| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrx2plord | Structured version Visualization version GIF version | ||
| Description: The lexicographical ordering for points in the two dimensional Euclidean plane: a point is less than another point iff its first coordinate is less than the first coordinate of the other point, or the first coordinates of both points are equal and the second coordinate of the first point is less than the second coordinate of the other point: 〈𝑎, 𝑏〉 ≤ 〈𝑥, 𝑦〉 iff (𝑎 < 𝑥 ∨ (𝑎 = 𝑥 ∧ 𝑏 ≤ 𝑦)). (Contributed by AV, 12-Mar-2023.) |
| Ref | Expression |
|---|---|
| rrx2plord.o | ⊢ 𝑂 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))} |
| Ref | Expression |
|---|---|
| rrx2plord | ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (𝑋𝑂𝑌 ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5125 | . . 3 ⊢ (𝑋𝑂𝑌 ↔ 〈𝑋, 𝑌〉 ∈ 𝑂) | |
| 2 | rrx2plord.o | . . . 4 ⊢ 𝑂 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))} | |
| 3 | 2 | eleq2i 2827 | . . 3 ⊢ (〈𝑋, 𝑌〉 ∈ 𝑂 ↔ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))}) |
| 4 | 1, 3 | bitri 275 | . 2 ⊢ (𝑋𝑂𝑌 ↔ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))}) |
| 5 | fveq1 6880 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥‘1) = (𝑋‘1)) | |
| 6 | fveq1 6880 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑦‘1) = (𝑌‘1)) | |
| 7 | 5, 6 | breqan12d 5140 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑥‘1) < (𝑦‘1) ↔ (𝑋‘1) < (𝑌‘1))) |
| 8 | 5, 6 | eqeqan12d 2750 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑥‘1) = (𝑦‘1) ↔ (𝑋‘1) = (𝑌‘1))) |
| 9 | fveq1 6880 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥‘2) = (𝑋‘2)) | |
| 10 | fveq1 6880 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑦‘2) = (𝑌‘2)) | |
| 11 | 9, 10 | breqan12d 5140 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑥‘2) < (𝑦‘2) ↔ (𝑋‘2) < (𝑌‘2))) |
| 12 | 8, 11 | anbi12d 632 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2)) ↔ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)))) |
| 13 | 7, 12 | orbi12d 918 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))) ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))))) |
| 14 | 13 | opelopab2a 5515 | . 2 ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))} ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))))) |
| 15 | 4, 14 | bitrid 283 | 1 ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (𝑋𝑂𝑌 ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 〈cop 4612 class class class wbr 5124 {copab 5186 ‘cfv 6536 1c1 11135 < clt 11274 2c2 12300 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-iota 6489 df-fv 6544 |
| This theorem is referenced by: rrx2plord1 48668 rrx2plord2 48669 rrx2plordisom 48670 |
| Copyright terms: Public domain | W3C validator |