MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resima2 Structured version   Visualization version   GIF version

Theorem resima2 5987
Description: Image under a restricted class. (Contributed by FL, 31-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.)
Assertion
Ref Expression
resima2 (𝐵𝐶 → ((𝐴𝐶) “ 𝐵) = (𝐴𝐵))

Proof of Theorem resima2
StepHypRef Expression
1 sseqin2 4186 . . . 4 (𝐵𝐶 ↔ (𝐶𝐵) = 𝐵)
2 reseq2 5945 . . . 4 ((𝐶𝐵) = 𝐵 → (𝐴 ↾ (𝐶𝐵)) = (𝐴𝐵))
31, 2sylbi 217 . . 3 (𝐵𝐶 → (𝐴 ↾ (𝐶𝐵)) = (𝐴𝐵))
43rneqd 5902 . 2 (𝐵𝐶 → ran (𝐴 ↾ (𝐶𝐵)) = ran (𝐴𝐵))
5 df-ima 5651 . . 3 ((𝐴𝐶) “ 𝐵) = ran ((𝐴𝐶) ↾ 𝐵)
6 resres 5963 . . . 4 ((𝐴𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶𝐵))
76rneqi 5901 . . 3 ran ((𝐴𝐶) ↾ 𝐵) = ran (𝐴 ↾ (𝐶𝐵))
85, 7eqtri 2752 . 2 ((𝐴𝐶) “ 𝐵) = ran (𝐴 ↾ (𝐶𝐵))
9 df-ima 5651 . 2 (𝐴𝐵) = ran (𝐴𝐵)
104, 8, 93eqtr4g 2789 1 (𝐵𝐶 → ((𝐴𝐶) “ 𝐵) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cin 3913  wss 3914  ran crn 5639  cres 5640  cima 5641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651
This theorem is referenced by:  ressuppss  8162  ressuppssdif  8164  naddcllem  8640  marypha1lem  9384  ackbij2lem3  10193  eqg0subgecsn  19129  dmdprdsplit2lem  19977  cnpresti  23175  cnprest  23176  limcflf  25782  limcresi  25786  limciun  25795  efopnlem2  26566  negsval  27931  pthhashvtx  35115  cvmopnlem  35265  cvmlift2lem9a  35290  poimirlem4  37618  limsupresre  45694  limsupresico  45698  liminfresico  45769  uhgrimisgrgric  47931
  Copyright terms: Public domain W3C validator