Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2plord Structured version   Visualization version   GIF version

Theorem rrx2plord 48713
Description: The lexicographical ordering for points in the two dimensional Euclidean plane: a point is less than another point iff its first coordinate is less than the first coordinate of the other point, or the first coordinates of both points are equal and the second coordinate of the first point is less than the second coordinate of the other point: 𝑎, 𝑏⟩ ≤ ⟨𝑥, 𝑦 iff (𝑎 < 𝑥 ∨ (𝑎 = 𝑥𝑏𝑦)). (Contributed by AV, 12-Mar-2023.)
Hypothesis
Ref Expression
rrx2plord.o 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑅𝑦𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))}
Assertion
Ref Expression
rrx2plord ((𝑋𝑅𝑌𝑅) → (𝑋𝑂𝑌 ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)))))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑂(𝑥,𝑦)

Proof of Theorem rrx2plord
StepHypRef Expression
1 df-br 5111 . . 3 (𝑋𝑂𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ 𝑂)
2 rrx2plord.o . . . 4 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑅𝑦𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))}
32eleq2i 2821 . . 3 (⟨𝑋, 𝑌⟩ ∈ 𝑂 ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑅𝑦𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))})
41, 3bitri 275 . 2 (𝑋𝑂𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑅𝑦𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))})
5 fveq1 6860 . . . . 5 (𝑥 = 𝑋 → (𝑥‘1) = (𝑋‘1))
6 fveq1 6860 . . . . 5 (𝑦 = 𝑌 → (𝑦‘1) = (𝑌‘1))
75, 6breqan12d 5126 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑥‘1) < (𝑦‘1) ↔ (𝑋‘1) < (𝑌‘1)))
85, 6eqeqan12d 2744 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑥‘1) = (𝑦‘1) ↔ (𝑋‘1) = (𝑌‘1)))
9 fveq1 6860 . . . . . 6 (𝑥 = 𝑋 → (𝑥‘2) = (𝑋‘2))
10 fveq1 6860 . . . . . 6 (𝑦 = 𝑌 → (𝑦‘2) = (𝑌‘2))
119, 10breqan12d 5126 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑥‘2) < (𝑦‘2) ↔ (𝑋‘2) < (𝑌‘2)))
128, 11anbi12d 632 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → (((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2)) ↔ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))))
137, 12orbi12d 918 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → (((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))) ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)))))
1413opelopab2a 5498 . 2 ((𝑋𝑅𝑌𝑅) → (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑅𝑦𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))} ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)))))
154, 14bitrid 283 1 ((𝑋𝑅𝑌𝑅) → (𝑋𝑂𝑌 ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  cop 4598   class class class wbr 5110  {copab 5172  cfv 6514  1c1 11076   < clt 11215  2c2 12248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-iota 6467  df-fv 6522
This theorem is referenced by:  rrx2plord1  48714  rrx2plord2  48715  rrx2plordisom  48716
  Copyright terms: Public domain W3C validator