| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrhcne | Structured version Visualization version GIF version | ||
| Description: If 𝑅 is an extension of ℝ, then the canonical homomorphism of ℝ into 𝑅 is continuous. (Contributed by Thierry Arnoux, 2-May-2018.) |
| Ref | Expression |
|---|---|
| rrhcne.j | ⊢ 𝐽 = (topGen‘ran (,)) |
| rrhcne.k | ⊢ 𝐾 = (TopOpen‘𝑅) |
| Ref | Expression |
|---|---|
| rrhcne | ⊢ (𝑅 ∈ ℝExt → (ℝHom‘𝑅) ∈ (𝐽 Cn 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) | |
| 2 | rrhcne.j | . 2 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 3 | eqid 2731 | . 2 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 4 | rrhcne.k | . 2 ⊢ 𝐾 = (TopOpen‘𝑅) | |
| 5 | eqid 2731 | . 2 ⊢ (ℤMod‘𝑅) = (ℤMod‘𝑅) | |
| 6 | rrextdrg 34010 | . 2 ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ DivRing) | |
| 7 | rrextnrg 34009 | . 2 ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ NrmRing) | |
| 8 | 5 | rrextnlm 34011 | . 2 ⊢ (𝑅 ∈ ℝExt → (ℤMod‘𝑅) ∈ NrmMod) |
| 9 | rrextchr 34012 | . 2 ⊢ (𝑅 ∈ ℝExt → (chr‘𝑅) = 0) | |
| 10 | rrextcusp 34013 | . 2 ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ CUnifSp) | |
| 11 | 3, 1 | rrextust 34016 | . 2 ⊢ (𝑅 ∈ ℝExt → (UnifSt‘𝑅) = (metUnif‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))) |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | rrhcn 34005 | 1 ⊢ (𝑅 ∈ ℝExt → (ℝHom‘𝑅) ∈ (𝐽 Cn 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 × cxp 5614 ran crn 5617 ↾ cres 5618 ‘cfv 6481 (class class class)co 7346 (,)cioo 13242 Basecbs 17117 distcds 17167 TopOpenctopn 17322 topGenctg 17338 ℤModczlm 21435 Cn ccn 23137 ℝHomcrrh 34001 ℝExt crrext 34002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 ax-addf 11082 ax-mulf 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-ioo 13246 df-ico 13248 df-icc 13249 df-fz 13405 df-fzo 13552 df-fl 13693 df-mod 13771 df-seq 13906 df-exp 13966 df-hash 14235 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-dvds 16161 df-gcd 16403 df-numer 16643 df-denom 16644 df-gz 16839 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-starv 17173 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-hom 17182 df-cco 17183 df-rest 17323 df-topn 17324 df-0g 17342 df-gsum 17343 df-topgen 17344 df-pt 17345 df-prds 17348 df-xrs 17403 df-qtop 17408 df-imas 17409 df-xps 17411 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-mhm 18688 df-submnd 18689 df-grp 18846 df-minusg 18847 df-sbg 18848 df-mulg 18978 df-subg 19033 df-ghm 19123 df-cntz 19227 df-od 19438 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-rhm 20388 df-nzr 20426 df-subrng 20459 df-subrg 20483 df-drng 20644 df-abv 20722 df-lmod 20793 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-fbas 21286 df-fg 21287 df-metu 21288 df-cnfld 21290 df-zring 21382 df-zrh 21438 df-zlm 21439 df-chr 21440 df-refld 21540 df-top 22807 df-topon 22824 df-topsp 22846 df-bases 22859 df-cld 22932 df-ntr 22933 df-cls 22934 df-nei 23011 df-cn 23140 df-cnp 23141 df-haus 23228 df-reg 23229 df-cmp 23300 df-tx 23475 df-hmeo 23668 df-fil 23759 df-fm 23851 df-flim 23852 df-flf 23853 df-fcls 23854 df-cnext 23973 df-ust 24114 df-utop 24144 df-uss 24169 df-usp 24170 df-ucn 24188 df-cfilu 24199 df-cusp 24210 df-xms 24233 df-ms 24234 df-tms 24235 df-nm 24495 df-ngp 24496 df-nrg 24498 df-nlm 24499 df-cncf 24796 df-cfil 25180 df-cmet 25182 df-cms 25260 df-qqh 33979 df-rrh 34003 df-rrext 34007 |
| This theorem is referenced by: rrhre 34029 |
| Copyright terms: Public domain | W3C validator |