Step | Hyp | Ref
| Expression |
1 | | fracerl.3 |
. . . . 5
⊢ ∼ =
(𝑅 ~RL
(RLReg‘𝑅)) |
2 | | fracerl.1 |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
3 | | eqid 2725 |
. . . . . 6
⊢
(0g‘𝑅) = (0g‘𝑅) |
4 | | fracerl.2 |
. . . . . 6
⊢ · =
(.r‘𝑅) |
5 | | eqid 2725 |
. . . . . 6
⊢
(-g‘𝑅) = (-g‘𝑅) |
6 | | eqid 2725 |
. . . . . 6
⊢ (𝐵 × (RLReg‘𝑅)) = (𝐵 × (RLReg‘𝑅)) |
7 | | eqid 2725 |
. . . . . 6
⊢
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝐵 × (RLReg‘𝑅)) ∧ 𝑏 ∈ (𝐵 × (RLReg‘𝑅))) ∧ ∃𝑡 ∈ (RLReg‘𝑅)(𝑡 · (((1st
‘𝑎) ·
(2nd ‘𝑏))(-g‘𝑅)((1st ‘𝑏) · (2nd
‘𝑎)))) =
(0g‘𝑅))} =
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝐵 × (RLReg‘𝑅)) ∧ 𝑏 ∈ (𝐵 × (RLReg‘𝑅))) ∧ ∃𝑡 ∈ (RLReg‘𝑅)(𝑡 · (((1st
‘𝑎) ·
(2nd ‘𝑏))(-g‘𝑅)((1st ‘𝑏) · (2nd
‘𝑎)))) =
(0g‘𝑅))} |
8 | | eqid 2725 |
. . . . . . . 8
⊢
(RLReg‘𝑅) =
(RLReg‘𝑅) |
9 | 8, 2 | rrgss 21256 |
. . . . . . 7
⊢
(RLReg‘𝑅)
⊆ 𝐵 |
10 | 9 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (RLReg‘𝑅) ⊆ 𝐵) |
11 | 2, 3, 4, 5, 6, 7, 10 | erlval 33048 |
. . . . 5
⊢ (𝜑 → (𝑅 ~RL (RLReg‘𝑅)) = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝐵 × (RLReg‘𝑅)) ∧ 𝑏 ∈ (𝐵 × (RLReg‘𝑅))) ∧ ∃𝑡 ∈ (RLReg‘𝑅)(𝑡 · (((1st
‘𝑎) ·
(2nd ‘𝑏))(-g‘𝑅)((1st ‘𝑏) · (2nd
‘𝑎)))) =
(0g‘𝑅))}) |
12 | 1, 11 | eqtrid 2777 |
. . . 4
⊢ (𝜑 → ∼ = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝐵 × (RLReg‘𝑅)) ∧ 𝑏 ∈ (𝐵 × (RLReg‘𝑅))) ∧ ∃𝑡 ∈ (RLReg‘𝑅)(𝑡 · (((1st
‘𝑎) ·
(2nd ‘𝑏))(-g‘𝑅)((1st ‘𝑏) · (2nd
‘𝑎)))) =
(0g‘𝑅))}) |
13 | | simprl 769 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 = 〈𝐸, 𝐹〉 ∧ 𝑏 = 〈𝐺, 𝐻〉)) → 𝑎 = 〈𝐸, 𝐹〉) |
14 | 13 | fveq2d 6900 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 = 〈𝐸, 𝐹〉 ∧ 𝑏 = 〈𝐺, 𝐻〉)) → (1st ‘𝑎) = (1st
‘〈𝐸, 𝐹〉)) |
15 | | fracerl.5 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈ 𝐵) |
16 | | fracerl.7 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 ∈ (RLReg‘𝑅)) |
17 | 16 | adantr 479 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 = 〈𝐸, 𝐹〉 ∧ 𝑏 = 〈𝐺, 𝐻〉)) → 𝐹 ∈ (RLReg‘𝑅)) |
18 | | op1stg 8006 |
. . . . . . . . . . 11
⊢ ((𝐸 ∈ 𝐵 ∧ 𝐹 ∈ (RLReg‘𝑅)) → (1st ‘〈𝐸, 𝐹〉) = 𝐸) |
19 | 15, 17, 18 | syl2an2r 683 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 = 〈𝐸, 𝐹〉 ∧ 𝑏 = 〈𝐺, 𝐻〉)) → (1st
‘〈𝐸, 𝐹〉) = 𝐸) |
20 | 14, 19 | eqtrd 2765 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 = 〈𝐸, 𝐹〉 ∧ 𝑏 = 〈𝐺, 𝐻〉)) → (1st ‘𝑎) = 𝐸) |
21 | | simprr 771 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 = 〈𝐸, 𝐹〉 ∧ 𝑏 = 〈𝐺, 𝐻〉)) → 𝑏 = 〈𝐺, 𝐻〉) |
22 | 21 | fveq2d 6900 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 = 〈𝐸, 𝐹〉 ∧ 𝑏 = 〈𝐺, 𝐻〉)) → (2nd ‘𝑏) = (2nd
‘〈𝐺, 𝐻〉)) |
23 | | fracerl.6 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈ 𝐵) |
24 | | fracerl.8 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐻 ∈ (RLReg‘𝑅)) |
25 | 24 | adantr 479 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 = 〈𝐸, 𝐹〉 ∧ 𝑏 = 〈𝐺, 𝐻〉)) → 𝐻 ∈ (RLReg‘𝑅)) |
26 | | op2ndg 8007 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ 𝐵 ∧ 𝐻 ∈ (RLReg‘𝑅)) → (2nd ‘〈𝐺, 𝐻〉) = 𝐻) |
27 | 23, 25, 26 | syl2an2r 683 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 = 〈𝐸, 𝐹〉 ∧ 𝑏 = 〈𝐺, 𝐻〉)) → (2nd
‘〈𝐺, 𝐻〉) = 𝐻) |
28 | 22, 27 | eqtrd 2765 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 = 〈𝐸, 𝐹〉 ∧ 𝑏 = 〈𝐺, 𝐻〉)) → (2nd ‘𝑏) = 𝐻) |
29 | 20, 28 | oveq12d 7437 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 = 〈𝐸, 𝐹〉 ∧ 𝑏 = 〈𝐺, 𝐻〉)) → ((1st
‘𝑎) ·
(2nd ‘𝑏))
= (𝐸 · 𝐻)) |
30 | 21 | fveq2d 6900 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 = 〈𝐸, 𝐹〉 ∧ 𝑏 = 〈𝐺, 𝐻〉)) → (1st ‘𝑏) = (1st
‘〈𝐺, 𝐻〉)) |
31 | | op1stg 8006 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ 𝐵 ∧ 𝐻 ∈ (RLReg‘𝑅)) → (1st ‘〈𝐺, 𝐻〉) = 𝐺) |
32 | 23, 25, 31 | syl2an2r 683 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 = 〈𝐸, 𝐹〉 ∧ 𝑏 = 〈𝐺, 𝐻〉)) → (1st
‘〈𝐺, 𝐻〉) = 𝐺) |
33 | 30, 32 | eqtrd 2765 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 = 〈𝐸, 𝐹〉 ∧ 𝑏 = 〈𝐺, 𝐻〉)) → (1st ‘𝑏) = 𝐺) |
34 | 13 | fveq2d 6900 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 = 〈𝐸, 𝐹〉 ∧ 𝑏 = 〈𝐺, 𝐻〉)) → (2nd ‘𝑎) = (2nd
‘〈𝐸, 𝐹〉)) |
35 | | op2ndg 8007 |
. . . . . . . . . . 11
⊢ ((𝐸 ∈ 𝐵 ∧ 𝐹 ∈ (RLReg‘𝑅)) → (2nd ‘〈𝐸, 𝐹〉) = 𝐹) |
36 | 15, 17, 35 | syl2an2r 683 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 = 〈𝐸, 𝐹〉 ∧ 𝑏 = 〈𝐺, 𝐻〉)) → (2nd
‘〈𝐸, 𝐹〉) = 𝐹) |
37 | 34, 36 | eqtrd 2765 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 = 〈𝐸, 𝐹〉 ∧ 𝑏 = 〈𝐺, 𝐻〉)) → (2nd ‘𝑎) = 𝐹) |
38 | 33, 37 | oveq12d 7437 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 = 〈𝐸, 𝐹〉 ∧ 𝑏 = 〈𝐺, 𝐻〉)) → ((1st
‘𝑏) ·
(2nd ‘𝑎))
= (𝐺 · 𝐹)) |
39 | 29, 38 | oveq12d 7437 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 = 〈𝐸, 𝐹〉 ∧ 𝑏 = 〈𝐺, 𝐻〉)) → (((1st
‘𝑎) ·
(2nd ‘𝑏))(-g‘𝑅)((1st ‘𝑏) · (2nd
‘𝑎))) = ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹))) |
40 | 39 | oveq2d 7435 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 = 〈𝐸, 𝐹〉 ∧ 𝑏 = 〈𝐺, 𝐻〉)) → (𝑡 · (((1st
‘𝑎) ·
(2nd ‘𝑏))(-g‘𝑅)((1st ‘𝑏) · (2nd
‘𝑎)))) = (𝑡 · ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹)))) |
41 | 40 | eqeq1d 2727 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 = 〈𝐸, 𝐹〉 ∧ 𝑏 = 〈𝐺, 𝐻〉)) → ((𝑡 · (((1st
‘𝑎) ·
(2nd ‘𝑏))(-g‘𝑅)((1st ‘𝑏) · (2nd
‘𝑎)))) =
(0g‘𝑅)
↔ (𝑡 ·
((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹))) = (0g‘𝑅))) |
42 | 41 | rexbidv 3168 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 = 〈𝐸, 𝐹〉 ∧ 𝑏 = 〈𝐺, 𝐻〉)) → (∃𝑡 ∈ (RLReg‘𝑅)(𝑡 · (((1st
‘𝑎) ·
(2nd ‘𝑏))(-g‘𝑅)((1st ‘𝑏) · (2nd
‘𝑎)))) =
(0g‘𝑅)
↔ ∃𝑡 ∈
(RLReg‘𝑅)(𝑡 · ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹))) = (0g‘𝑅))) |
43 | 12, 42 | brab2d 32476 |
. . 3
⊢ (𝜑 → (〈𝐸, 𝐹〉 ∼ 〈𝐺, 𝐻〉 ↔ ((〈𝐸, 𝐹〉 ∈ (𝐵 × (RLReg‘𝑅)) ∧ 〈𝐺, 𝐻〉 ∈ (𝐵 × (RLReg‘𝑅))) ∧ ∃𝑡 ∈ (RLReg‘𝑅)(𝑡 · ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹))) = (0g‘𝑅)))) |
44 | 15, 16 | opelxpd 5717 |
. . . . 5
⊢ (𝜑 → 〈𝐸, 𝐹〉 ∈ (𝐵 × (RLReg‘𝑅))) |
45 | 23, 24 | opelxpd 5717 |
. . . . 5
⊢ (𝜑 → 〈𝐺, 𝐻〉 ∈ (𝐵 × (RLReg‘𝑅))) |
46 | 44, 45 | jca 510 |
. . . 4
⊢ (𝜑 → (〈𝐸, 𝐹〉 ∈ (𝐵 × (RLReg‘𝑅)) ∧ 〈𝐺, 𝐻〉 ∈ (𝐵 × (RLReg‘𝑅)))) |
47 | 46 | biantrurd 531 |
. . 3
⊢ (𝜑 → (∃𝑡 ∈ (RLReg‘𝑅)(𝑡 · ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹))) = (0g‘𝑅) ↔ ((〈𝐸, 𝐹〉 ∈ (𝐵 × (RLReg‘𝑅)) ∧ 〈𝐺, 𝐻〉 ∈ (𝐵 × (RLReg‘𝑅))) ∧ ∃𝑡 ∈ (RLReg‘𝑅)(𝑡 · ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹))) = (0g‘𝑅)))) |
48 | | simplr 767 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑡 ∈ (RLReg‘𝑅)) ∧ (𝑡 · ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹))) = (0g‘𝑅)) → 𝑡 ∈ (RLReg‘𝑅)) |
49 | | fracerl.4 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ CRing) |
50 | 49 | crnggrpd 20199 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Grp) |
51 | 50 | ad2antrr 724 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ (RLReg‘𝑅)) ∧ (𝑡 · ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹))) = (0g‘𝑅)) → 𝑅 ∈ Grp) |
52 | 49 | crngringd 20198 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Ring) |
53 | 52 | ad2antrr 724 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ (RLReg‘𝑅)) ∧ (𝑡 · ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹))) = (0g‘𝑅)) → 𝑅 ∈ Ring) |
54 | 15 | ad2antrr 724 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ (RLReg‘𝑅)) ∧ (𝑡 · ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹))) = (0g‘𝑅)) → 𝐸 ∈ 𝐵) |
55 | 9, 24 | sselid 3974 |
. . . . . . . . 9
⊢ (𝜑 → 𝐻 ∈ 𝐵) |
56 | 55 | ad2antrr 724 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ (RLReg‘𝑅)) ∧ (𝑡 · ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹))) = (0g‘𝑅)) → 𝐻 ∈ 𝐵) |
57 | 2, 4, 53, 54, 56 | ringcld 20211 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ (RLReg‘𝑅)) ∧ (𝑡 · ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹))) = (0g‘𝑅)) → (𝐸 · 𝐻) ∈ 𝐵) |
58 | 23 | ad2antrr 724 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ (RLReg‘𝑅)) ∧ (𝑡 · ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹))) = (0g‘𝑅)) → 𝐺 ∈ 𝐵) |
59 | 9, 16 | sselid 3974 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
60 | 59 | ad2antrr 724 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ (RLReg‘𝑅)) ∧ (𝑡 · ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹))) = (0g‘𝑅)) → 𝐹 ∈ 𝐵) |
61 | 2, 4, 53, 58, 60 | ringcld 20211 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ (RLReg‘𝑅)) ∧ (𝑡 · ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹))) = (0g‘𝑅)) → (𝐺 · 𝐹) ∈ 𝐵) |
62 | 2, 5 | grpsubcl 18984 |
. . . . . . 7
⊢ ((𝑅 ∈ Grp ∧ (𝐸 · 𝐻) ∈ 𝐵 ∧ (𝐺 · 𝐹) ∈ 𝐵) → ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹)) ∈ 𝐵) |
63 | 51, 57, 61, 62 | syl3anc 1368 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑡 ∈ (RLReg‘𝑅)) ∧ (𝑡 · ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹))) = (0g‘𝑅)) → ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹)) ∈ 𝐵) |
64 | | simpr 483 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑡 ∈ (RLReg‘𝑅)) ∧ (𝑡 · ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹))) = (0g‘𝑅)) → (𝑡 · ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹))) = (0g‘𝑅)) |
65 | 8, 2, 4, 3 | rrgeq0i 21253 |
. . . . . . 7
⊢ ((𝑡 ∈ (RLReg‘𝑅) ∧ ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹)) ∈ 𝐵) → ((𝑡 · ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹))) = (0g‘𝑅) → ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹)) = (0g‘𝑅))) |
66 | 65 | imp 405 |
. . . . . 6
⊢ (((𝑡 ∈ (RLReg‘𝑅) ∧ ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹)) ∈ 𝐵) ∧ (𝑡 · ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹))) = (0g‘𝑅)) → ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹)) = (0g‘𝑅)) |
67 | 48, 63, 64, 66 | syl21anc 836 |
. . . . 5
⊢ (((𝜑 ∧ 𝑡 ∈ (RLReg‘𝑅)) ∧ (𝑡 · ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹))) = (0g‘𝑅)) → ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹)) = (0g‘𝑅)) |
68 | 67 | r19.29an 3147 |
. . . 4
⊢ ((𝜑 ∧ ∃𝑡 ∈ (RLReg‘𝑅)(𝑡 · ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹))) = (0g‘𝑅)) → ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹)) = (0g‘𝑅)) |
69 | | oveq1 7426 |
. . . . . 6
⊢ (𝑡 = (1r‘𝑅) → (𝑡 · ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹))) = ((1r‘𝑅) · ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹)))) |
70 | 69 | eqeq1d 2727 |
. . . . 5
⊢ (𝑡 = (1r‘𝑅) → ((𝑡 · ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹))) = (0g‘𝑅) ↔ ((1r‘𝑅) · ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹))) = (0g‘𝑅))) |
71 | | eqid 2725 |
. . . . . . 7
⊢
(1r‘𝑅) = (1r‘𝑅) |
72 | 71, 8, 52 | 1rrg 33069 |
. . . . . 6
⊢ (𝜑 → (1r‘𝑅) ∈ (RLReg‘𝑅)) |
73 | 72 | adantr 479 |
. . . . 5
⊢ ((𝜑 ∧ ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹)) = (0g‘𝑅)) → (1r‘𝑅) ∈ (RLReg‘𝑅)) |
74 | | simpr 483 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹)) = (0g‘𝑅)) → ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹)) = (0g‘𝑅)) |
75 | 74 | oveq2d 7435 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹)) = (0g‘𝑅)) → ((1r‘𝑅) · ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹))) = ((1r‘𝑅) ·
(0g‘𝑅))) |
76 | 2, 71 | ringidcl 20214 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ 𝐵) |
77 | 52, 76 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (1r‘𝑅) ∈ 𝐵) |
78 | 2, 4, 3, 52, 77 | ringrzd 20244 |
. . . . . . 7
⊢ (𝜑 →
((1r‘𝑅)
·
(0g‘𝑅)) =
(0g‘𝑅)) |
79 | 78 | adantr 479 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹)) = (0g‘𝑅)) → ((1r‘𝑅) ·
(0g‘𝑅)) =
(0g‘𝑅)) |
80 | 75, 79 | eqtrd 2765 |
. . . . 5
⊢ ((𝜑 ∧ ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹)) = (0g‘𝑅)) → ((1r‘𝑅) · ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹))) = (0g‘𝑅)) |
81 | 70, 73, 80 | rspcedvdw 3609 |
. . . 4
⊢ ((𝜑 ∧ ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹)) = (0g‘𝑅)) → ∃𝑡 ∈ (RLReg‘𝑅)(𝑡 · ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹))) = (0g‘𝑅)) |
82 | 68, 81 | impbida 799 |
. . 3
⊢ (𝜑 → (∃𝑡 ∈ (RLReg‘𝑅)(𝑡 · ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹))) = (0g‘𝑅) ↔ ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹)) = (0g‘𝑅))) |
83 | 43, 47, 82 | 3bitr2d 306 |
. 2
⊢ (𝜑 → (〈𝐸, 𝐹〉 ∼ 〈𝐺, 𝐻〉 ↔ ((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹)) = (0g‘𝑅))) |
84 | 2, 4, 52, 15, 55 | ringcld 20211 |
. . 3
⊢ (𝜑 → (𝐸 · 𝐻) ∈ 𝐵) |
85 | 2, 4, 52, 23, 59 | ringcld 20211 |
. . 3
⊢ (𝜑 → (𝐺 · 𝐹) ∈ 𝐵) |
86 | 2, 3, 5 | grpsubeq0 18990 |
. . 3
⊢ ((𝑅 ∈ Grp ∧ (𝐸 · 𝐻) ∈ 𝐵 ∧ (𝐺 · 𝐹) ∈ 𝐵) → (((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹)) = (0g‘𝑅) ↔ (𝐸 · 𝐻) = (𝐺 · 𝐹))) |
87 | 50, 84, 85, 86 | syl3anc 1368 |
. 2
⊢ (𝜑 → (((𝐸 · 𝐻)(-g‘𝑅)(𝐺 · 𝐹)) = (0g‘𝑅) ↔ (𝐸 · 𝐻) = (𝐺 · 𝐹))) |
88 | 83, 87 | bitrd 278 |
1
⊢ (𝜑 → (〈𝐸, 𝐹〉 ∼ 〈𝐺, 𝐻〉 ↔ (𝐸 · 𝐻) = (𝐺 · 𝐹))) |