![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnssi | Structured version Visualization version GIF version |
Description: Subclass inference for range. (Contributed by Peter Mazsa, 24-Sep-2022.) |
Ref | Expression |
---|---|
rnssi.1 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
rnssi | ⊢ ran 𝐴 ⊆ ran 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnssi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | rnss 5964 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ran 𝐴 ⊆ ran 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3976 ran crn 5701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-cnv 5708 df-dm 5710 df-rn 5711 |
This theorem is referenced by: rnresss 6046 ssrnres 6209 fssres 6787 smores 8408 rnttrcl 9791 brdom4 10599 smobeth 10655 nqerf 10999 catcoppccl 18184 catcoppcclOLD 18185 lern 18661 gsumzres 19951 gsumzaddlem 19963 gsumzadd 19964 dprdfadd 20064 txkgen 23681 dvlog 26711 perpln2 28737 pfxrn2 32906 fixssrn 35871 cnvrcl0 43587 |
Copyright terms: Public domain | W3C validator |