MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnghmresfn Structured version   Visualization version   GIF version

Theorem rnghmresfn 20535
Description: The class of non-unital ring homomorphisms restricted to subsets of non-unital rings is a function. (Contributed by AV, 4-Mar-2020.)
Hypotheses
Ref Expression
rnghmresfn.b (𝜑𝐵 = (𝑈 ∩ Rng))
rnghmresfn.h (𝜑𝐻 = ( RngHom ↾ (𝐵 × 𝐵)))
Assertion
Ref Expression
rnghmresfn (𝜑𝐻 Fn (𝐵 × 𝐵))

Proof of Theorem rnghmresfn
StepHypRef Expression
1 rnghmfn 20355 . . 3 RngHom Fn (Rng × Rng)
2 rnghmresfn.b . . . . 5 (𝜑𝐵 = (𝑈 ∩ Rng))
3 inss2 4204 . . . . 5 (𝑈 ∩ Rng) ⊆ Rng
42, 3eqsstrdi 3994 . . . 4 (𝜑𝐵 ⊆ Rng)
5 xpss12 5656 . . . 4 ((𝐵 ⊆ Rng ∧ 𝐵 ⊆ Rng) → (𝐵 × 𝐵) ⊆ (Rng × Rng))
64, 4, 5syl2anc 584 . . 3 (𝜑 → (𝐵 × 𝐵) ⊆ (Rng × Rng))
7 fnssres 6644 . . 3 (( RngHom Fn (Rng × Rng) ∧ (𝐵 × 𝐵) ⊆ (Rng × Rng)) → ( RngHom ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵))
81, 6, 7sylancr 587 . 2 (𝜑 → ( RngHom ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵))
9 rnghmresfn.h . . 3 (𝜑𝐻 = ( RngHom ↾ (𝐵 × 𝐵)))
109fneq1d 6614 . 2 (𝜑 → (𝐻 Fn (𝐵 × 𝐵) ↔ ( RngHom ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵)))
118, 10mpbird 257 1 (𝜑𝐻 Fn (𝐵 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cin 3916  wss 3917   × cxp 5639  cres 5643   Fn wfn 6509  Rngcrng 20068   RngHom crnghm 20350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-rnghm 20352
This theorem is referenced by:  rngcbas  20537  rngchomfval  20538  rngchomfeqhom  20541  rngccofval  20542  dfrngc2  20544  rnghmsubcsetc  20549  rngcid  20551  funcrngcsetc  20556
  Copyright terms: Public domain W3C validator