| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnssi | Structured version Visualization version GIF version | ||
| Description: Subclass inference for range. (Contributed by Peter Mazsa, 24-Sep-2022.) |
| Ref | Expression |
|---|---|
| rnssi.1 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| rnssi | ⊢ ran 𝐴 ⊆ ran 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnssi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | rnss 5878 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ran 𝐴 ⊆ ran 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3897 ran crn 5615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-cnv 5622 df-dm 5624 df-rn 5625 |
| This theorem is referenced by: rnresss 5965 ssrnres 6125 fssres 6689 smores 8272 rnttrcl 9612 brdom4 10421 smobeth 10477 nqerf 10821 catcoppccl 18024 lern 18497 gsumzres 19821 gsumzaddlem 19833 gsumzadd 19834 dprdfadd 19934 txkgen 23567 dvlog 26587 perpln2 28689 pfxrn2 32921 fixssrn 35949 cnvrcl0 43666 |
| Copyright terms: Public domain | W3C validator |