| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnghmresfn | Structured version Visualization version GIF version | ||
| Description: The class of non-unital ring homomorphisms restricted to subsets of non-unital rings is a function. (Contributed by AV, 4-Mar-2020.) |
| Ref | Expression |
|---|---|
| rnghmresfn.b | ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
| rnghmresfn.h | ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) |
| Ref | Expression |
|---|---|
| rnghmresfn | ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnghmfn 20324 | . . 3 ⊢ RngHom Fn (Rng × Rng) | |
| 2 | rnghmresfn.b | . . . . 5 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) | |
| 3 | inss2 4197 | . . . . 5 ⊢ (𝑈 ∩ Rng) ⊆ Rng | |
| 4 | 2, 3 | eqsstrdi 3988 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ Rng) |
| 5 | xpss12 5646 | . . . 4 ⊢ ((𝐵 ⊆ Rng ∧ 𝐵 ⊆ Rng) → (𝐵 × 𝐵) ⊆ (Rng × Rng)) | |
| 6 | 4, 4, 5 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐵 × 𝐵) ⊆ (Rng × Rng)) |
| 7 | fnssres 6623 | . . 3 ⊢ (( RngHom Fn (Rng × Rng) ∧ (𝐵 × 𝐵) ⊆ (Rng × Rng)) → ( RngHom ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵)) | |
| 8 | 1, 6, 7 | sylancr 587 | . 2 ⊢ (𝜑 → ( RngHom ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵)) |
| 9 | rnghmresfn.h | . . 3 ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) | |
| 10 | 9 | fneq1d 6593 | . 2 ⊢ (𝜑 → (𝐻 Fn (𝐵 × 𝐵) ↔ ( RngHom ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵))) |
| 11 | 8, 10 | mpbird 257 | 1 ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cin 3910 ⊆ wss 3911 × cxp 5629 ↾ cres 5633 Fn wfn 6494 Rngcrng 20037 RngHom crnghm 20319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-rnghm 20321 |
| This theorem is referenced by: rngcbas 20506 rngchomfval 20507 rngchomfeqhom 20510 rngccofval 20511 dfrngc2 20513 rnghmsubcsetc 20518 rngcid 20520 funcrngcsetc 20525 |
| Copyright terms: Public domain | W3C validator |