Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resima2 | Structured version Visualization version GIF version |
Description: Image under a restricted class. (Contributed by FL, 31-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.) |
Ref | Expression |
---|---|
resima2 | ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) “ 𝐵) = (𝐴 “ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqin2 4135 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐶 ∩ 𝐵) = 𝐵) | |
2 | reseq2 5851 | . . . 4 ⊢ ((𝐶 ∩ 𝐵) = 𝐵 → (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 ↾ 𝐵)) | |
3 | 1, 2 | sylbi 220 | . . 3 ⊢ (𝐵 ⊆ 𝐶 → (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 ↾ 𝐵)) |
4 | 3 | rneqd 5812 | . 2 ⊢ (𝐵 ⊆ 𝐶 → ran (𝐴 ↾ (𝐶 ∩ 𝐵)) = ran (𝐴 ↾ 𝐵)) |
5 | df-ima 5569 | . . 3 ⊢ ((𝐴 ↾ 𝐶) “ 𝐵) = ran ((𝐴 ↾ 𝐶) ↾ 𝐵) | |
6 | resres 5869 | . . . 4 ⊢ ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶 ∩ 𝐵)) | |
7 | 6 | rneqi 5811 | . . 3 ⊢ ran ((𝐴 ↾ 𝐶) ↾ 𝐵) = ran (𝐴 ↾ (𝐶 ∩ 𝐵)) |
8 | 5, 7 | eqtri 2765 | . 2 ⊢ ((𝐴 ↾ 𝐶) “ 𝐵) = ran (𝐴 ↾ (𝐶 ∩ 𝐵)) |
9 | df-ima 5569 | . 2 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
10 | 4, 8, 9 | 3eqtr4g 2803 | 1 ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) “ 𝐵) = (𝐴 “ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∩ cin 3870 ⊆ wss 3871 ran crn 5557 ↾ cres 5558 “ cima 5559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-12 2175 ax-ext 2708 ax-sep 5197 ax-nul 5204 ax-pr 5327 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3070 df-v 3415 df-dif 3874 df-un 3876 df-in 3878 df-ss 3888 df-nul 4243 df-if 4445 df-sn 4547 df-pr 4549 df-op 4553 df-br 5059 df-opab 5121 df-xp 5562 df-rel 5563 df-cnv 5564 df-dm 5566 df-rn 5567 df-res 5568 df-ima 5569 |
This theorem is referenced by: ressuppss 7930 ressuppssdif 7932 marypha1lem 9054 ackbij2lem3 9860 dmdprdsplit2lem 19437 cnpresti 22190 cnprest 22191 limcflf 24783 limcresi 24787 limciun 24796 efopnlem2 25550 pthhashvtx 32807 cvmopnlem 32958 cvmlift2lem9a 32983 naddcllem 33573 negsval 33865 poimirlem4 35523 limsupresre 42920 limsupresico 42924 liminfresico 42995 |
Copyright terms: Public domain | W3C validator |