Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2plord2 Structured version   Visualization version   GIF version

Theorem rrx2plord2 47495
Description: The lexicographical ordering for points in the two dimensional Euclidean plane: if the first coordinates of two points are equal, a point is less than another point iff the second coordinate of the point is less than the second coordinate of the other point. (Contributed by AV, 12-Mar-2023.)
Hypotheses
Ref Expression
rrx2plord.o 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑅𝑦𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))}
rrx2plord2.r 𝑅 = (ℝ ↑m {1, 2})
Assertion
Ref Expression
rrx2plord2 ((𝑋𝑅𝑌𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋𝑂𝑌 ↔ (𝑋‘2) < (𝑌‘2)))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑂(𝑥,𝑦)

Proof of Theorem rrx2plord2
StepHypRef Expression
1 rrx2plord.o . . . 4 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑅𝑦𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))}
21rrx2plord 47493 . . 3 ((𝑋𝑅𝑌𝑅) → (𝑋𝑂𝑌 ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)))))
323adant3 1130 . 2 ((𝑋𝑅𝑌𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋𝑂𝑌 ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)))))
4 eqid 2730 . . . . . . . . . . . 12 {1, 2} = {1, 2}
5 rrx2plord2.r . . . . . . . . . . . 12 𝑅 = (ℝ ↑m {1, 2})
64, 5rrx2pxel 47484 . . . . . . . . . . 11 (𝑋𝑅 → (𝑋‘1) ∈ ℝ)
76adantr 479 . . . . . . . . . 10 ((𝑋𝑅𝑌𝑅) → (𝑋‘1) ∈ ℝ)
8 ltne 11315 . . . . . . . . . . 11 (((𝑋‘1) ∈ ℝ ∧ (𝑋‘1) < (𝑌‘1)) → (𝑌‘1) ≠ (𝑋‘1))
98necomd 2994 . . . . . . . . . 10 (((𝑋‘1) ∈ ℝ ∧ (𝑋‘1) < (𝑌‘1)) → (𝑋‘1) ≠ (𝑌‘1))
107, 9sylan 578 . . . . . . . . 9 (((𝑋𝑅𝑌𝑅) ∧ (𝑋‘1) < (𝑌‘1)) → (𝑋‘1) ≠ (𝑌‘1))
1110ex 411 . . . . . . . 8 ((𝑋𝑅𝑌𝑅) → ((𝑋‘1) < (𝑌‘1) → (𝑋‘1) ≠ (𝑌‘1)))
12 eqneqall 2949 . . . . . . . 8 ((𝑋‘1) = (𝑌‘1) → ((𝑋‘1) ≠ (𝑌‘1) → (𝑋‘2) < (𝑌‘2)))
1311, 12syl9 77 . . . . . . 7 ((𝑋𝑅𝑌𝑅) → ((𝑋‘1) = (𝑌‘1) → ((𝑋‘1) < (𝑌‘1) → (𝑋‘2) < (𝑌‘2))))
14133impia 1115 . . . . . 6 ((𝑋𝑅𝑌𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → ((𝑋‘1) < (𝑌‘1) → (𝑋‘2) < (𝑌‘2)))
1514com12 32 . . . . 5 ((𝑋‘1) < (𝑌‘1) → ((𝑋𝑅𝑌𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋‘2) < (𝑌‘2)))
16 simpr 483 . . . . . 6 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)) → (𝑋‘2) < (𝑌‘2))
1716a1d 25 . . . . 5 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)) → ((𝑋𝑅𝑌𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋‘2) < (𝑌‘2)))
1815, 17jaoi 853 . . . 4 (((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))) → ((𝑋𝑅𝑌𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋‘2) < (𝑌‘2)))
1918com12 32 . . 3 ((𝑋𝑅𝑌𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))) → (𝑋‘2) < (𝑌‘2)))
20 olc 864 . . . . 5 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)) → ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))))
2120ex 411 . . . 4 ((𝑋‘1) = (𝑌‘1) → ((𝑋‘2) < (𝑌‘2) → ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)))))
22213ad2ant3 1133 . . 3 ((𝑋𝑅𝑌𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → ((𝑋‘2) < (𝑌‘2) → ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)))))
2319, 22impbid 211 . 2 ((𝑋𝑅𝑌𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))) ↔ (𝑋‘2) < (𝑌‘2)))
243, 23bitrd 278 1 ((𝑋𝑅𝑌𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋𝑂𝑌 ↔ (𝑋‘2) < (𝑌‘2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 843  w3a 1085   = wceq 1539  wcel 2104  wne 2938  {cpr 4629   class class class wbr 5147  {copab 5209  cfv 6542  (class class class)co 7411  m cmap 8822  cr 11111  1c1 11113   < clt 11252  2c2 12271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-resscn 11169  ax-1cn 11170  ax-pre-lttri 11186  ax-pre-lttrn 11187
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-ltxr 11257
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator