Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rerrext Structured version   Visualization version   GIF version

Theorem rerrext 31358
Description: The field of the real numbers is an extension of the real numbers. (Contributed by Thierry Arnoux, 2-May-2018.)
Assertion
Ref Expression
rerrext fld ∈ ℝExt

Proof of Theorem rerrext
StepHypRef Expression
1 cnnrg 23389 . . . 4 fld ∈ NrmRing
2 resubdrg 20300 . . . . 5 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
32simpli 487 . . . 4 ℝ ∈ (SubRing‘ℂfld)
4 df-refld 20297 . . . . 5 fld = (ℂflds ℝ)
54subrgnrg 23282 . . . 4 ((ℂfld ∈ NrmRing ∧ ℝ ∈ (SubRing‘ℂfld)) → ℝfld ∈ NrmRing)
61, 3, 5mp2an 691 . . 3 fld ∈ NrmRing
72simpri 489 . . 3 fld ∈ DivRing
86, 7pm3.2i 474 . 2 (ℝfld ∈ NrmRing ∧ ℝfld ∈ DivRing)
9 rezh 31320 . . 3 (ℤMod‘ℝfld) ∈ NrmMod
10 reofld 30967 . . . 4 fld ∈ oField
11 ofldchr 30941 . . . 4 (ℝfld ∈ oField → (chr‘ℝfld) = 0)
1210, 11ax-mp 5 . . 3 (chr‘ℝfld) = 0
139, 12pm3.2i 474 . 2 ((ℤMod‘ℝfld) ∈ NrmMod ∧ (chr‘ℝfld) = 0)
14 recusp 23989 . . 3 fld ∈ CUnifSp
15 reust 23988 . . 3 (UnifSt‘ℝfld) = (metUnif‘((dist‘ℝfld) ↾ (ℝ × ℝ)))
1614, 15pm3.2i 474 . 2 (ℝfld ∈ CUnifSp ∧ (UnifSt‘ℝfld) = (metUnif‘((dist‘ℝfld) ↾ (ℝ × ℝ))))
17 rebase 20298 . . 3 ℝ = (Base‘ℝfld)
18 eqid 2801 . . 3 ((dist‘ℝfld) ↾ (ℝ × ℝ)) = ((dist‘ℝfld) ↾ (ℝ × ℝ))
19 eqid 2801 . . 3 (ℤMod‘ℝfld) = (ℤMod‘ℝfld)
2017, 18, 19isrrext 31349 . 2 (ℝfld ∈ ℝExt ↔ ((ℝfld ∈ NrmRing ∧ ℝfld ∈ DivRing) ∧ ((ℤMod‘ℝfld) ∈ NrmMod ∧ (chr‘ℝfld) = 0) ∧ (ℝfld ∈ CUnifSp ∧ (UnifSt‘ℝfld) = (metUnif‘((dist‘ℝfld) ↾ (ℝ × ℝ))))))
218, 13, 16, 20mpbir3an 1338 1 fld ∈ ℝExt
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1538  wcel 2112   × cxp 5521  cres 5525  cfv 6328  cr 10529  0cc0 10530  distcds 16569  DivRingcdr 19498  SubRingcsubrg 19527  metUnifcmetu 20085  fldccnfld 20094  ℤModczlm 20197  chrcchr 20198  fldcrefld 20296  UnifStcuss 22862  CUnifSpccusp 22906  NrmRingcnrg 23189  NrmModcnlm 23190  oFieldcofld 30923   ℝExt crrext 31343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-tpos 7879  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-xrs 16770  df-qtop 16775  df-imas 16776  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-proset 17533  df-poset 17551  df-plt 17563  df-toset 17639  df-ps 17805  df-tsr 17806  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-grp 18101  df-minusg 18102  df-sbg 18103  df-mulg 18220  df-subg 18271  df-cntz 18442  df-od 18651  df-cmn 18903  df-abl 18904  df-mgp 19236  df-ur 19248  df-ring 19295  df-cring 19296  df-oppr 19372  df-dvdsr 19390  df-unit 19391  df-invr 19421  df-dvr 19432  df-drng 19500  df-field 19501  df-subrg 19529  df-abv 19584  df-lmod 19632  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-mopn 20090  df-fbas 20091  df-fg 20092  df-metu 20093  df-cnfld 20095  df-zring 20167  df-zlm 20201  df-chr 20202  df-refld 20297  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-cn 21835  df-cnp 21836  df-haus 21923  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-fil 22454  df-flim 22547  df-fcls 22549  df-ust 22809  df-utop 22840  df-uss 22865  df-usp 22866  df-cfilu 22896  df-cusp 22907  df-xms 22930  df-ms 22931  df-tms 22932  df-nm 23192  df-ngp 23193  df-nrg 23195  df-nlm 23196  df-cncf 23486  df-cfil 23862  df-cmet 23864  df-cms 23942  df-omnd 30753  df-ogrp 30754  df-orng 30924  df-ofld 30925  df-rrext 31348
This theorem is referenced by:  rrhre  31370  sitgclre  31711  sitmcl  31717
  Copyright terms: Public domain W3C validator