| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrextust | Structured version Visualization version GIF version | ||
| Description: The uniformity of an extension of ℝ is the uniformity generated by its distance. (Contributed by Thierry Arnoux, 2-May-2018.) |
| Ref | Expression |
|---|---|
| rrextust.b | ⊢ 𝐵 = (Base‘𝑅) |
| rrextust.d | ⊢ 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵)) |
| Ref | Expression |
|---|---|
| rrextust | ⊢ (𝑅 ∈ ℝExt → (UnifSt‘𝑅) = (metUnif‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrextust.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | rrextust.d | . . . 4 ⊢ 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵)) | |
| 3 | eqid 2731 | . . . 4 ⊢ (ℤMod‘𝑅) = (ℤMod‘𝑅) | |
| 4 | 1, 2, 3 | isrrext 34005 | . . 3 ⊢ (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷)))) |
| 5 | 4 | simp3bi 1147 | . 2 ⊢ (𝑅 ∈ ℝExt → (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷))) |
| 6 | 5 | simprd 495 | 1 ⊢ (𝑅 ∈ ℝExt → (UnifSt‘𝑅) = (metUnif‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 × cxp 5609 ↾ cres 5613 ‘cfv 6476 0cc0 11001 Basecbs 17115 distcds 17165 DivRingcdr 20639 metUnifcmetu 21277 ℤModczlm 21432 chrcchr 21433 UnifStcuss 24163 CUnifSpccusp 24206 NrmRingcnrg 24489 NrmModcnlm 24490 ℝExt crrext 33999 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-xp 5617 df-res 5623 df-iota 6432 df-fv 6484 df-rrext 34004 |
| This theorem is referenced by: rrhfe 34017 rrhcne 34018 sitgclg 34347 |
| Copyright terms: Public domain | W3C validator |