MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resima2 Structured version   Visualization version   GIF version

Theorem resima2 6033
Description: Image under a restricted class. (Contributed by FL, 31-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.)
Assertion
Ref Expression
resima2 (𝐵𝐶 → ((𝐴𝐶) “ 𝐵) = (𝐴𝐵))

Proof of Theorem resima2
StepHypRef Expression
1 sseqin2 4222 . . . 4 (𝐵𝐶 ↔ (𝐶𝐵) = 𝐵)
2 reseq2 5991 . . . 4 ((𝐶𝐵) = 𝐵 → (𝐴 ↾ (𝐶𝐵)) = (𝐴𝐵))
31, 2sylbi 217 . . 3 (𝐵𝐶 → (𝐴 ↾ (𝐶𝐵)) = (𝐴𝐵))
43rneqd 5948 . 2 (𝐵𝐶 → ran (𝐴 ↾ (𝐶𝐵)) = ran (𝐴𝐵))
5 df-ima 5697 . . 3 ((𝐴𝐶) “ 𝐵) = ran ((𝐴𝐶) ↾ 𝐵)
6 resres 6009 . . . 4 ((𝐴𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶𝐵))
76rneqi 5947 . . 3 ran ((𝐴𝐶) ↾ 𝐵) = ran (𝐴 ↾ (𝐶𝐵))
85, 7eqtri 2764 . 2 ((𝐴𝐶) “ 𝐵) = ran (𝐴 ↾ (𝐶𝐵))
9 df-ima 5697 . 2 (𝐴𝐵) = ran (𝐴𝐵)
104, 8, 93eqtr4g 2801 1 (𝐵𝐶 → ((𝐴𝐶) “ 𝐵) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cin 3949  wss 3950  ran crn 5685  cres 5686  cima 5687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-xp 5690  df-rel 5691  df-cnv 5692  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697
This theorem is referenced by:  ressuppss  8209  ressuppssdif  8211  naddcllem  8715  marypha1lem  9474  ackbij2lem3  10281  eqg0subgecsn  19216  dmdprdsplit2lem  20066  cnpresti  23297  cnprest  23298  limcflf  25917  limcresi  25921  limciun  25930  efopnlem2  26700  negsval  28058  pthhashvtx  35134  cvmopnlem  35284  cvmlift2lem9a  35309  poimirlem4  37632  limsupresre  45716  limsupresico  45720  liminfresico  45791  uhgrimisgrgric  47904
  Copyright terms: Public domain W3C validator