Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rerrext Structured version   Visualization version   GIF version

Theorem rerrext 33741
Description: The field of the real numbers is an extension of the real numbers. (Contributed by Thierry Arnoux, 2-May-2018.)
Assertion
Ref Expression
rerrext fld ∈ ℝExt

Proof of Theorem rerrext
StepHypRef Expression
1 cnnrg 24741 . . . 4 fld ∈ NrmRing
2 resubdrg 21557 . . . . 5 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
32simpli 482 . . . 4 ℝ ∈ (SubRing‘ℂfld)
4 df-refld 21554 . . . . 5 fld = (ℂflds ℝ)
54subrgnrg 24634 . . . 4 ((ℂfld ∈ NrmRing ∧ ℝ ∈ (SubRing‘ℂfld)) → ℝfld ∈ NrmRing)
61, 3, 5mp2an 690 . . 3 fld ∈ NrmRing
72simpri 484 . . 3 fld ∈ DivRing
86, 7pm3.2i 469 . 2 (ℝfld ∈ NrmRing ∧ ℝfld ∈ DivRing)
9 rezh 33703 . . 3 (ℤMod‘ℝfld) ∈ NrmMod
10 reofld 33155 . . . 4 fld ∈ oField
11 ofldchr 33128 . . . 4 (ℝfld ∈ oField → (chr‘ℝfld) = 0)
1210, 11ax-mp 5 . . 3 (chr‘ℝfld) = 0
139, 12pm3.2i 469 . 2 ((ℤMod‘ℝfld) ∈ NrmMod ∧ (chr‘ℝfld) = 0)
14 recusp 25354 . . 3 fld ∈ CUnifSp
15 reust 25353 . . 3 (UnifSt‘ℝfld) = (metUnif‘((dist‘ℝfld) ↾ (ℝ × ℝ)))
1614, 15pm3.2i 469 . 2 (ℝfld ∈ CUnifSp ∧ (UnifSt‘ℝfld) = (metUnif‘((dist‘ℝfld) ↾ (ℝ × ℝ))))
17 rebase 21555 . . 3 ℝ = (Base‘ℝfld)
18 eqid 2725 . . 3 ((dist‘ℝfld) ↾ (ℝ × ℝ)) = ((dist‘ℝfld) ↾ (ℝ × ℝ))
19 eqid 2725 . . 3 (ℤMod‘ℝfld) = (ℤMod‘ℝfld)
2017, 18, 19isrrext 33732 . 2 (ℝfld ∈ ℝExt ↔ ((ℝfld ∈ NrmRing ∧ ℝfld ∈ DivRing) ∧ ((ℤMod‘ℝfld) ∈ NrmMod ∧ (chr‘ℝfld) = 0) ∧ (ℝfld ∈ CUnifSp ∧ (UnifSt‘ℝfld) = (metUnif‘((dist‘ℝfld) ↾ (ℝ × ℝ))))))
218, 13, 16, 20mpbir3an 1338 1 fld ∈ ℝExt
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1533  wcel 2098   × cxp 5676  cres 5680  cfv 6549  cr 11139  0cc0 11140  distcds 17245  SubRingcsubrg 20518  DivRingcdr 20636  metUnifcmetu 21287  fldccnfld 21296  ℤModczlm 21443  chrcchr 21444  fldcrefld 21553  UnifStcuss 24202  CUnifSpccusp 24246  NrmRingcnrg 24532  NrmModcnlm 24533  oFieldcofld 33110   ℝExt crrext 33726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219  ax-mulf 11220
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-seq 14003  df-exp 14063  df-hash 14326  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-rest 17407  df-topn 17408  df-0g 17426  df-gsum 17427  df-topgen 17428  df-pt 17429  df-prds 17432  df-xrs 17487  df-qtop 17492  df-imas 17493  df-xps 17495  df-mre 17569  df-mrc 17570  df-acs 17572  df-proset 18290  df-poset 18308  df-plt 18325  df-toset 18412  df-ps 18561  df-tsr 18562  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-grp 18901  df-minusg 18902  df-sbg 18903  df-mulg 19032  df-subg 19086  df-cntz 19280  df-od 19495  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-cring 20188  df-oppr 20285  df-dvdsr 20308  df-unit 20309  df-invr 20339  df-dvr 20352  df-subrng 20495  df-subrg 20520  df-drng 20638  df-field 20639  df-abv 20709  df-lmod 20757  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-metu 21295  df-cnfld 21297  df-zring 21390  df-zlm 21447  df-chr 21448  df-refld 21554  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-cld 22967  df-ntr 22968  df-cls 22969  df-nei 23046  df-cn 23175  df-cnp 23176  df-haus 23263  df-cmp 23335  df-tx 23510  df-hmeo 23703  df-fil 23794  df-flim 23887  df-fcls 23889  df-ust 24149  df-utop 24180  df-uss 24205  df-usp 24206  df-cfilu 24236  df-cusp 24247  df-xms 24270  df-ms 24271  df-tms 24272  df-nm 24535  df-ngp 24536  df-nrg 24538  df-nlm 24539  df-cncf 24842  df-cfil 25227  df-cmet 25229  df-cms 25307  df-omnd 32869  df-ogrp 32870  df-orng 33111  df-ofld 33112  df-rrext 33731
This theorem is referenced by:  rrhre  33753  sitgclre  34096  sitmcl  34102
  Copyright terms: Public domain W3C validator