Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fracerl Structured version   Visualization version   GIF version

Theorem fracerl 33256
Description: Rewrite the ring localization equivalence relation in the case of a field of fractions. (Contributed by Thierry Arnoux, 5-May-2025.)
Hypotheses
Ref Expression
fracerl.1 𝐵 = (Base‘𝑅)
fracerl.2 · = (.r𝑅)
fracerl.3 = (𝑅 ~RL (RLReg‘𝑅))
fracerl.4 (𝜑𝑅 ∈ CRing)
fracerl.5 (𝜑𝐸𝐵)
fracerl.6 (𝜑𝐺𝐵)
fracerl.7 (𝜑𝐹 ∈ (RLReg‘𝑅))
fracerl.8 (𝜑𝐻 ∈ (RLReg‘𝑅))
Assertion
Ref Expression
fracerl (𝜑 → (⟨𝐸, 𝐹𝐺, 𝐻⟩ ↔ (𝐸 · 𝐻) = (𝐺 · 𝐹)))

Proof of Theorem fracerl
Dummy variables 𝑎 𝑏 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fracerl.3 . . . . 5 = (𝑅 ~RL (RLReg‘𝑅))
2 fracerl.1 . . . . . 6 𝐵 = (Base‘𝑅)
3 eqid 2729 . . . . . 6 (0g𝑅) = (0g𝑅)
4 fracerl.2 . . . . . 6 · = (.r𝑅)
5 eqid 2729 . . . . . 6 (-g𝑅) = (-g𝑅)
6 eqid 2729 . . . . . 6 (𝐵 × (RLReg‘𝑅)) = (𝐵 × (RLReg‘𝑅))
7 eqid 2729 . . . . . 6 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × (RLReg‘𝑅)) ∧ 𝑏 ∈ (𝐵 × (RLReg‘𝑅))) ∧ ∃𝑡 ∈ (RLReg‘𝑅)(𝑡 · (((1st𝑎) · (2nd𝑏))(-g𝑅)((1st𝑏) · (2nd𝑎)))) = (0g𝑅))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × (RLReg‘𝑅)) ∧ 𝑏 ∈ (𝐵 × (RLReg‘𝑅))) ∧ ∃𝑡 ∈ (RLReg‘𝑅)(𝑡 · (((1st𝑎) · (2nd𝑏))(-g𝑅)((1st𝑏) · (2nd𝑎)))) = (0g𝑅))}
8 eqid 2729 . . . . . . . 8 (RLReg‘𝑅) = (RLReg‘𝑅)
98, 2rrgss 20611 . . . . . . 7 (RLReg‘𝑅) ⊆ 𝐵
109a1i 11 . . . . . 6 (𝜑 → (RLReg‘𝑅) ⊆ 𝐵)
112, 3, 4, 5, 6, 7, 10erlval 33209 . . . . 5 (𝜑 → (𝑅 ~RL (RLReg‘𝑅)) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × (RLReg‘𝑅)) ∧ 𝑏 ∈ (𝐵 × (RLReg‘𝑅))) ∧ ∃𝑡 ∈ (RLReg‘𝑅)(𝑡 · (((1st𝑎) · (2nd𝑏))(-g𝑅)((1st𝑏) · (2nd𝑎)))) = (0g𝑅))})
121, 11eqtrid 2776 . . . 4 (𝜑 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × (RLReg‘𝑅)) ∧ 𝑏 ∈ (𝐵 × (RLReg‘𝑅))) ∧ ∃𝑡 ∈ (RLReg‘𝑅)(𝑡 · (((1st𝑎) · (2nd𝑏))(-g𝑅)((1st𝑏) · (2nd𝑎)))) = (0g𝑅))})
13 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐹⟩ ∧ 𝑏 = ⟨𝐺, 𝐻⟩)) → 𝑎 = ⟨𝐸, 𝐹⟩)
1413fveq2d 6862 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐹⟩ ∧ 𝑏 = ⟨𝐺, 𝐻⟩)) → (1st𝑎) = (1st ‘⟨𝐸, 𝐹⟩))
15 fracerl.5 . . . . . . . . . . 11 (𝜑𝐸𝐵)
16 fracerl.7 . . . . . . . . . . . 12 (𝜑𝐹 ∈ (RLReg‘𝑅))
1716adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐹⟩ ∧ 𝑏 = ⟨𝐺, 𝐻⟩)) → 𝐹 ∈ (RLReg‘𝑅))
18 op1stg 7980 . . . . . . . . . . 11 ((𝐸𝐵𝐹 ∈ (RLReg‘𝑅)) → (1st ‘⟨𝐸, 𝐹⟩) = 𝐸)
1915, 17, 18syl2an2r 685 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐹⟩ ∧ 𝑏 = ⟨𝐺, 𝐻⟩)) → (1st ‘⟨𝐸, 𝐹⟩) = 𝐸)
2014, 19eqtrd 2764 . . . . . . . . 9 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐹⟩ ∧ 𝑏 = ⟨𝐺, 𝐻⟩)) → (1st𝑎) = 𝐸)
21 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐹⟩ ∧ 𝑏 = ⟨𝐺, 𝐻⟩)) → 𝑏 = ⟨𝐺, 𝐻⟩)
2221fveq2d 6862 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐹⟩ ∧ 𝑏 = ⟨𝐺, 𝐻⟩)) → (2nd𝑏) = (2nd ‘⟨𝐺, 𝐻⟩))
23 fracerl.6 . . . . . . . . . . 11 (𝜑𝐺𝐵)
24 fracerl.8 . . . . . . . . . . . 12 (𝜑𝐻 ∈ (RLReg‘𝑅))
2524adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐹⟩ ∧ 𝑏 = ⟨𝐺, 𝐻⟩)) → 𝐻 ∈ (RLReg‘𝑅))
26 op2ndg 7981 . . . . . . . . . . 11 ((𝐺𝐵𝐻 ∈ (RLReg‘𝑅)) → (2nd ‘⟨𝐺, 𝐻⟩) = 𝐻)
2723, 25, 26syl2an2r 685 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐹⟩ ∧ 𝑏 = ⟨𝐺, 𝐻⟩)) → (2nd ‘⟨𝐺, 𝐻⟩) = 𝐻)
2822, 27eqtrd 2764 . . . . . . . . 9 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐹⟩ ∧ 𝑏 = ⟨𝐺, 𝐻⟩)) → (2nd𝑏) = 𝐻)
2920, 28oveq12d 7405 . . . . . . . 8 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐹⟩ ∧ 𝑏 = ⟨𝐺, 𝐻⟩)) → ((1st𝑎) · (2nd𝑏)) = (𝐸 · 𝐻))
3021fveq2d 6862 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐹⟩ ∧ 𝑏 = ⟨𝐺, 𝐻⟩)) → (1st𝑏) = (1st ‘⟨𝐺, 𝐻⟩))
31 op1stg 7980 . . . . . . . . . . 11 ((𝐺𝐵𝐻 ∈ (RLReg‘𝑅)) → (1st ‘⟨𝐺, 𝐻⟩) = 𝐺)
3223, 25, 31syl2an2r 685 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐹⟩ ∧ 𝑏 = ⟨𝐺, 𝐻⟩)) → (1st ‘⟨𝐺, 𝐻⟩) = 𝐺)
3330, 32eqtrd 2764 . . . . . . . . 9 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐹⟩ ∧ 𝑏 = ⟨𝐺, 𝐻⟩)) → (1st𝑏) = 𝐺)
3413fveq2d 6862 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐹⟩ ∧ 𝑏 = ⟨𝐺, 𝐻⟩)) → (2nd𝑎) = (2nd ‘⟨𝐸, 𝐹⟩))
35 op2ndg 7981 . . . . . . . . . . 11 ((𝐸𝐵𝐹 ∈ (RLReg‘𝑅)) → (2nd ‘⟨𝐸, 𝐹⟩) = 𝐹)
3615, 17, 35syl2an2r 685 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐹⟩ ∧ 𝑏 = ⟨𝐺, 𝐻⟩)) → (2nd ‘⟨𝐸, 𝐹⟩) = 𝐹)
3734, 36eqtrd 2764 . . . . . . . . 9 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐹⟩ ∧ 𝑏 = ⟨𝐺, 𝐻⟩)) → (2nd𝑎) = 𝐹)
3833, 37oveq12d 7405 . . . . . . . 8 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐹⟩ ∧ 𝑏 = ⟨𝐺, 𝐻⟩)) → ((1st𝑏) · (2nd𝑎)) = (𝐺 · 𝐹))
3929, 38oveq12d 7405 . . . . . . 7 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐹⟩ ∧ 𝑏 = ⟨𝐺, 𝐻⟩)) → (((1st𝑎) · (2nd𝑏))(-g𝑅)((1st𝑏) · (2nd𝑎))) = ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹)))
4039oveq2d 7403 . . . . . 6 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐹⟩ ∧ 𝑏 = ⟨𝐺, 𝐻⟩)) → (𝑡 · (((1st𝑎) · (2nd𝑏))(-g𝑅)((1st𝑏) · (2nd𝑎)))) = (𝑡 · ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹))))
4140eqeq1d 2731 . . . . 5 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐹⟩ ∧ 𝑏 = ⟨𝐺, 𝐻⟩)) → ((𝑡 · (((1st𝑎) · (2nd𝑏))(-g𝑅)((1st𝑏) · (2nd𝑎)))) = (0g𝑅) ↔ (𝑡 · ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹))) = (0g𝑅)))
4241rexbidv 3157 . . . 4 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐹⟩ ∧ 𝑏 = ⟨𝐺, 𝐻⟩)) → (∃𝑡 ∈ (RLReg‘𝑅)(𝑡 · (((1st𝑎) · (2nd𝑏))(-g𝑅)((1st𝑏) · (2nd𝑎)))) = (0g𝑅) ↔ ∃𝑡 ∈ (RLReg‘𝑅)(𝑡 · ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹))) = (0g𝑅)))
4312, 42brab2d 32535 . . 3 (𝜑 → (⟨𝐸, 𝐹𝐺, 𝐻⟩ ↔ ((⟨𝐸, 𝐹⟩ ∈ (𝐵 × (RLReg‘𝑅)) ∧ ⟨𝐺, 𝐻⟩ ∈ (𝐵 × (RLReg‘𝑅))) ∧ ∃𝑡 ∈ (RLReg‘𝑅)(𝑡 · ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹))) = (0g𝑅))))
4415, 16opelxpd 5677 . . . . 5 (𝜑 → ⟨𝐸, 𝐹⟩ ∈ (𝐵 × (RLReg‘𝑅)))
4523, 24opelxpd 5677 . . . . 5 (𝜑 → ⟨𝐺, 𝐻⟩ ∈ (𝐵 × (RLReg‘𝑅)))
4644, 45jca 511 . . . 4 (𝜑 → (⟨𝐸, 𝐹⟩ ∈ (𝐵 × (RLReg‘𝑅)) ∧ ⟨𝐺, 𝐻⟩ ∈ (𝐵 × (RLReg‘𝑅))))
4746biantrurd 532 . . 3 (𝜑 → (∃𝑡 ∈ (RLReg‘𝑅)(𝑡 · ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹))) = (0g𝑅) ↔ ((⟨𝐸, 𝐹⟩ ∈ (𝐵 × (RLReg‘𝑅)) ∧ ⟨𝐺, 𝐻⟩ ∈ (𝐵 × (RLReg‘𝑅))) ∧ ∃𝑡 ∈ (RLReg‘𝑅)(𝑡 · ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹))) = (0g𝑅))))
48 simplr 768 . . . . . 6 (((𝜑𝑡 ∈ (RLReg‘𝑅)) ∧ (𝑡 · ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹))) = (0g𝑅)) → 𝑡 ∈ (RLReg‘𝑅))
49 fracerl.4 . . . . . . . . 9 (𝜑𝑅 ∈ CRing)
5049crnggrpd 20156 . . . . . . . 8 (𝜑𝑅 ∈ Grp)
5150ad2antrr 726 . . . . . . 7 (((𝜑𝑡 ∈ (RLReg‘𝑅)) ∧ (𝑡 · ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹))) = (0g𝑅)) → 𝑅 ∈ Grp)
5249crngringd 20155 . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
5352ad2antrr 726 . . . . . . . 8 (((𝜑𝑡 ∈ (RLReg‘𝑅)) ∧ (𝑡 · ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹))) = (0g𝑅)) → 𝑅 ∈ Ring)
5415ad2antrr 726 . . . . . . . 8 (((𝜑𝑡 ∈ (RLReg‘𝑅)) ∧ (𝑡 · ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹))) = (0g𝑅)) → 𝐸𝐵)
559, 24sselid 3944 . . . . . . . . 9 (𝜑𝐻𝐵)
5655ad2antrr 726 . . . . . . . 8 (((𝜑𝑡 ∈ (RLReg‘𝑅)) ∧ (𝑡 · ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹))) = (0g𝑅)) → 𝐻𝐵)
572, 4, 53, 54, 56ringcld 20169 . . . . . . 7 (((𝜑𝑡 ∈ (RLReg‘𝑅)) ∧ (𝑡 · ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹))) = (0g𝑅)) → (𝐸 · 𝐻) ∈ 𝐵)
5823ad2antrr 726 . . . . . . . 8 (((𝜑𝑡 ∈ (RLReg‘𝑅)) ∧ (𝑡 · ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹))) = (0g𝑅)) → 𝐺𝐵)
599, 16sselid 3944 . . . . . . . . 9 (𝜑𝐹𝐵)
6059ad2antrr 726 . . . . . . . 8 (((𝜑𝑡 ∈ (RLReg‘𝑅)) ∧ (𝑡 · ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹))) = (0g𝑅)) → 𝐹𝐵)
612, 4, 53, 58, 60ringcld 20169 . . . . . . 7 (((𝜑𝑡 ∈ (RLReg‘𝑅)) ∧ (𝑡 · ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹))) = (0g𝑅)) → (𝐺 · 𝐹) ∈ 𝐵)
622, 5grpsubcl 18952 . . . . . . 7 ((𝑅 ∈ Grp ∧ (𝐸 · 𝐻) ∈ 𝐵 ∧ (𝐺 · 𝐹) ∈ 𝐵) → ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹)) ∈ 𝐵)
6351, 57, 61, 62syl3anc 1373 . . . . . 6 (((𝜑𝑡 ∈ (RLReg‘𝑅)) ∧ (𝑡 · ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹))) = (0g𝑅)) → ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹)) ∈ 𝐵)
64 simpr 484 . . . . . 6 (((𝜑𝑡 ∈ (RLReg‘𝑅)) ∧ (𝑡 · ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹))) = (0g𝑅)) → (𝑡 · ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹))) = (0g𝑅))
658, 2, 4, 3rrgeq0i 20608 . . . . . . 7 ((𝑡 ∈ (RLReg‘𝑅) ∧ ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹)) ∈ 𝐵) → ((𝑡 · ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹))) = (0g𝑅) → ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹)) = (0g𝑅)))
6665imp 406 . . . . . 6 (((𝑡 ∈ (RLReg‘𝑅) ∧ ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹)) ∈ 𝐵) ∧ (𝑡 · ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹))) = (0g𝑅)) → ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹)) = (0g𝑅))
6748, 63, 64, 66syl21anc 837 . . . . 5 (((𝜑𝑡 ∈ (RLReg‘𝑅)) ∧ (𝑡 · ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹))) = (0g𝑅)) → ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹)) = (0g𝑅))
6867r19.29an 3137 . . . 4 ((𝜑 ∧ ∃𝑡 ∈ (RLReg‘𝑅)(𝑡 · ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹))) = (0g𝑅)) → ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹)) = (0g𝑅))
69 oveq1 7394 . . . . . 6 (𝑡 = (1r𝑅) → (𝑡 · ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹))) = ((1r𝑅) · ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹))))
7069eqeq1d 2731 . . . . 5 (𝑡 = (1r𝑅) → ((𝑡 · ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹))) = (0g𝑅) ↔ ((1r𝑅) · ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹))) = (0g𝑅)))
71 eqid 2729 . . . . . . 7 (1r𝑅) = (1r𝑅)
7271, 8, 521rrg 33233 . . . . . 6 (𝜑 → (1r𝑅) ∈ (RLReg‘𝑅))
7372adantr 480 . . . . 5 ((𝜑 ∧ ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹)) = (0g𝑅)) → (1r𝑅) ∈ (RLReg‘𝑅))
74 simpr 484 . . . . . . 7 ((𝜑 ∧ ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹)) = (0g𝑅)) → ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹)) = (0g𝑅))
7574oveq2d 7403 . . . . . 6 ((𝜑 ∧ ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹)) = (0g𝑅)) → ((1r𝑅) · ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹))) = ((1r𝑅) · (0g𝑅)))
762, 71ringidcl 20174 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
7752, 76syl 17 . . . . . . . 8 (𝜑 → (1r𝑅) ∈ 𝐵)
782, 4, 3, 52, 77ringrzd 20205 . . . . . . 7 (𝜑 → ((1r𝑅) · (0g𝑅)) = (0g𝑅))
7978adantr 480 . . . . . 6 ((𝜑 ∧ ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹)) = (0g𝑅)) → ((1r𝑅) · (0g𝑅)) = (0g𝑅))
8075, 79eqtrd 2764 . . . . 5 ((𝜑 ∧ ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹)) = (0g𝑅)) → ((1r𝑅) · ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹))) = (0g𝑅))
8170, 73, 80rspcedvdw 3591 . . . 4 ((𝜑 ∧ ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹)) = (0g𝑅)) → ∃𝑡 ∈ (RLReg‘𝑅)(𝑡 · ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹))) = (0g𝑅))
8268, 81impbida 800 . . 3 (𝜑 → (∃𝑡 ∈ (RLReg‘𝑅)(𝑡 · ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹))) = (0g𝑅) ↔ ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹)) = (0g𝑅)))
8343, 47, 823bitr2d 307 . 2 (𝜑 → (⟨𝐸, 𝐹𝐺, 𝐻⟩ ↔ ((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹)) = (0g𝑅)))
842, 4, 52, 15, 55ringcld 20169 . . 3 (𝜑 → (𝐸 · 𝐻) ∈ 𝐵)
852, 4, 52, 23, 59ringcld 20169 . . 3 (𝜑 → (𝐺 · 𝐹) ∈ 𝐵)
862, 3, 5grpsubeq0 18958 . . 3 ((𝑅 ∈ Grp ∧ (𝐸 · 𝐻) ∈ 𝐵 ∧ (𝐺 · 𝐹) ∈ 𝐵) → (((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹)) = (0g𝑅) ↔ (𝐸 · 𝐻) = (𝐺 · 𝐹)))
8750, 84, 85, 86syl3anc 1373 . 2 (𝜑 → (((𝐸 · 𝐻)(-g𝑅)(𝐺 · 𝐹)) = (0g𝑅) ↔ (𝐸 · 𝐻) = (𝐺 · 𝐹)))
8883, 87bitrd 279 1 (𝜑 → (⟨𝐸, 𝐹𝐺, 𝐻⟩ ↔ (𝐸 · 𝐻) = (𝐺 · 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  wss 3914  cop 4595   class class class wbr 5107  {copab 5169   × cxp 5636  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  Basecbs 17179  .rcmulr 17221  0gc0g 17402  Grpcgrp 18865  -gcsg 18867  1rcur 20090  Ringcrg 20142  CRingccrg 20143  RLRegcrlreg 20600   ~RL cerl 33204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-rlreg 20603  df-erl 33206
This theorem is referenced by:  fracfld  33258  zringfrac  33525
  Copyright terms: Public domain W3C validator