| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpssres | Structured version Visualization version GIF version | ||
| Description: Restriction of a constant function (or other Cartesian product). (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| Ref | Expression |
|---|---|
| xpssres | ⊢ (𝐶 ⊆ 𝐴 → ((𝐴 × 𝐵) ↾ 𝐶) = (𝐶 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5635 | . . 3 ⊢ ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴 × 𝐵) ∩ (𝐶 × V)) | |
| 2 | inxp 5778 | . . 3 ⊢ ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) | |
| 3 | inv1 4351 | . . . 4 ⊢ (𝐵 ∩ V) = 𝐵 | |
| 4 | 3 | xpeq2i 5650 | . . 3 ⊢ ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = ((𝐴 ∩ 𝐶) × 𝐵) |
| 5 | 1, 2, 4 | 3eqtri 2756 | . 2 ⊢ ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴 ∩ 𝐶) × 𝐵) |
| 6 | sseqin2 4176 | . . . 4 ⊢ (𝐶 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐶) = 𝐶) | |
| 7 | 6 | biimpi 216 | . . 3 ⊢ (𝐶 ⊆ 𝐴 → (𝐴 ∩ 𝐶) = 𝐶) |
| 8 | 7 | xpeq1d 5652 | . 2 ⊢ (𝐶 ⊆ 𝐴 → ((𝐴 ∩ 𝐶) × 𝐵) = (𝐶 × 𝐵)) |
| 9 | 5, 8 | eqtrid 2776 | 1 ⊢ (𝐶 ⊆ 𝐴 → ((𝐴 × 𝐵) ↾ 𝐶) = (𝐶 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Vcvv 3438 ∩ cin 3904 ⊆ wss 3905 × cxp 5621 ↾ cres 5625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-opab 5158 df-xp 5629 df-rel 5630 df-res 5635 |
| This theorem is referenced by: fparlem3 8054 fparlem4 8055 fpwwe2lem12 10555 pwssplit3 20983 cnconst2 23186 xkoccn 23522 tmdgsum 23998 dvcmul 25863 dvcmulf 25864 ply1gsumz 33543 lbsdiflsp0 33601 dvsconst 44306 dvsid 44307 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |