| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnssi | Structured version Visualization version GIF version | ||
| Description: Subclass inference for range. (Contributed by Peter Mazsa, 24-Sep-2022.) |
| Ref | Expression |
|---|---|
| rnssi.1 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| rnssi | ⊢ ran 𝐴 ⊆ ran 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnssi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | rnss 5881 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ran 𝐴 ⊆ ran 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3903 ran crn 5620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-cnv 5627 df-dm 5629 df-rn 5630 |
| This theorem is referenced by: rnresss 5968 ssrnres 6127 fssres 6690 smores 8275 rnttrcl 9618 brdom4 10424 smobeth 10480 nqerf 10824 catcoppccl 18024 lern 18497 gsumzres 19788 gsumzaddlem 19800 gsumzadd 19801 dprdfadd 19901 txkgen 23537 dvlog 26558 perpln2 28656 pfxrn2 32881 fixssrn 35881 cnvrcl0 43598 |
| Copyright terms: Public domain | W3C validator |