| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrexthaus | Structured version Visualization version GIF version | ||
| Description: The topology of an extension of ℝ is Hausdorff. (Contributed by Thierry Arnoux, 7-Sep-2018.) |
| Ref | Expression |
|---|---|
| rrexthaus.1 | ⊢ 𝐾 = (TopOpen‘𝑅) |
| Ref | Expression |
|---|---|
| rrexthaus | ⊢ (𝑅 ∈ ℝExt → 𝐾 ∈ Haus) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrextnrg 33999 | . . . 4 ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ NrmRing) | |
| 2 | nrgngp 24556 | . . . 4 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) | |
| 3 | ngpxms 24495 | . . . 4 ⊢ (𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp) | |
| 4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ ∞MetSp) |
| 5 | rrexthaus.1 | . . . 4 ⊢ 𝐾 = (TopOpen‘𝑅) | |
| 6 | eqid 2730 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 7 | eqid 2730 | . . . 4 ⊢ ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) | |
| 8 | 5, 6, 7 | xmstopn 24345 | . . 3 ⊢ (𝑅 ∈ ∞MetSp → 𝐾 = (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))) |
| 9 | 4, 8 | syl 17 | . 2 ⊢ (𝑅 ∈ ℝExt → 𝐾 = (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))) |
| 10 | 6, 7 | xmsxmet 24350 | . . 3 ⊢ (𝑅 ∈ ∞MetSp → ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (∞Met‘(Base‘𝑅))) |
| 11 | eqid 2730 | . . . 4 ⊢ (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))) = (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))) | |
| 12 | 11 | methaus 24414 | . . 3 ⊢ (((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (∞Met‘(Base‘𝑅)) → (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))) ∈ Haus) |
| 13 | 4, 10, 12 | 3syl 18 | . 2 ⊢ (𝑅 ∈ ℝExt → (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))) ∈ Haus) |
| 14 | 9, 13 | eqeltrd 2829 | 1 ⊢ (𝑅 ∈ ℝExt → 𝐾 ∈ Haus) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 × cxp 5644 ↾ cres 5648 ‘cfv 6519 Basecbs 17185 distcds 17235 TopOpenctopn 17390 ∞Metcxmet 21255 MetOpencmopn 21260 Hauscha 23201 ∞MetSpcxms 24211 NrmGrpcngp 24471 NrmRingcnrg 24473 ℝExt crrext 33992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-sup 9411 df-inf 9412 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-n0 12459 df-z 12546 df-uz 12810 df-q 12922 df-rp 12966 df-xneg 13085 df-xadd 13086 df-xmul 13087 df-icc 13326 df-topgen 17412 df-psmet 21262 df-xmet 21263 df-met 21264 df-bl 21265 df-mopn 21266 df-top 22787 df-topon 22804 df-topsp 22826 df-bases 22839 df-haus 23208 df-xms 24214 df-ms 24215 df-ngp 24477 df-nrg 24479 df-rrext 33997 |
| This theorem is referenced by: rrhqima 34012 |
| Copyright terms: Public domain | W3C validator |