![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpssres | Structured version Visualization version GIF version |
Description: Restriction of a constant function (or other Cartesian product). (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
xpssres | ⊢ (𝐶 ⊆ 𝐴 → ((𝐴 × 𝐵) ↾ 𝐶) = (𝐶 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5626 | . . 3 ⊢ ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴 × 𝐵) ∩ (𝐶 × V)) | |
2 | inxp 5768 | . . 3 ⊢ ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) | |
3 | inv1 4340 | . . . 4 ⊢ (𝐵 ∩ V) = 𝐵 | |
4 | 3 | xpeq2i 5641 | . . 3 ⊢ ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = ((𝐴 ∩ 𝐶) × 𝐵) |
5 | 1, 2, 4 | 3eqtri 2768 | . 2 ⊢ ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴 ∩ 𝐶) × 𝐵) |
6 | sseqin2 4161 | . . . 4 ⊢ (𝐶 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐶) = 𝐶) | |
7 | 6 | biimpi 215 | . . 3 ⊢ (𝐶 ⊆ 𝐴 → (𝐴 ∩ 𝐶) = 𝐶) |
8 | 7 | xpeq1d 5643 | . 2 ⊢ (𝐶 ⊆ 𝐴 → ((𝐴 ∩ 𝐶) × 𝐵) = (𝐶 × 𝐵)) |
9 | 5, 8 | eqtrid 2788 | 1 ⊢ (𝐶 ⊆ 𝐴 → ((𝐴 × 𝐵) ↾ 𝐶) = (𝐶 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 Vcvv 3441 ∩ cin 3896 ⊆ wss 3897 × cxp 5612 ↾ cres 5616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-opab 5152 df-xp 5620 df-rel 5621 df-res 5626 |
This theorem is referenced by: fparlem3 8014 fparlem4 8015 fpwwe2lem12 10491 pwssplit3 20421 cnconst2 22532 xkoccn 22868 tmdgsum 23344 dvcmul 25206 dvcmulf 25207 lbsdiflsp0 31946 dvsconst 42258 dvsid 42259 aacllem 46845 |
Copyright terms: Public domain | W3C validator |