Baseโ(ExtStrCatโ๐)) = (Baseโ(ExtStrCatโ๐)) | |
11 | fvexd 6907 | . . 3 โข (๐ โ (ExtStrCatโ๐) โ V) | |
12 | 3, 4 | rnghmresfn 46861 | . . 3 โข (๐ โ ( RngHomo โพ ((๐ โฉ Rng) ร (๐ โฉ Rng))) Fn ((๐ โฉ Rng) ร (๐ โฉ Rng))) |
13 | inss1 4229 | . . . 4 โข (๐ โฉ Rng) โ ๐ | |
14 | eqid 2733 | . . . . 5 โข (ExtStrCatโ๐) = (ExtStrCatโ๐) | |
15 | 14, 2 | estrcbas 18076 | . . . 4 โข (๐ โ ๐ = (Baseโ(ExtStrCatโ๐))) |
16 | 13, 15 | sseqtrid 4035 | . . 3 โข (๐ โ (๐ โฉ Rng) โ (Baseโ(ExtStrCatโ๐))) |
17 | 9, 10, 11, 12, 16 | rescbas 17776 | . 2 โข (๐ โ (๐ โฉ Rng) = (Baseโ((ExtStrCatโ๐) โพcat ( RngHomo โพ ((๐ โฉ Rng) ร (๐ โฉ Rng)))))) |
18 | 6, 8, 17 | 3eqtr4d 2783 | 1 โข (๐ โ ๐ต = (๐ โฉ Rng)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1542 โ wcel 2107 Vcvv 3475 โฉ cin 3948 ร cxp 5675 โพ cres 5679 โcfv 6544 (class class class)co 7409 Basecbs 17144 โพcat cresc 17755 ExtStrCatcestrc 18073 Rngcrng 46648 RngHomo crngh 46683 RngCatcrngc 46855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-fz 13485 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-hom 17221 df-cco 17222 df-resc 17758 df-estrc 18074 df-rnghomo 46685 df-rngc 46857 |
This theorem is referenced by: rngchomfval 46864 rngchomfeqhom 46867 rngccofval 46868 rnghmsubcsetclem1 46873 rngcid 46877 rngcsect 46878 rngcifuestrc 46895 funcrngcsetc 46896 funcrngcsetcALT 46897 zrinitorngc 46898 zrtermorngc 46899 zrzeroorngc 46900 rhmsubcrngclem1 46925 rhmsubcrngc 46927 rhmsubclem3 46986 rhmsubc 46988 |
Copyright terms: Public domain | W3C validator |