Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrextust | Structured version Visualization version GIF version |
Description: The uniformity of an extension of ℝ is the uniformity generated by its distance. (Contributed by Thierry Arnoux, 2-May-2018.) |
Ref | Expression |
---|---|
rrextust.b | ⊢ 𝐵 = (Base‘𝑅) |
rrextust.d | ⊢ 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵)) |
Ref | Expression |
---|---|
rrextust | ⊢ (𝑅 ∈ ℝExt → (UnifSt‘𝑅) = (metUnif‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrextust.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
2 | rrextust.d | . . . 4 ⊢ 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵)) | |
3 | eqid 2739 | . . . 4 ⊢ (ℤMod‘𝑅) = (ℤMod‘𝑅) | |
4 | 1, 2, 3 | isrrext 31929 | . . 3 ⊢ (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷)))) |
5 | 4 | simp3bi 1145 | . 2 ⊢ (𝑅 ∈ ℝExt → (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷))) |
6 | 5 | simprd 495 | 1 ⊢ (𝑅 ∈ ℝExt → (UnifSt‘𝑅) = (metUnif‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 × cxp 5586 ↾ cres 5590 ‘cfv 6430 0cc0 10855 Basecbs 16893 distcds 16952 DivRingcdr 19972 metUnifcmetu 20569 ℤModczlm 20683 chrcchr 20684 UnifStcuss 23386 CUnifSpccusp 23430 NrmRingcnrg 23716 NrmModcnlm 23717 ℝExt crrext 31923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-xp 5594 df-res 5600 df-iota 6388 df-fv 6438 df-rrext 31928 |
This theorem is referenced by: rrhfe 31941 rrhcne 31942 sitgclg 32288 |
Copyright terms: Public domain | W3C validator |