MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnssi Structured version   Visualization version   GIF version

Theorem rnssi 5893
Description: Subclass inference for range. (Contributed by Peter Mazsa, 24-Sep-2022.)
Hypothesis
Ref Expression
rnssi.1 𝐴𝐵
Assertion
Ref Expression
rnssi ran 𝐴 ⊆ ran 𝐵

Proof of Theorem rnssi
StepHypRef Expression
1 rnssi.1 . 2 𝐴𝐵
2 rnss 5892 . 2 (𝐴𝐵 → ran 𝐴 ⊆ ran 𝐵)
31, 2ax-mp 5 1 ran 𝐴 ⊆ ran 𝐵
Colors of variables: wff setvar class
Syntax hints:  wss 3911  ran crn 5632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-cnv 5639  df-dm 5641  df-rn 5642
This theorem is referenced by:  rnresss  5977  ssrnres  6139  fssres  6708  smores  8298  rnttrcl  9651  brdom4  10459  smobeth  10515  nqerf  10859  catcoppccl  18055  lern  18526  gsumzres  19815  gsumzaddlem  19827  gsumzadd  19828  dprdfadd  19928  txkgen  23515  dvlog  26536  perpln2  28614  pfxrn2  32834  fixssrn  35868  cnvrcl0  43587
  Copyright terms: Public domain W3C validator