Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rerrext Structured version   Visualization version   GIF version

Theorem rerrext 33518
Description: The field of the real numbers is an extension of the real numbers. (Contributed by Thierry Arnoux, 2-May-2018.)
Assertion
Ref Expression
rerrext fld ∈ ℝExt

Proof of Theorem rerrext
StepHypRef Expression
1 cnnrg 24647 . . . 4 fld ∈ NrmRing
2 resubdrg 21496 . . . . 5 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
32simpli 483 . . . 4 ℝ ∈ (SubRing‘ℂfld)
4 df-refld 21493 . . . . 5 fld = (ℂflds ℝ)
54subrgnrg 24540 . . . 4 ((ℂfld ∈ NrmRing ∧ ℝ ∈ (SubRing‘ℂfld)) → ℝfld ∈ NrmRing)
61, 3, 5mp2an 689 . . 3 fld ∈ NrmRing
72simpri 485 . . 3 fld ∈ DivRing
86, 7pm3.2i 470 . 2 (ℝfld ∈ NrmRing ∧ ℝfld ∈ DivRing)
9 rezh 33480 . . 3 (ℤMod‘ℝfld) ∈ NrmMod
10 reofld 32961 . . . 4 fld ∈ oField
11 ofldchr 32934 . . . 4 (ℝfld ∈ oField → (chr‘ℝfld) = 0)
1210, 11ax-mp 5 . . 3 (chr‘ℝfld) = 0
139, 12pm3.2i 470 . 2 ((ℤMod‘ℝfld) ∈ NrmMod ∧ (chr‘ℝfld) = 0)
14 recusp 25260 . . 3 fld ∈ CUnifSp
15 reust 25259 . . 3 (UnifSt‘ℝfld) = (metUnif‘((dist‘ℝfld) ↾ (ℝ × ℝ)))
1614, 15pm3.2i 470 . 2 (ℝfld ∈ CUnifSp ∧ (UnifSt‘ℝfld) = (metUnif‘((dist‘ℝfld) ↾ (ℝ × ℝ))))
17 rebase 21494 . . 3 ℝ = (Base‘ℝfld)
18 eqid 2726 . . 3 ((dist‘ℝfld) ↾ (ℝ × ℝ)) = ((dist‘ℝfld) ↾ (ℝ × ℝ))
19 eqid 2726 . . 3 (ℤMod‘ℝfld) = (ℤMod‘ℝfld)
2017, 18, 19isrrext 33509 . 2 (ℝfld ∈ ℝExt ↔ ((ℝfld ∈ NrmRing ∧ ℝfld ∈ DivRing) ∧ ((ℤMod‘ℝfld) ∈ NrmMod ∧ (chr‘ℝfld) = 0) ∧ (ℝfld ∈ CUnifSp ∧ (UnifSt‘ℝfld) = (metUnif‘((dist‘ℝfld) ↾ (ℝ × ℝ))))))
218, 13, 16, 20mpbir3an 1338 1 fld ∈ ℝExt
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1533  wcel 2098   × cxp 5667  cres 5671  cfv 6536  cr 11108  0cc0 11109  distcds 17212  SubRingcsubrg 20466  DivRingcdr 20584  metUnifcmetu 21226  fldccnfld 21235  ℤModczlm 21382  chrcchr 21383  fldcrefld 21492  UnifStcuss 24108  CUnifSpccusp 24152  NrmRingcnrg 24438  NrmModcnlm 24439  oFieldcofld 32916   ℝExt crrext 33503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187  ax-addf 11188  ax-mulf 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8144  df-tpos 8209  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-2o 8465  df-er 8702  df-map 8821  df-ixp 8891  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fsupp 9361  df-fi 9405  df-sup 9436  df-inf 9437  df-oi 9504  df-card 9933  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-div 11873  df-nn 12214  df-2 12276  df-3 12277  df-4 12278  df-5 12279  df-6 12280  df-7 12281  df-8 12282  df-9 12283  df-n0 12474  df-z 12560  df-dec 12679  df-uz 12824  df-q 12934  df-rp 12978  df-xneg 13095  df-xadd 13096  df-xmul 13097  df-ioo 13331  df-ico 13333  df-icc 13334  df-fz 13488  df-fzo 13631  df-seq 13970  df-exp 14030  df-hash 14293  df-cj 15049  df-re 15050  df-im 15051  df-sqrt 15185  df-abs 15186  df-struct 17086  df-sets 17103  df-slot 17121  df-ndx 17133  df-base 17151  df-ress 17180  df-plusg 17216  df-mulr 17217  df-starv 17218  df-sca 17219  df-vsca 17220  df-ip 17221  df-tset 17222  df-ple 17223  df-ds 17225  df-unif 17226  df-hom 17227  df-cco 17228  df-rest 17374  df-topn 17375  df-0g 17393  df-gsum 17394  df-topgen 17395  df-pt 17396  df-prds 17399  df-xrs 17454  df-qtop 17459  df-imas 17460  df-xps 17462  df-mre 17536  df-mrc 17537  df-acs 17539  df-proset 18257  df-poset 18275  df-plt 18292  df-toset 18379  df-ps 18528  df-tsr 18529  df-mgm 18570  df-sgrp 18649  df-mnd 18665  df-submnd 18711  df-grp 18863  df-minusg 18864  df-sbg 18865  df-mulg 18993  df-subg 19047  df-cntz 19230  df-od 19445  df-cmn 19699  df-abl 19700  df-mgp 20037  df-rng 20055  df-ur 20084  df-ring 20137  df-cring 20138  df-oppr 20233  df-dvdsr 20256  df-unit 20257  df-invr 20287  df-dvr 20300  df-subrng 20443  df-subrg 20468  df-drng 20586  df-field 20587  df-abv 20657  df-lmod 20705  df-psmet 21227  df-xmet 21228  df-met 21229  df-bl 21230  df-mopn 21231  df-fbas 21232  df-fg 21233  df-metu 21234  df-cnfld 21236  df-zring 21329  df-zlm 21386  df-chr 21387  df-refld 21493  df-top 22746  df-topon 22763  df-topsp 22785  df-bases 22799  df-cld 22873  df-ntr 22874  df-cls 22875  df-nei 22952  df-cn 23081  df-cnp 23082  df-haus 23169  df-cmp 23241  df-tx 23416  df-hmeo 23609  df-fil 23700  df-flim 23793  df-fcls 23795  df-ust 24055  df-utop 24086  df-uss 24111  df-usp 24112  df-cfilu 24142  df-cusp 24153  df-xms 24176  df-ms 24177  df-tms 24178  df-nm 24441  df-ngp 24442  df-nrg 24444  df-nlm 24445  df-cncf 24748  df-cfil 25133  df-cmet 25135  df-cms 25213  df-omnd 32720  df-ogrp 32721  df-orng 32917  df-ofld 32918  df-rrext 33508
This theorem is referenced by:  rrhre  33530  sitgclre  33873  sitmcl  33879
  Copyright terms: Public domain W3C validator