![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrx2plord | Structured version Visualization version GIF version |
Description: The lexicographical ordering for points in the two dimensional Euclidean plane: a point is less than another point iff its first coordinate is less than the first coordinate of the other point, or the first coordinates of both points are equal and the second coordinate of the first point is less than the second coordinate of the other point: ⟨𝑎, 𝑏⟩ ≤ ⟨𝑥, 𝑦⟩ iff (𝑎 < 𝑥 ∨ (𝑎 = 𝑥 ∧ 𝑏 ≤ 𝑦)). (Contributed by AV, 12-Mar-2023.) |
Ref | Expression |
---|---|
rrx2plord.o | ⊢ 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))} |
Ref | Expression |
---|---|
rrx2plord | ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (𝑋𝑂𝑌 ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5149 | . . 3 ⊢ (𝑋𝑂𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ 𝑂) | |
2 | rrx2plord.o | . . . 4 ⊢ 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))} | |
3 | 2 | eleq2i 2825 | . . 3 ⊢ (⟨𝑋, 𝑌⟩ ∈ 𝑂 ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))}) |
4 | 1, 3 | bitri 274 | . 2 ⊢ (𝑋𝑂𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))}) |
5 | fveq1 6890 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥‘1) = (𝑋‘1)) | |
6 | fveq1 6890 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑦‘1) = (𝑌‘1)) | |
7 | 5, 6 | breqan12d 5164 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑥‘1) < (𝑦‘1) ↔ (𝑋‘1) < (𝑌‘1))) |
8 | 5, 6 | eqeqan12d 2746 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑥‘1) = (𝑦‘1) ↔ (𝑋‘1) = (𝑌‘1))) |
9 | fveq1 6890 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥‘2) = (𝑋‘2)) | |
10 | fveq1 6890 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑦‘2) = (𝑌‘2)) | |
11 | 9, 10 | breqan12d 5164 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑥‘2) < (𝑦‘2) ↔ (𝑋‘2) < (𝑌‘2))) |
12 | 8, 11 | anbi12d 631 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2)) ↔ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)))) |
13 | 7, 12 | orbi12d 917 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))) ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))))) |
14 | 13 | opelopab2a 5535 | . 2 ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))} ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))))) |
15 | 4, 14 | bitrid 282 | 1 ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (𝑋𝑂𝑌 ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ⟨cop 4634 class class class wbr 5148 {copab 5210 ‘cfv 6543 1c1 11113 < clt 11250 2c2 12269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-iota 6495 df-fv 6551 |
This theorem is referenced by: rrx2plord1 47485 rrx2plord2 47486 rrx2plordisom 47487 |
Copyright terms: Public domain | W3C validator |