| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnssi | Structured version Visualization version GIF version | ||
| Description: Subclass inference for range. (Contributed by Peter Mazsa, 24-Sep-2022.) |
| Ref | Expression |
|---|---|
| rnssi.1 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| rnssi | ⊢ ran 𝐴 ⊆ ran 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnssi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | rnss 5903 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ran 𝐴 ⊆ ran 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3914 ran crn 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-cnv 5646 df-dm 5648 df-rn 5649 |
| This theorem is referenced by: rnresss 5988 ssrnres 6151 fssres 6726 smores 8321 rnttrcl 9675 brdom4 10483 smobeth 10539 nqerf 10883 catcoppccl 18079 lern 18550 gsumzres 19839 gsumzaddlem 19851 gsumzadd 19852 dprdfadd 19952 txkgen 23539 dvlog 26560 perpln2 28638 pfxrn2 32861 fixssrn 35895 cnvrcl0 43614 |
| Copyright terms: Public domain | W3C validator |