MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnssi Structured version   Visualization version   GIF version

Theorem rnssi 5940
Description: Subclass inference for range. (Contributed by Peter Mazsa, 24-Sep-2022.)
Hypothesis
Ref Expression
rnssi.1 𝐴𝐵
Assertion
Ref Expression
rnssi ran 𝐴 ⊆ ran 𝐵

Proof of Theorem rnssi
StepHypRef Expression
1 rnssi.1 . 2 𝐴𝐵
2 rnss 5939 . 2 (𝐴𝐵 → ran 𝐴 ⊆ ran 𝐵)
31, 2ax-mp 5 1 ran 𝐴 ⊆ ran 𝐵
Colors of variables: wff setvar class
Syntax hints:  wss 3949  ran crn 5678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-cnv 5685  df-dm 5687  df-rn 5688
This theorem is referenced by:  rnresss  6018  ssrnres  6178  fssres  6758  smores  8352  rnttrcl  9717  brdom4  10525  smobeth  10581  nqerf  10925  catcoppccl  18067  catcoppcclOLD  18068  lern  18544  gsumzres  19777  gsumzaddlem  19789  gsumzadd  19790  dprdfadd  19890  txkgen  23156  dvlog  26159  perpln2  27962  pfxrn2  32106  fixssrn  34879  cnvrcl0  42376
  Copyright terms: Public domain W3C validator