| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnghmresfn | Structured version Visualization version GIF version | ||
| Description: The class of non-unital ring homomorphisms restricted to subsets of non-unital rings is a function. (Contributed by AV, 4-Mar-2020.) |
| Ref | Expression |
|---|---|
| rnghmresfn.b | ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
| rnghmresfn.h | ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) |
| Ref | Expression |
|---|---|
| rnghmresfn | ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnghmfn 20407 | . . 3 ⊢ RngHom Fn (Rng × Rng) | |
| 2 | rnghmresfn.b | . . . . 5 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) | |
| 3 | inss2 4218 | . . . . 5 ⊢ (𝑈 ∩ Rng) ⊆ Rng | |
| 4 | 2, 3 | eqsstrdi 4008 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ Rng) |
| 5 | xpss12 5680 | . . . 4 ⊢ ((𝐵 ⊆ Rng ∧ 𝐵 ⊆ Rng) → (𝐵 × 𝐵) ⊆ (Rng × Rng)) | |
| 6 | 4, 4, 5 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐵 × 𝐵) ⊆ (Rng × Rng)) |
| 7 | fnssres 6671 | . . 3 ⊢ (( RngHom Fn (Rng × Rng) ∧ (𝐵 × 𝐵) ⊆ (Rng × Rng)) → ( RngHom ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵)) | |
| 8 | 1, 6, 7 | sylancr 587 | . 2 ⊢ (𝜑 → ( RngHom ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵)) |
| 9 | rnghmresfn.h | . . 3 ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) | |
| 10 | 9 | fneq1d 6641 | . 2 ⊢ (𝜑 → (𝐻 Fn (𝐵 × 𝐵) ↔ ( RngHom ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵))) |
| 11 | 8, 10 | mpbird 257 | 1 ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∩ cin 3930 ⊆ wss 3931 × cxp 5663 ↾ cres 5667 Fn wfn 6536 Rngcrng 20117 RngHom crnghm 20402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-rnghm 20404 |
| This theorem is referenced by: rngcbas 20589 rngchomfval 20590 rngchomfeqhom 20593 rngccofval 20594 dfrngc2 20596 rnghmsubcsetc 20601 rngcid 20603 funcrngcsetc 20608 |
| Copyright terms: Public domain | W3C validator |