MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpssres Structured version   Visualization version   GIF version

Theorem xpssres 5954
Description: Restriction of a constant function (or other Cartesian product). (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
xpssres (𝐶𝐴 → ((𝐴 × 𝐵) ↾ 𝐶) = (𝐶 × 𝐵))

Proof of Theorem xpssres
StepHypRef Expression
1 df-res 5626 . . 3 ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴 × 𝐵) ∩ (𝐶 × V))
2 inxp 5768 . . 3 ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ((𝐴𝐶) × (𝐵 ∩ V))
3 inv1 4340 . . . 4 (𝐵 ∩ V) = 𝐵
43xpeq2i 5641 . . 3 ((𝐴𝐶) × (𝐵 ∩ V)) = ((𝐴𝐶) × 𝐵)
51, 2, 43eqtri 2768 . 2 ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴𝐶) × 𝐵)
6 sseqin2 4161 . . . 4 (𝐶𝐴 ↔ (𝐴𝐶) = 𝐶)
76biimpi 215 . . 3 (𝐶𝐴 → (𝐴𝐶) = 𝐶)
87xpeq1d 5643 . 2 (𝐶𝐴 → ((𝐴𝐶) × 𝐵) = (𝐶 × 𝐵))
95, 8eqtrid 2788 1 (𝐶𝐴 → ((𝐴 × 𝐵) ↾ 𝐶) = (𝐶 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  Vcvv 3441  cin 3896  wss 3897   × cxp 5612  cres 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pr 5369
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-sn 4573  df-pr 4575  df-op 4579  df-opab 5152  df-xp 5620  df-rel 5621  df-res 5626
This theorem is referenced by:  fparlem3  8014  fparlem4  8015  fpwwe2lem12  10491  pwssplit3  20421  cnconst2  22532  xkoccn  22868  tmdgsum  23344  dvcmul  25206  dvcmulf  25207  lbsdiflsp0  31946  dvsconst  42258  dvsid  42259  aacllem  46845
  Copyright terms: Public domain W3C validator