MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprnglem14 Structured version   Visualization version   GIF version

Theorem pzriprnglem14 21528
Description: Lemma 14 for pzriprng 21531: The ring unity of the ring 𝑄. (Contributed by AV, 23-Mar-2025.)
Hypotheses
Ref Expression
pzriprng.r 𝑅 = (ℤring ×sring)
pzriprng.i 𝐼 = (ℤ × {0})
pzriprng.j 𝐽 = (𝑅s 𝐼)
pzriprng.1 1 = (1r𝐽)
pzriprng.g = (𝑅 ~QG 𝐼)
pzriprng.q 𝑄 = (𝑅 /s )
Assertion
Ref Expression
pzriprnglem14 (1r𝑄) = (ℤ × {1})

Proof of Theorem pzriprnglem14
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1z 12673 . . . . 5 1 ∈ ℤ
2 sneq 4658 . . . . . . . . 9 (𝑦 = 1 → {𝑦} = {1})
32xpeq2d 5730 . . . . . . . 8 (𝑦 = 1 → (ℤ × {𝑦}) = (ℤ × {1}))
43sneqd 4660 . . . . . . 7 (𝑦 = 1 → {(ℤ × {𝑦})} = {(ℤ × {1})})
54eleq2d 2830 . . . . . 6 (𝑦 = 1 → ((ℤ × {1}) ∈ {(ℤ × {𝑦})} ↔ (ℤ × {1}) ∈ {(ℤ × {1})}))
6 id 22 . . . . . 6 (1 ∈ ℤ → 1 ∈ ℤ)
7 zex 12648 . . . . . . . . 9 ℤ ∈ V
8 snex 5451 . . . . . . . . 9 {1} ∈ V
97, 8xpex 7788 . . . . . . . 8 (ℤ × {1}) ∈ V
109snid 4684 . . . . . . 7 (ℤ × {1}) ∈ {(ℤ × {1})}
1110a1i 11 . . . . . 6 (1 ∈ ℤ → (ℤ × {1}) ∈ {(ℤ × {1})})
125, 6, 11rspcedvdw 3638 . . . . 5 (1 ∈ ℤ → ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})})
131, 12ax-mp 5 . . . 4 𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})}
14 pzriprng.r . . . . . . 7 𝑅 = (ℤring ×sring)
15 pzriprng.i . . . . . . 7 𝐼 = (ℤ × {0})
16 pzriprng.j . . . . . . 7 𝐽 = (𝑅s 𝐼)
17 pzriprng.1 . . . . . . 7 1 = (1r𝐽)
18 pzriprng.g . . . . . . 7 = (𝑅 ~QG 𝐼)
19 pzriprng.q . . . . . . 7 𝑄 = (𝑅 /s )
2014, 15, 16, 17, 18, 19pzriprnglem11 21525 . . . . . 6 (Base‘𝑄) = 𝑦 ∈ ℤ {(ℤ × {𝑦})}
2120eleq2i 2836 . . . . 5 ((ℤ × {1}) ∈ (Base‘𝑄) ↔ (ℤ × {1}) ∈ 𝑦 ∈ ℤ {(ℤ × {𝑦})})
22 eliun 5019 . . . . 5 ((ℤ × {1}) ∈ 𝑦 ∈ ℤ {(ℤ × {𝑦})} ↔ ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})})
2321, 22bitri 275 . . . 4 ((ℤ × {1}) ∈ (Base‘𝑄) ↔ ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})})
2413, 23mpbir 231 . . 3 (ℤ × {1}) ∈ (Base‘𝑄)
2514, 15, 16, 17, 18, 19pzriprnglem12 21526 . . . 4 (𝑥 ∈ (Base‘𝑄) → (((ℤ × {1})(.r𝑄)𝑥) = 𝑥 ∧ (𝑥(.r𝑄)(ℤ × {1})) = 𝑥))
2625rgen 3069 . . 3 𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r𝑄)𝑥) = 𝑥 ∧ (𝑥(.r𝑄)(ℤ × {1})) = 𝑥)
2724, 26pm3.2i 470 . 2 ((ℤ × {1}) ∈ (Base‘𝑄) ∧ ∀𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r𝑄)𝑥) = 𝑥 ∧ (𝑥(.r𝑄)(ℤ × {1})) = 𝑥))
2814, 15, 16, 17, 18, 19pzriprnglem13 21527 . . 3 𝑄 ∈ Ring
29 eqid 2740 . . . 4 (Base‘𝑄) = (Base‘𝑄)
30 eqid 2740 . . . 4 (.r𝑄) = (.r𝑄)
31 eqid 2740 . . . 4 (1r𝑄) = (1r𝑄)
3229, 30, 31isringid 20294 . . 3 (𝑄 ∈ Ring → (((ℤ × {1}) ∈ (Base‘𝑄) ∧ ∀𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r𝑄)𝑥) = 𝑥 ∧ (𝑥(.r𝑄)(ℤ × {1})) = 𝑥)) ↔ (1r𝑄) = (ℤ × {1})))
3328, 32ax-mp 5 . 2 (((ℤ × {1}) ∈ (Base‘𝑄) ∧ ∀𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r𝑄)𝑥) = 𝑥 ∧ (𝑥(.r𝑄)(ℤ × {1})) = 𝑥)) ↔ (1r𝑄) = (ℤ × {1}))
3427, 33mpbi 230 1 (1r𝑄) = (ℤ × {1})
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {csn 4648   ciun 5015   × cxp 5698  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185  cz 12639  Basecbs 17258  s cress 17287  .rcmulr 17312   /s cqus 17565   ×s cxps 17566   ~QG cqg 19162  1rcur 20208  Ringcrg 20260  ringczring 21480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-prds 17507  df-imas 17568  df-qus 17569  df-xps 17570  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-nsg 19164  df-eqg 19165  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-subrng 20572  df-subrg 20597  df-lss 20953  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-2idl 21283  df-cnfld 21388  df-zring 21481
This theorem is referenced by:  pzriprng1ALT  21530
  Copyright terms: Public domain W3C validator