| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resima2 | Structured version Visualization version GIF version | ||
| Description: Image under a restricted class. (Contributed by FL, 31-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.) |
| Ref | Expression |
|---|---|
| resima2 | ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) “ 𝐵) = (𝐴 “ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqin2 4186 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐶 ∩ 𝐵) = 𝐵) | |
| 2 | reseq2 5945 | . . . 4 ⊢ ((𝐶 ∩ 𝐵) = 𝐵 → (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 ↾ 𝐵)) | |
| 3 | 1, 2 | sylbi 217 | . . 3 ⊢ (𝐵 ⊆ 𝐶 → (𝐴 ↾ (𝐶 ∩ 𝐵)) = (𝐴 ↾ 𝐵)) |
| 4 | 3 | rneqd 5902 | . 2 ⊢ (𝐵 ⊆ 𝐶 → ran (𝐴 ↾ (𝐶 ∩ 𝐵)) = ran (𝐴 ↾ 𝐵)) |
| 5 | df-ima 5651 | . . 3 ⊢ ((𝐴 ↾ 𝐶) “ 𝐵) = ran ((𝐴 ↾ 𝐶) ↾ 𝐵) | |
| 6 | resres 5963 | . . . 4 ⊢ ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶 ∩ 𝐵)) | |
| 7 | 6 | rneqi 5901 | . . 3 ⊢ ran ((𝐴 ↾ 𝐶) ↾ 𝐵) = ran (𝐴 ↾ (𝐶 ∩ 𝐵)) |
| 8 | 5, 7 | eqtri 2752 | . 2 ⊢ ((𝐴 ↾ 𝐶) “ 𝐵) = ran (𝐴 ↾ (𝐶 ∩ 𝐵)) |
| 9 | df-ima 5651 | . 2 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
| 10 | 4, 8, 9 | 3eqtr4g 2789 | 1 ⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) “ 𝐵) = (𝐴 “ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cin 3913 ⊆ wss 3914 ran crn 5639 ↾ cres 5640 “ cima 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: ressuppss 8162 ressuppssdif 8164 naddcllem 8640 marypha1lem 9384 ackbij2lem3 10193 eqg0subgecsn 19129 dmdprdsplit2lem 19977 cnpresti 23175 cnprest 23176 limcflf 25782 limcresi 25786 limciun 25795 efopnlem2 26566 negsval 27931 pthhashvtx 35115 cvmopnlem 35265 cvmlift2lem9a 35290 poimirlem4 37618 limsupresre 45694 limsupresico 45698 liminfresico 45769 uhgrimisgrgric 47931 |
| Copyright terms: Public domain | W3C validator |