Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnghmresfn | Structured version Visualization version GIF version |
Description: The class of non-unital ring homomorphisms restricted to subsets of non-unital rings is a function. (Contributed by AV, 4-Mar-2020.) |
Ref | Expression |
---|---|
rnghmresfn.b | ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
rnghmresfn.h | ⊢ (𝜑 → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵))) |
Ref | Expression |
---|---|
rnghmresfn | ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnghmfn 44874 | . . 3 ⊢ RngHomo Fn (Rng × Rng) | |
2 | rnghmresfn.b | . . . . 5 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) | |
3 | inss2 4135 | . . . . 5 ⊢ (𝑈 ∩ Rng) ⊆ Rng | |
4 | 2, 3 | eqsstrdi 3947 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ Rng) |
5 | xpss12 5540 | . . . 4 ⊢ ((𝐵 ⊆ Rng ∧ 𝐵 ⊆ Rng) → (𝐵 × 𝐵) ⊆ (Rng × Rng)) | |
6 | 4, 4, 5 | syl2anc 588 | . . 3 ⊢ (𝜑 → (𝐵 × 𝐵) ⊆ (Rng × Rng)) |
7 | fnssres 6454 | . . 3 ⊢ (( RngHomo Fn (Rng × Rng) ∧ (𝐵 × 𝐵) ⊆ (Rng × Rng)) → ( RngHomo ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵)) | |
8 | 1, 6, 7 | sylancr 591 | . 2 ⊢ (𝜑 → ( RngHomo ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵)) |
9 | rnghmresfn.h | . . 3 ⊢ (𝜑 → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵))) | |
10 | 9 | fneq1d 6428 | . 2 ⊢ (𝜑 → (𝐻 Fn (𝐵 × 𝐵) ↔ ( RngHomo ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵))) |
11 | 8, 10 | mpbird 260 | 1 ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∩ cin 3858 ⊆ wss 3859 × cxp 5523 ↾ cres 5527 Fn wfn 6331 Rngcrng 44858 RngHomo crngh 44869 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-fv 6344 df-ov 7154 df-oprab 7155 df-mpo 7156 df-1st 7694 df-2nd 7695 df-rnghomo 44871 |
This theorem is referenced by: rngcbas 44949 rngchomfval 44950 rngchomfeqhom 44953 rngccofval 44954 dfrngc2 44956 rnghmsubcsetc 44961 rngcid 44963 funcrngcsetc 44982 |
Copyright terms: Public domain | W3C validator |