![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrx2plord2 | Structured version Visualization version GIF version |
Description: The lexicographical ordering for points in the two dimensional Euclidean plane: if the first coordinates of two points are equal, a point is less than another point iff the second coordinate of the point is less than the second coordinate of the other point. (Contributed by AV, 12-Mar-2023.) |
Ref | Expression |
---|---|
rrx2plord.o | ⊢ 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))} |
rrx2plord2.r | ⊢ 𝑅 = (ℝ ↑m {1, 2}) |
Ref | Expression |
---|---|
rrx2plord2 | ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋𝑂𝑌 ↔ (𝑋‘2) < (𝑌‘2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrx2plord.o | . . . 4 ⊢ 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))} | |
2 | 1 | rrx2plord 47493 | . . 3 ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (𝑋𝑂𝑌 ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))))) |
3 | 2 | 3adant3 1130 | . 2 ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋𝑂𝑌 ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))))) |
4 | eqid 2730 | . . . . . . . . . . . 12 ⊢ {1, 2} = {1, 2} | |
5 | rrx2plord2.r | . . . . . . . . . . . 12 ⊢ 𝑅 = (ℝ ↑m {1, 2}) | |
6 | 4, 5 | rrx2pxel 47484 | . . . . . . . . . . 11 ⊢ (𝑋 ∈ 𝑅 → (𝑋‘1) ∈ ℝ) |
7 | 6 | adantr 479 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (𝑋‘1) ∈ ℝ) |
8 | ltne 11315 | . . . . . . . . . . 11 ⊢ (((𝑋‘1) ∈ ℝ ∧ (𝑋‘1) < (𝑌‘1)) → (𝑌‘1) ≠ (𝑋‘1)) | |
9 | 8 | necomd 2994 | . . . . . . . . . 10 ⊢ (((𝑋‘1) ∈ ℝ ∧ (𝑋‘1) < (𝑌‘1)) → (𝑋‘1) ≠ (𝑌‘1)) |
10 | 7, 9 | sylan 578 | . . . . . . . . 9 ⊢ (((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) ∧ (𝑋‘1) < (𝑌‘1)) → (𝑋‘1) ≠ (𝑌‘1)) |
11 | 10 | ex 411 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → ((𝑋‘1) < (𝑌‘1) → (𝑋‘1) ≠ (𝑌‘1))) |
12 | eqneqall 2949 | . . . . . . . 8 ⊢ ((𝑋‘1) = (𝑌‘1) → ((𝑋‘1) ≠ (𝑌‘1) → (𝑋‘2) < (𝑌‘2))) | |
13 | 11, 12 | syl9 77 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → ((𝑋‘1) = (𝑌‘1) → ((𝑋‘1) < (𝑌‘1) → (𝑋‘2) < (𝑌‘2)))) |
14 | 13 | 3impia 1115 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → ((𝑋‘1) < (𝑌‘1) → (𝑋‘2) < (𝑌‘2))) |
15 | 14 | com12 32 | . . . . 5 ⊢ ((𝑋‘1) < (𝑌‘1) → ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋‘2) < (𝑌‘2))) |
16 | simpr 483 | . . . . . 6 ⊢ (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)) → (𝑋‘2) < (𝑌‘2)) | |
17 | 16 | a1d 25 | . . . . 5 ⊢ (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)) → ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋‘2) < (𝑌‘2))) |
18 | 15, 17 | jaoi 853 | . . . 4 ⊢ (((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))) → ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋‘2) < (𝑌‘2))) |
19 | 18 | com12 32 | . . 3 ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))) → (𝑋‘2) < (𝑌‘2))) |
20 | olc 864 | . . . . 5 ⊢ (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)) → ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)))) | |
21 | 20 | ex 411 | . . . 4 ⊢ ((𝑋‘1) = (𝑌‘1) → ((𝑋‘2) < (𝑌‘2) → ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))))) |
22 | 21 | 3ad2ant3 1133 | . . 3 ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → ((𝑋‘2) < (𝑌‘2) → ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))))) |
23 | 19, 22 | impbid 211 | . 2 ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))) ↔ (𝑋‘2) < (𝑌‘2))) |
24 | 3, 23 | bitrd 278 | 1 ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋𝑂𝑌 ↔ (𝑋‘2) < (𝑌‘2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 843 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 ≠ wne 2938 {cpr 4629 class class class wbr 5147 {copab 5209 ‘cfv 6542 (class class class)co 7411 ↑m cmap 8822 ℝcr 11111 1c1 11113 < clt 11252 2c2 12271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-resscn 11169 ax-1cn 11170 ax-pre-lttri 11186 ax-pre-lttrn 11187 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-ltxr 11257 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |