Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrexthaus Structured version   Visualization version   GIF version

Theorem rrexthaus 33665
Description: The topology of an extension of is Hausdorff. (Contributed by Thierry Arnoux, 7-Sep-2018.)
Hypothesis
Ref Expression
rrexthaus.1 𝐾 = (TopOpen‘𝑅)
Assertion
Ref Expression
rrexthaus (𝑅 ∈ ℝExt → 𝐾 ∈ Haus)

Proof of Theorem rrexthaus
StepHypRef Expression
1 rrextnrg 33659 . . . 4 (𝑅 ∈ ℝExt → 𝑅 ∈ NrmRing)
2 nrgngp 24597 . . . 4 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
3 ngpxms 24528 . . . 4 (𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp)
41, 2, 33syl 18 . . 3 (𝑅 ∈ ℝExt → 𝑅 ∈ ∞MetSp)
5 rrexthaus.1 . . . 4 𝐾 = (TopOpen‘𝑅)
6 eqid 2725 . . . 4 (Base‘𝑅) = (Base‘𝑅)
7 eqid 2725 . . . 4 ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))
85, 6, 7xmstopn 24375 . . 3 (𝑅 ∈ ∞MetSp → 𝐾 = (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))
94, 8syl 17 . 2 (𝑅 ∈ ℝExt → 𝐾 = (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))
106, 7xmsxmet 24380 . . 3 (𝑅 ∈ ∞MetSp → ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (∞Met‘(Base‘𝑅)))
11 eqid 2725 . . . 4 (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))) = (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))
1211methaus 24447 . . 3 (((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (∞Met‘(Base‘𝑅)) → (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))) ∈ Haus)
134, 10, 123syl 18 . 2 (𝑅 ∈ ℝExt → (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))) ∈ Haus)
149, 13eqeltrd 2825 1 (𝑅 ∈ ℝExt → 𝐾 ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098   × cxp 5670  cres 5674  cfv 6543  Basecbs 17179  distcds 17241  TopOpenctopn 17402  ∞Metcxmet 21268  MetOpencmopn 21273  Hauscha 23230  ∞MetSpcxms 24241  NrmGrpcngp 24504  NrmRingcnrg 24506   ℝExt crrext 33652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7991  df-2nd 7992  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-map 8845  df-en 8963  df-dom 8964  df-sdom 8965  df-sup 9465  df-inf 9466  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-n0 12503  df-z 12589  df-uz 12853  df-q 12963  df-rp 13007  df-xneg 13124  df-xadd 13125  df-xmul 13126  df-icc 13363  df-topgen 17424  df-psmet 21275  df-xmet 21276  df-met 21277  df-bl 21278  df-mopn 21279  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22867  df-haus 23237  df-xms 24244  df-ms 24245  df-ngp 24510  df-nrg 24512  df-rrext 33657
This theorem is referenced by:  rrhqima  33672
  Copyright terms: Public domain W3C validator