Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2plord Structured version   Visualization version   GIF version

Theorem rrx2plord 48826
Description: The lexicographical ordering for points in the two dimensional Euclidean plane: a point is less than another point iff its first coordinate is less than the first coordinate of the other point, or the first coordinates of both points are equal and the second coordinate of the first point is less than the second coordinate of the other point: 𝑎, 𝑏⟩ ≤ ⟨𝑥, 𝑦 iff (𝑎 < 𝑥 ∨ (𝑎 = 𝑥𝑏𝑦)). (Contributed by AV, 12-Mar-2023.)
Hypothesis
Ref Expression
rrx2plord.o 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑅𝑦𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))}
Assertion
Ref Expression
rrx2plord ((𝑋𝑅𝑌𝑅) → (𝑋𝑂𝑌 ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)))))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑂(𝑥,𝑦)

Proof of Theorem rrx2plord
StepHypRef Expression
1 df-br 5094 . . 3 (𝑋𝑂𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ 𝑂)
2 rrx2plord.o . . . 4 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑅𝑦𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))}
32eleq2i 2823 . . 3 (⟨𝑋, 𝑌⟩ ∈ 𝑂 ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑅𝑦𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))})
41, 3bitri 275 . 2 (𝑋𝑂𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑅𝑦𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))})
5 fveq1 6827 . . . . 5 (𝑥 = 𝑋 → (𝑥‘1) = (𝑋‘1))
6 fveq1 6827 . . . . 5 (𝑦 = 𝑌 → (𝑦‘1) = (𝑌‘1))
75, 6breqan12d 5109 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑥‘1) < (𝑦‘1) ↔ (𝑋‘1) < (𝑌‘1)))
85, 6eqeqan12d 2745 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑥‘1) = (𝑦‘1) ↔ (𝑋‘1) = (𝑌‘1)))
9 fveq1 6827 . . . . . 6 (𝑥 = 𝑋 → (𝑥‘2) = (𝑋‘2))
10 fveq1 6827 . . . . . 6 (𝑦 = 𝑌 → (𝑦‘2) = (𝑌‘2))
119, 10breqan12d 5109 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑥‘2) < (𝑦‘2) ↔ (𝑋‘2) < (𝑌‘2)))
128, 11anbi12d 632 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → (((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2)) ↔ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))))
137, 12orbi12d 918 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → (((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))) ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)))))
1413opelopab2a 5478 . 2 ((𝑋𝑅𝑌𝑅) → (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑅𝑦𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))} ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)))))
154, 14bitrid 283 1 ((𝑋𝑅𝑌𝑅) → (𝑋𝑂𝑌 ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  cop 4581   class class class wbr 5093  {copab 5155  cfv 6487  1c1 11013   < clt 11152  2c2 12186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-iota 6443  df-fv 6495
This theorem is referenced by:  rrx2plord1  48827  rrx2plord2  48828  rrx2plordisom  48829
  Copyright terms: Public domain W3C validator