Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrextust Structured version   Visualization version   GIF version

Theorem rrextust 33985
Description: The uniformity of an extension of is the uniformity generated by its distance. (Contributed by Thierry Arnoux, 2-May-2018.)
Hypotheses
Ref Expression
rrextust.b 𝐵 = (Base‘𝑅)
rrextust.d 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵))
Assertion
Ref Expression
rrextust (𝑅 ∈ ℝExt → (UnifSt‘𝑅) = (metUnif‘𝐷))

Proof of Theorem rrextust
StepHypRef Expression
1 rrextust.b . . . 4 𝐵 = (Base‘𝑅)
2 rrextust.d . . . 4 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵))
3 eqid 2735 . . . 4 (ℤMod‘𝑅) = (ℤMod‘𝑅)
41, 2, 3isrrext 33977 . . 3 (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷))))
54simp3bi 1147 . 2 (𝑅 ∈ ℝExt → (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷)))
65simprd 495 1 (𝑅 ∈ ℝExt → (UnifSt‘𝑅) = (metUnif‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108   × cxp 5652  cres 5656  cfv 6530  0cc0 11127  Basecbs 17226  distcds 17278  DivRingcdr 20687  metUnifcmetu 21304  ℤModczlm 21459  chrcchr 21460  UnifStcuss 24190  CUnifSpccusp 24233  NrmRingcnrg 24516  NrmModcnlm 24517   ℝExt crrext 33971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-xp 5660  df-res 5666  df-iota 6483  df-fv 6538  df-rrext 33976
This theorem is referenced by:  rrhfe  33989  rrhcne  33990  sitgclg  34320
  Copyright terms: Public domain W3C validator