Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resima2 | Structured version Visualization version GIF version |
Description: Image under a restricted class. (Contributed by FL, 31-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.) |
Ref | Expression |
---|---|
resima2 | ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) “ 𝐵) = (𝐴 “ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqin2 4146 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐶 ∩ 𝐵) = 𝐵) | |
2 | reseq2 5875 | . . . 4 ⊢ ((𝐶 ∩ 𝐵) = 𝐵 → (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 ↾ 𝐵)) | |
3 | 1, 2 | sylbi 216 | . . 3 ⊢ (𝐵 ⊆ 𝐶 → (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 ↾ 𝐵)) |
4 | 3 | rneqd 5836 | . 2 ⊢ (𝐵 ⊆ 𝐶 → ran (𝐴 ↾ (𝐶 ∩ 𝐵)) = ran (𝐴 ↾ 𝐵)) |
5 | df-ima 5593 | . . 3 ⊢ ((𝐴 ↾ 𝐶) “ 𝐵) = ran ((𝐴 ↾ 𝐶) ↾ 𝐵) | |
6 | resres 5893 | . . . 4 ⊢ ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶 ∩ 𝐵)) | |
7 | 6 | rneqi 5835 | . . 3 ⊢ ran ((𝐴 ↾ 𝐶) ↾ 𝐵) = ran (𝐴 ↾ (𝐶 ∩ 𝐵)) |
8 | 5, 7 | eqtri 2766 | . 2 ⊢ ((𝐴 ↾ 𝐶) “ 𝐵) = ran (𝐴 ↾ (𝐶 ∩ 𝐵)) |
9 | df-ima 5593 | . 2 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
10 | 4, 8, 9 | 3eqtr4g 2804 | 1 ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) “ 𝐵) = (𝐴 “ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∩ cin 3882 ⊆ wss 3883 ran crn 5581 ↾ cres 5582 “ cima 5583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 |
This theorem is referenced by: ressuppss 7970 ressuppssdif 7972 marypha1lem 9122 ackbij2lem3 9928 dmdprdsplit2lem 19563 cnpresti 22347 cnprest 22348 limcflf 24950 limcresi 24954 limciun 24963 efopnlem2 25717 pthhashvtx 32989 cvmopnlem 33140 cvmlift2lem9a 33165 naddcllem 33758 negsval 34050 poimirlem4 35708 limsupresre 43127 limsupresico 43131 liminfresico 43202 |
Copyright terms: Public domain | W3C validator |