| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrextust | Structured version Visualization version GIF version | ||
| Description: The uniformity of an extension of ℝ is the uniformity generated by its distance. (Contributed by Thierry Arnoux, 2-May-2018.) |
| Ref | Expression |
|---|---|
| rrextust.b | ⊢ 𝐵 = (Base‘𝑅) |
| rrextust.d | ⊢ 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵)) |
| Ref | Expression |
|---|---|
| rrextust | ⊢ (𝑅 ∈ ℝExt → (UnifSt‘𝑅) = (metUnif‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrextust.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | rrextust.d | . . . 4 ⊢ 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵)) | |
| 3 | eqid 2729 | . . . 4 ⊢ (ℤMod‘𝑅) = (ℤMod‘𝑅) | |
| 4 | 1, 2, 3 | isrrext 33990 | . . 3 ⊢ (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷)))) |
| 5 | 4 | simp3bi 1147 | . 2 ⊢ (𝑅 ∈ ℝExt → (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷))) |
| 6 | 5 | simprd 495 | 1 ⊢ (𝑅 ∈ ℝExt → (UnifSt‘𝑅) = (metUnif‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 × cxp 5636 ↾ cres 5640 ‘cfv 6511 0cc0 11068 Basecbs 17179 distcds 17229 DivRingcdr 20638 metUnifcmetu 21255 ℤModczlm 21410 chrcchr 21411 UnifStcuss 24141 CUnifSpccusp 24184 NrmRingcnrg 24467 NrmModcnlm 24468 ℝExt crrext 33984 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-res 5650 df-iota 6464 df-fv 6519 df-rrext 33989 |
| This theorem is referenced by: rrhfe 34002 rrhcne 34003 sitgclg 34333 |
| Copyright terms: Public domain | W3C validator |