| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnssi | Structured version Visualization version GIF version | ||
| Description: Subclass inference for range. (Contributed by Peter Mazsa, 24-Sep-2022.) |
| Ref | Expression |
|---|---|
| rnssi.1 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| rnssi | ⊢ ran 𝐴 ⊆ ran 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnssi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | rnss 5892 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ran 𝐴 ⊆ ran 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3911 ran crn 5632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-cnv 5639 df-dm 5641 df-rn 5642 |
| This theorem is referenced by: rnresss 5977 ssrnres 6139 fssres 6708 smores 8298 rnttrcl 9651 brdom4 10459 smobeth 10515 nqerf 10859 catcoppccl 18055 lern 18526 gsumzres 19815 gsumzaddlem 19827 gsumzadd 19828 dprdfadd 19928 txkgen 23515 dvlog 26536 perpln2 28614 pfxrn2 32834 fixssrn 35868 cnvrcl0 43587 |
| Copyright terms: Public domain | W3C validator |