| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrextust | Structured version Visualization version GIF version | ||
| Description: The uniformity of an extension of ℝ is the uniformity generated by its distance. (Contributed by Thierry Arnoux, 2-May-2018.) |
| Ref | Expression |
|---|---|
| rrextust.b | ⊢ 𝐵 = (Base‘𝑅) |
| rrextust.d | ⊢ 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵)) |
| Ref | Expression |
|---|---|
| rrextust | ⊢ (𝑅 ∈ ℝExt → (UnifSt‘𝑅) = (metUnif‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrextust.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | rrextust.d | . . . 4 ⊢ 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵)) | |
| 3 | eqid 2734 | . . . 4 ⊢ (ℤMod‘𝑅) = (ℤMod‘𝑅) | |
| 4 | 1, 2, 3 | isrrext 33938 | . . 3 ⊢ (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷)))) |
| 5 | 4 | simp3bi 1147 | . 2 ⊢ (𝑅 ∈ ℝExt → (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷))) |
| 6 | 5 | simprd 495 | 1 ⊢ (𝑅 ∈ ℝExt → (UnifSt‘𝑅) = (metUnif‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 × cxp 5665 ↾ cres 5669 ‘cfv 6542 0cc0 11138 Basecbs 17230 distcds 17283 DivRingcdr 20698 metUnifcmetu 21318 ℤModczlm 21474 chrcchr 21475 UnifStcuss 24223 CUnifSpccusp 24266 NrmRingcnrg 24551 NrmModcnlm 24552 ℝExt crrext 33932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-xp 5673 df-res 5679 df-iota 6495 df-fv 6550 df-rrext 33937 |
| This theorem is referenced by: rrhfe 33950 rrhcne 33951 sitgclg 34281 |
| Copyright terms: Public domain | W3C validator |