![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrx2plord2 | Structured version Visualization version GIF version |
Description: The lexicographical ordering for points in the two dimensional Euclidean plane: if the first coordinates of two points are equal, a point is less than another point iff the second coordinate of the point is less than the second coordinate of the other point. (Contributed by AV, 12-Mar-2023.) |
Ref | Expression |
---|---|
rrx2plord.o | ⊢ 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))} |
rrx2plord2.r | ⊢ 𝑅 = (ℝ ↑m {1, 2}) |
Ref | Expression |
---|---|
rrx2plord2 | ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋𝑂𝑌 ↔ (𝑋‘2) < (𝑌‘2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrx2plord.o | . . . 4 ⊢ 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))} | |
2 | 1 | rrx2plord 47359 | . . 3 ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (𝑋𝑂𝑌 ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))))) |
3 | 2 | 3adant3 1132 | . 2 ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋𝑂𝑌 ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))))) |
4 | eqid 2732 | . . . . . . . . . . . 12 ⊢ {1, 2} = {1, 2} | |
5 | rrx2plord2.r | . . . . . . . . . . . 12 ⊢ 𝑅 = (ℝ ↑m {1, 2}) | |
6 | 4, 5 | rrx2pxel 47350 | . . . . . . . . . . 11 ⊢ (𝑋 ∈ 𝑅 → (𝑋‘1) ∈ ℝ) |
7 | 6 | adantr 481 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (𝑋‘1) ∈ ℝ) |
8 | ltne 11307 | . . . . . . . . . . 11 ⊢ (((𝑋‘1) ∈ ℝ ∧ (𝑋‘1) < (𝑌‘1)) → (𝑌‘1) ≠ (𝑋‘1)) | |
9 | 8 | necomd 2996 | . . . . . . . . . 10 ⊢ (((𝑋‘1) ∈ ℝ ∧ (𝑋‘1) < (𝑌‘1)) → (𝑋‘1) ≠ (𝑌‘1)) |
10 | 7, 9 | sylan 580 | . . . . . . . . 9 ⊢ (((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) ∧ (𝑋‘1) < (𝑌‘1)) → (𝑋‘1) ≠ (𝑌‘1)) |
11 | 10 | ex 413 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → ((𝑋‘1) < (𝑌‘1) → (𝑋‘1) ≠ (𝑌‘1))) |
12 | eqneqall 2951 | . . . . . . . 8 ⊢ ((𝑋‘1) = (𝑌‘1) → ((𝑋‘1) ≠ (𝑌‘1) → (𝑋‘2) < (𝑌‘2))) | |
13 | 11, 12 | syl9 77 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → ((𝑋‘1) = (𝑌‘1) → ((𝑋‘1) < (𝑌‘1) → (𝑋‘2) < (𝑌‘2)))) |
14 | 13 | 3impia 1117 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → ((𝑋‘1) < (𝑌‘1) → (𝑋‘2) < (𝑌‘2))) |
15 | 14 | com12 32 | . . . . 5 ⊢ ((𝑋‘1) < (𝑌‘1) → ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋‘2) < (𝑌‘2))) |
16 | simpr 485 | . . . . . 6 ⊢ (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)) → (𝑋‘2) < (𝑌‘2)) | |
17 | 16 | a1d 25 | . . . . 5 ⊢ (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)) → ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋‘2) < (𝑌‘2))) |
18 | 15, 17 | jaoi 855 | . . . 4 ⊢ (((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))) → ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋‘2) < (𝑌‘2))) |
19 | 18 | com12 32 | . . 3 ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))) → (𝑋‘2) < (𝑌‘2))) |
20 | olc 866 | . . . . 5 ⊢ (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)) → ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)))) | |
21 | 20 | ex 413 | . . . 4 ⊢ ((𝑋‘1) = (𝑌‘1) → ((𝑋‘2) < (𝑌‘2) → ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))))) |
22 | 21 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → ((𝑋‘2) < (𝑌‘2) → ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))))) |
23 | 19, 22 | impbid 211 | . 2 ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))) ↔ (𝑋‘2) < (𝑌‘2))) |
24 | 3, 23 | bitrd 278 | 1 ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋𝑂𝑌 ↔ (𝑋‘2) < (𝑌‘2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 845 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 {cpr 4629 class class class wbr 5147 {copab 5209 ‘cfv 6540 (class class class)co 7405 ↑m cmap 8816 ℝcr 11105 1c1 11107 < clt 11244 2c2 12263 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-resscn 11163 ax-1cn 11164 ax-pre-lttri 11180 ax-pre-lttrn 11181 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-ltxr 11249 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |