| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrx2plord | Structured version Visualization version GIF version | ||
| Description: The lexicographical ordering for points in the two dimensional Euclidean plane: a point is less than another point iff its first coordinate is less than the first coordinate of the other point, or the first coordinates of both points are equal and the second coordinate of the first point is less than the second coordinate of the other point: 〈𝑎, 𝑏〉 ≤ 〈𝑥, 𝑦〉 iff (𝑎 < 𝑥 ∨ (𝑎 = 𝑥 ∧ 𝑏 ≤ 𝑦)). (Contributed by AV, 12-Mar-2023.) |
| Ref | Expression |
|---|---|
| rrx2plord.o | ⊢ 𝑂 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))} |
| Ref | Expression |
|---|---|
| rrx2plord | ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (𝑋𝑂𝑌 ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5094 | . . 3 ⊢ (𝑋𝑂𝑌 ↔ 〈𝑋, 𝑌〉 ∈ 𝑂) | |
| 2 | rrx2plord.o | . . . 4 ⊢ 𝑂 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))} | |
| 3 | 2 | eleq2i 2823 | . . 3 ⊢ (〈𝑋, 𝑌〉 ∈ 𝑂 ↔ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))}) |
| 4 | 1, 3 | bitri 275 | . 2 ⊢ (𝑋𝑂𝑌 ↔ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))}) |
| 5 | fveq1 6827 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥‘1) = (𝑋‘1)) | |
| 6 | fveq1 6827 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑦‘1) = (𝑌‘1)) | |
| 7 | 5, 6 | breqan12d 5109 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑥‘1) < (𝑦‘1) ↔ (𝑋‘1) < (𝑌‘1))) |
| 8 | 5, 6 | eqeqan12d 2745 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑥‘1) = (𝑦‘1) ↔ (𝑋‘1) = (𝑌‘1))) |
| 9 | fveq1 6827 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥‘2) = (𝑋‘2)) | |
| 10 | fveq1 6827 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑦‘2) = (𝑌‘2)) | |
| 11 | 9, 10 | breqan12d 5109 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑥‘2) < (𝑦‘2) ↔ (𝑋‘2) < (𝑌‘2))) |
| 12 | 8, 11 | anbi12d 632 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2)) ↔ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)))) |
| 13 | 7, 12 | orbi12d 918 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))) ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))))) |
| 14 | 13 | opelopab2a 5478 | . 2 ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))} ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))))) |
| 15 | 4, 14 | bitrid 283 | 1 ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (𝑋𝑂𝑌 ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 〈cop 4581 class class class wbr 5093 {copab 5155 ‘cfv 6487 1c1 11013 < clt 11152 2c2 12186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-iota 6443 df-fv 6495 |
| This theorem is referenced by: rrx2plord1 48827 rrx2plord2 48828 rrx2plordisom 48829 |
| Copyright terms: Public domain | W3C validator |