Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnssi | Structured version Visualization version GIF version |
Description: Subclass inference for range. (Contributed by Peter Mazsa, 24-Sep-2022.) |
Ref | Expression |
---|---|
rnssi.1 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
rnssi | ⊢ ran 𝐴 ⊆ ran 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnssi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | rnss 5845 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ran 𝐴 ⊆ ran 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3891 ran crn 5589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-cnv 5596 df-dm 5598 df-rn 5599 |
This theorem is referenced by: rnresss 5924 ssrnres 6078 fssres 6636 smores 8167 rnttrcl 9441 brdom4 10270 smobeth 10326 nqerf 10670 catcoppccl 17813 catcoppcclOLD 17814 lern 18290 gsumzres 19491 gsumzaddlem 19503 gsumzadd 19504 dprdfadd 19604 txkgen 22784 dvlog 25787 perpln2 27053 pfxrn2 31193 fixssrn 34188 cnvrcl0 41186 |
Copyright terms: Public domain | W3C validator |