Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrextust Structured version   Visualization version   GIF version

Theorem rrextust 34006
Description: The uniformity of an extension of is the uniformity generated by its distance. (Contributed by Thierry Arnoux, 2-May-2018.)
Hypotheses
Ref Expression
rrextust.b 𝐵 = (Base‘𝑅)
rrextust.d 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵))
Assertion
Ref Expression
rrextust (𝑅 ∈ ℝExt → (UnifSt‘𝑅) = (metUnif‘𝐷))

Proof of Theorem rrextust
StepHypRef Expression
1 rrextust.b . . . 4 𝐵 = (Base‘𝑅)
2 rrextust.d . . . 4 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵))
3 eqid 2730 . . . 4 (ℤMod‘𝑅) = (ℤMod‘𝑅)
41, 2, 3isrrext 33998 . . 3 (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷))))
54simp3bi 1147 . 2 (𝑅 ∈ ℝExt → (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷)))
65simprd 495 1 (𝑅 ∈ ℝExt → (UnifSt‘𝑅) = (metUnif‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   × cxp 5644  cres 5648  cfv 6519  0cc0 11086  Basecbs 17185  distcds 17235  DivRingcdr 20644  metUnifcmetu 21261  ℤModczlm 21416  chrcchr 21417  UnifStcuss 24147  CUnifSpccusp 24190  NrmRingcnrg 24473  NrmModcnlm 24474   ℝExt crrext 33992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-xp 5652  df-res 5658  df-iota 6472  df-fv 6527  df-rrext 33997
This theorem is referenced by:  rrhfe  34010  rrhcne  34011  sitgclg  34341
  Copyright terms: Public domain W3C validator