MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnssi Structured version   Visualization version   GIF version

Theorem rnssi 5965
Description: Subclass inference for range. (Contributed by Peter Mazsa, 24-Sep-2022.)
Hypothesis
Ref Expression
rnssi.1 𝐴𝐵
Assertion
Ref Expression
rnssi ran 𝐴 ⊆ ran 𝐵

Proof of Theorem rnssi
StepHypRef Expression
1 rnssi.1 . 2 𝐴𝐵
2 rnss 5964 . 2 (𝐴𝐵 → ran 𝐴 ⊆ ran 𝐵)
31, 2ax-mp 5 1 ran 𝐴 ⊆ ran 𝐵
Colors of variables: wff setvar class
Syntax hints:  wss 3976  ran crn 5701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-cnv 5708  df-dm 5710  df-rn 5711
This theorem is referenced by:  rnresss  6046  ssrnres  6209  fssres  6787  smores  8408  rnttrcl  9791  brdom4  10599  smobeth  10655  nqerf  10999  catcoppccl  18184  catcoppcclOLD  18185  lern  18661  gsumzres  19951  gsumzaddlem  19963  gsumzadd  19964  dprdfadd  20064  txkgen  23681  dvlog  26711  perpln2  28737  pfxrn2  32906  fixssrn  35871  cnvrcl0  43587
  Copyright terms: Public domain W3C validator