| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnghmresfn | Structured version Visualization version GIF version | ||
| Description: The class of non-unital ring homomorphisms restricted to subsets of non-unital rings is a function. (Contributed by AV, 4-Mar-2020.) |
| Ref | Expression |
|---|---|
| rnghmresfn.b | ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
| rnghmresfn.h | ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) |
| Ref | Expression |
|---|---|
| rnghmresfn | ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnghmfn 20404 | . . 3 ⊢ RngHom Fn (Rng × Rng) | |
| 2 | rnghmresfn.b | . . . . 5 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) | |
| 3 | inss2 4218 | . . . . 5 ⊢ (𝑈 ∩ Rng) ⊆ Rng | |
| 4 | 2, 3 | eqsstrdi 4008 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ Rng) |
| 5 | xpss12 5674 | . . . 4 ⊢ ((𝐵 ⊆ Rng ∧ 𝐵 ⊆ Rng) → (𝐵 × 𝐵) ⊆ (Rng × Rng)) | |
| 6 | 4, 4, 5 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐵 × 𝐵) ⊆ (Rng × Rng)) |
| 7 | fnssres 6666 | . . 3 ⊢ (( RngHom Fn (Rng × Rng) ∧ (𝐵 × 𝐵) ⊆ (Rng × Rng)) → ( RngHom ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵)) | |
| 8 | 1, 6, 7 | sylancr 587 | . 2 ⊢ (𝜑 → ( RngHom ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵)) |
| 9 | rnghmresfn.h | . . 3 ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) | |
| 10 | 9 | fneq1d 6636 | . 2 ⊢ (𝜑 → (𝐻 Fn (𝐵 × 𝐵) ↔ ( RngHom ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵))) |
| 11 | 8, 10 | mpbird 257 | 1 ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cin 3930 ⊆ wss 3931 × cxp 5657 ↾ cres 5661 Fn wfn 6531 Rngcrng 20117 RngHom crnghm 20399 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-rnghm 20401 |
| This theorem is referenced by: rngcbas 20586 rngchomfval 20587 rngchomfeqhom 20590 rngccofval 20591 dfrngc2 20593 rnghmsubcsetc 20598 rngcid 20600 funcrngcsetc 20605 |
| Copyright terms: Public domain | W3C validator |