MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnssi Structured version   Visualization version   GIF version

Theorem rnssi 5838
Description: Subclass inference for range. (Contributed by Peter Mazsa, 24-Sep-2022.)
Hypothesis
Ref Expression
rnssi.1 𝐴𝐵
Assertion
Ref Expression
rnssi ran 𝐴 ⊆ ran 𝐵

Proof of Theorem rnssi
StepHypRef Expression
1 rnssi.1 . 2 𝐴𝐵
2 rnss 5837 . 2 (𝐴𝐵 → ran 𝐴 ⊆ ran 𝐵)
31, 2ax-mp 5 1 ran 𝐴 ⊆ ran 𝐵
Colors of variables: wff setvar class
Syntax hints:  wss 3883  ran crn 5581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-cnv 5588  df-dm 5590  df-rn 5591
This theorem is referenced by:  rnresss  5916  ssrnres  6070  fssres  6624  smores  8154  brdom4  10217  smobeth  10273  nqerf  10617  catcoppccl  17748  catcoppcclOLD  17749  lern  18224  gsumzres  19425  gsumzaddlem  19437  gsumzadd  19438  dprdfadd  19538  txkgen  22711  dvlog  25711  perpln2  26976  pfxrn2  31116  rnttrcl  33708  fixssrn  34136  cnvrcl0  41122
  Copyright terms: Public domain W3C validator