Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrx2plord | Structured version Visualization version GIF version |
Description: The lexicographical ordering for points in the two dimensional Euclidean plane: a point is less than another point iff its first coordinate is less than the first coordinate of the other point, or the first coordinates of both points are equal and the second coordinate of the first point is less than the second coordinate of the other point: ⟨𝑎, 𝑏⟩ ≤ ⟨𝑥, 𝑦⟩ iff (𝑎 < 𝑥 ∨ (𝑎 = 𝑥 ∧ 𝑏 ≤ 𝑦)). (Contributed by AV, 12-Mar-2023.) |
Ref | Expression |
---|---|
rrx2plord.o | ⊢ 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))} |
Ref | Expression |
---|---|
rrx2plord | ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (𝑋𝑂𝑌 ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5105 | . . 3 ⊢ (𝑋𝑂𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ 𝑂) | |
2 | rrx2plord.o | . . . 4 ⊢ 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))} | |
3 | 2 | eleq2i 2830 | . . 3 ⊢ (⟨𝑋, 𝑌⟩ ∈ 𝑂 ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))}) |
4 | 1, 3 | bitri 275 | . 2 ⊢ (𝑋𝑂𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))}) |
5 | fveq1 6837 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥‘1) = (𝑋‘1)) | |
6 | fveq1 6837 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑦‘1) = (𝑌‘1)) | |
7 | 5, 6 | breqan12d 5120 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑥‘1) < (𝑦‘1) ↔ (𝑋‘1) < (𝑌‘1))) |
8 | 5, 6 | eqeqan12d 2752 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑥‘1) = (𝑦‘1) ↔ (𝑋‘1) = (𝑌‘1))) |
9 | fveq1 6837 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥‘2) = (𝑋‘2)) | |
10 | fveq1 6837 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑦‘2) = (𝑌‘2)) | |
11 | 9, 10 | breqan12d 5120 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑥‘2) < (𝑦‘2) ↔ (𝑋‘2) < (𝑌‘2))) |
12 | 8, 11 | anbi12d 632 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2)) ↔ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)))) |
13 | 7, 12 | orbi12d 918 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))) ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))))) |
14 | 13 | opelopab2a 5490 | . 2 ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))} ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))))) |
15 | 4, 14 | bitrid 283 | 1 ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (𝑋𝑂𝑌 ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 = wceq 1542 ∈ wcel 2107 ⟨cop 4591 class class class wbr 5104 {copab 5166 ‘cfv 6492 1c1 10986 < clt 11123 2c2 12142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2709 ax-sep 5255 ax-nul 5262 ax-pr 5383 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3407 df-v 3446 df-dif 3912 df-un 3914 df-in 3916 df-ss 3926 df-nul 4282 df-if 4486 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4865 df-br 5105 df-opab 5167 df-iota 6444 df-fv 6500 |
This theorem is referenced by: rrx2plord1 46507 rrx2plord2 46508 rrx2plordisom 46509 |
Copyright terms: Public domain | W3C validator |