MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnghmresfn Structured version   Visualization version   GIF version

Theorem rnghmresfn 20504
Description: The class of non-unital ring homomorphisms restricted to subsets of non-unital rings is a function. (Contributed by AV, 4-Mar-2020.)
Hypotheses
Ref Expression
rnghmresfn.b (𝜑𝐵 = (𝑈 ∩ Rng))
rnghmresfn.h (𝜑𝐻 = ( RngHom ↾ (𝐵 × 𝐵)))
Assertion
Ref Expression
rnghmresfn (𝜑𝐻 Fn (𝐵 × 𝐵))

Proof of Theorem rnghmresfn
StepHypRef Expression
1 rnghmfn 20324 . . 3 RngHom Fn (Rng × Rng)
2 rnghmresfn.b . . . . 5 (𝜑𝐵 = (𝑈 ∩ Rng))
3 inss2 4189 . . . . 5 (𝑈 ∩ Rng) ⊆ Rng
42, 3eqsstrdi 3980 . . . 4 (𝜑𝐵 ⊆ Rng)
5 xpss12 5634 . . . 4 ((𝐵 ⊆ Rng ∧ 𝐵 ⊆ Rng) → (𝐵 × 𝐵) ⊆ (Rng × Rng))
64, 4, 5syl2anc 584 . . 3 (𝜑 → (𝐵 × 𝐵) ⊆ (Rng × Rng))
7 fnssres 6605 . . 3 (( RngHom Fn (Rng × Rng) ∧ (𝐵 × 𝐵) ⊆ (Rng × Rng)) → ( RngHom ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵))
81, 6, 7sylancr 587 . 2 (𝜑 → ( RngHom ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵))
9 rnghmresfn.h . . 3 (𝜑𝐻 = ( RngHom ↾ (𝐵 × 𝐵)))
109fneq1d 6575 . 2 (𝜑 → (𝐻 Fn (𝐵 × 𝐵) ↔ ( RngHom ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵)))
118, 10mpbird 257 1 (𝜑𝐻 Fn (𝐵 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cin 3902  wss 3903   × cxp 5617  cres 5621   Fn wfn 6477  Rngcrng 20037   RngHom crnghm 20319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-rnghm 20321
This theorem is referenced by:  rngcbas  20506  rngchomfval  20507  rngchomfeqhom  20510  rngccofval  20511  dfrngc2  20513  rnghmsubcsetc  20518  rngcid  20520  funcrngcsetc  20525
  Copyright terms: Public domain W3C validator