![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrextust | Structured version Visualization version GIF version |
Description: The uniformity of an extension of ℝ is the uniformity generated by its distance. (Contributed by Thierry Arnoux, 2-May-2018.) |
Ref | Expression |
---|---|
rrextust.b | ⊢ 𝐵 = (Base‘𝑅) |
rrextust.d | ⊢ 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵)) |
Ref | Expression |
---|---|
rrextust | ⊢ (𝑅 ∈ ℝExt → (UnifSt‘𝑅) = (metUnif‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrextust.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
2 | rrextust.d | . . . 4 ⊢ 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵)) | |
3 | eqid 2736 | . . . 4 ⊢ (ℤMod‘𝑅) = (ℤMod‘𝑅) | |
4 | 1, 2, 3 | isrrext 33976 | . . 3 ⊢ (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷)))) |
5 | 4 | simp3bi 1147 | . 2 ⊢ (𝑅 ∈ ℝExt → (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷))) |
6 | 5 | simprd 495 | 1 ⊢ (𝑅 ∈ ℝExt → (UnifSt‘𝑅) = (metUnif‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1538 ∈ wcel 2107 × cxp 5688 ↾ cres 5692 ‘cfv 6566 0cc0 11159 Basecbs 17251 distcds 17313 DivRingcdr 20752 metUnifcmetu 21379 ℤModczlm 21535 chrcchr 21536 UnifStcuss 24284 CUnifSpccusp 24328 NrmRingcnrg 24614 NrmModcnlm 24615 ℝExt crrext 33970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-opab 5212 df-xp 5696 df-res 5702 df-iota 6519 df-fv 6574 df-rrext 33975 |
This theorem is referenced by: rrhfe 33988 rrhcne 33989 sitgclg 34337 |
Copyright terms: Public domain | W3C validator |