MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resima2 Structured version   Visualization version   GIF version

Theorem resima2 6016
Description: Image under a restricted class. (Contributed by FL, 31-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.)
Assertion
Ref Expression
resima2 (𝐵𝐶 → ((𝐴𝐶) “ 𝐵) = (𝐴𝐵))

Proof of Theorem resima2
StepHypRef Expression
1 sseqin2 4215 . . . 4 (𝐵𝐶 ↔ (𝐶𝐵) = 𝐵)
2 reseq2 5976 . . . 4 ((𝐶𝐵) = 𝐵 → (𝐴 ↾ (𝐶𝐵)) = (𝐴𝐵))
31, 2sylbi 216 . . 3 (𝐵𝐶 → (𝐴 ↾ (𝐶𝐵)) = (𝐴𝐵))
43rneqd 5937 . 2 (𝐵𝐶 → ran (𝐴 ↾ (𝐶𝐵)) = ran (𝐴𝐵))
5 df-ima 5689 . . 3 ((𝐴𝐶) “ 𝐵) = ran ((𝐴𝐶) ↾ 𝐵)
6 resres 5994 . . . 4 ((𝐴𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶𝐵))
76rneqi 5936 . . 3 ran ((𝐴𝐶) ↾ 𝐵) = ran (𝐴 ↾ (𝐶𝐵))
85, 7eqtri 2759 . 2 ((𝐴𝐶) “ 𝐵) = ran (𝐴 ↾ (𝐶𝐵))
9 df-ima 5689 . 2 (𝐴𝐵) = ran (𝐴𝐵)
104, 8, 93eqtr4g 2796 1 (𝐵𝐶 → ((𝐴𝐶) “ 𝐵) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cin 3947  wss 3948  ran crn 5677  cres 5678  cima 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689
This theorem is referenced by:  ressuppss  8173  ressuppssdif  8175  naddcllem  8681  marypha1lem  9434  ackbij2lem3  10242  eqg0subgecsn  19119  dmdprdsplit2lem  19963  cnpresti  23111  cnprest  23112  limcflf  25729  limcresi  25733  limciun  25742  efopnlem2  26504  negsval  27850  pthhashvtx  34581  cvmopnlem  34732  cvmlift2lem9a  34757  poimirlem4  36955  limsupresre  44870  limsupresico  44874  liminfresico  44945
  Copyright terms: Public domain W3C validator