| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resima2 | Structured version Visualization version GIF version | ||
| Description: Image under a restricted class. (Contributed by FL, 31-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.) |
| Ref | Expression |
|---|---|
| resima2 | ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) “ 𝐵) = (𝐴 “ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqin2 4172 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐶 ∩ 𝐵) = 𝐵) | |
| 2 | reseq2 5929 | . . . 4 ⊢ ((𝐶 ∩ 𝐵) = 𝐵 → (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 ↾ 𝐵)) | |
| 3 | 1, 2 | sylbi 217 | . . 3 ⊢ (𝐵 ⊆ 𝐶 → (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 ↾ 𝐵)) |
| 4 | 3 | rneqd 5884 | . 2 ⊢ (𝐵 ⊆ 𝐶 → ran (𝐴 ↾ (𝐶 ∩ 𝐵)) = ran (𝐴 ↾ 𝐵)) |
| 5 | df-ima 5634 | . . 3 ⊢ ((𝐴 ↾ 𝐶) “ 𝐵) = ran ((𝐴 ↾ 𝐶) ↾ 𝐵) | |
| 6 | resres 5947 | . . . 4 ⊢ ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶 ∩ 𝐵)) | |
| 7 | 6 | rneqi 5883 | . . 3 ⊢ ran ((𝐴 ↾ 𝐶) ↾ 𝐵) = ran (𝐴 ↾ (𝐶 ∩ 𝐵)) |
| 8 | 5, 7 | eqtri 2756 | . 2 ⊢ ((𝐴 ↾ 𝐶) “ 𝐵) = ran (𝐴 ↾ (𝐶 ∩ 𝐵)) |
| 9 | df-ima 5634 | . 2 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
| 10 | 4, 8, 9 | 3eqtr4g 2793 | 1 ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) “ 𝐵) = (𝐴 “ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∩ cin 3897 ⊆ wss 3898 ran crn 5622 ↾ cres 5623 “ cima 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 |
| This theorem is referenced by: ressuppss 8121 ressuppssdif 8123 naddcllem 8599 marypha1lem 9326 ackbij2lem3 10140 eqg0subgecsn 19113 dmdprdsplit2lem 19963 cnpresti 23206 cnprest 23207 limcflf 25812 limcresi 25816 limciun 25825 efopnlem2 26596 negsval 27970 pthhashvtx 35195 cvmopnlem 35345 cvmlift2lem9a 35370 poimirlem4 37687 limsupresre 45821 limsupresico 45825 liminfresico 45896 uhgrimisgrgric 48058 |
| Copyright terms: Public domain | W3C validator |