Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnghmresfn Structured version   Visualization version   GIF version

Theorem rnghmresfn 45409
Description: The class of non-unital ring homomorphisms restricted to subsets of non-unital rings is a function. (Contributed by AV, 4-Mar-2020.)
Hypotheses
Ref Expression
rnghmresfn.b (𝜑𝐵 = (𝑈 ∩ Rng))
rnghmresfn.h (𝜑𝐻 = ( RngHomo ↾ (𝐵 × 𝐵)))
Assertion
Ref Expression
rnghmresfn (𝜑𝐻 Fn (𝐵 × 𝐵))

Proof of Theorem rnghmresfn
StepHypRef Expression
1 rnghmfn 45336 . . 3 RngHomo Fn (Rng × Rng)
2 rnghmresfn.b . . . . 5 (𝜑𝐵 = (𝑈 ∩ Rng))
3 inss2 4160 . . . . 5 (𝑈 ∩ Rng) ⊆ Rng
42, 3eqsstrdi 3971 . . . 4 (𝜑𝐵 ⊆ Rng)
5 xpss12 5595 . . . 4 ((𝐵 ⊆ Rng ∧ 𝐵 ⊆ Rng) → (𝐵 × 𝐵) ⊆ (Rng × Rng))
64, 4, 5syl2anc 583 . . 3 (𝜑 → (𝐵 × 𝐵) ⊆ (Rng × Rng))
7 fnssres 6539 . . 3 (( RngHomo Fn (Rng × Rng) ∧ (𝐵 × 𝐵) ⊆ (Rng × Rng)) → ( RngHomo ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵))
81, 6, 7sylancr 586 . 2 (𝜑 → ( RngHomo ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵))
9 rnghmresfn.h . . 3 (𝜑𝐻 = ( RngHomo ↾ (𝐵 × 𝐵)))
109fneq1d 6510 . 2 (𝜑 → (𝐻 Fn (𝐵 × 𝐵) ↔ ( RngHomo ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵)))
118, 10mpbird 256 1 (𝜑𝐻 Fn (𝐵 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cin 3882  wss 3883   × cxp 5578  cres 5582   Fn wfn 6413  Rngcrng 45320   RngHomo crngh 45331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-rnghomo 45333
This theorem is referenced by:  rngcbas  45411  rngchomfval  45412  rngchomfeqhom  45415  rngccofval  45416  dfrngc2  45418  rnghmsubcsetc  45423  rngcid  45425  funcrngcsetc  45444
  Copyright terms: Public domain W3C validator