| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnssi | Structured version Visualization version GIF version | ||
| Description: Subclass inference for range. (Contributed by Peter Mazsa, 24-Sep-2022.) |
| Ref | Expression |
|---|---|
| rnssi.1 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| rnssi | ⊢ ran 𝐴 ⊆ ran 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnssi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | rnss 5906 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ran 𝐴 ⊆ ran 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3917 ran crn 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-cnv 5649 df-dm 5651 df-rn 5652 |
| This theorem is referenced by: rnresss 5991 ssrnres 6154 fssres 6729 smores 8324 rnttrcl 9682 brdom4 10490 smobeth 10546 nqerf 10890 catcoppccl 18086 lern 18557 gsumzres 19846 gsumzaddlem 19858 gsumzadd 19859 dprdfadd 19959 txkgen 23546 dvlog 26567 perpln2 28645 pfxrn2 32868 fixssrn 35902 cnvrcl0 43621 |
| Copyright terms: Public domain | W3C validator |