| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pzriprnglem14 | Structured version Visualization version GIF version | ||
| Description: Lemma 14 for pzriprng 21404: The ring unity of the ring 𝑄. (Contributed by AV, 23-Mar-2025.) |
| Ref | Expression |
|---|---|
| pzriprng.r | ⊢ 𝑅 = (ℤring ×s ℤring) |
| pzriprng.i | ⊢ 𝐼 = (ℤ × {0}) |
| pzriprng.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| pzriprng.1 | ⊢ 1 = (1r‘𝐽) |
| pzriprng.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
| pzriprng.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
| Ref | Expression |
|---|---|
| pzriprnglem14 | ⊢ (1r‘𝑄) = (ℤ × {1}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z 12505 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 2 | sneq 4587 | . . . . . . . . 9 ⊢ (𝑦 = 1 → {𝑦} = {1}) | |
| 3 | 2 | xpeq2d 5649 | . . . . . . . 8 ⊢ (𝑦 = 1 → (ℤ × {𝑦}) = (ℤ × {1})) |
| 4 | 3 | sneqd 4589 | . . . . . . 7 ⊢ (𝑦 = 1 → {(ℤ × {𝑦})} = {(ℤ × {1})}) |
| 5 | 4 | eleq2d 2814 | . . . . . 6 ⊢ (𝑦 = 1 → ((ℤ × {1}) ∈ {(ℤ × {𝑦})} ↔ (ℤ × {1}) ∈ {(ℤ × {1})})) |
| 6 | id 22 | . . . . . 6 ⊢ (1 ∈ ℤ → 1 ∈ ℤ) | |
| 7 | zex 12480 | . . . . . . . . 9 ⊢ ℤ ∈ V | |
| 8 | snex 5375 | . . . . . . . . 9 ⊢ {1} ∈ V | |
| 9 | 7, 8 | xpex 7689 | . . . . . . . 8 ⊢ (ℤ × {1}) ∈ V |
| 10 | 9 | snid 4614 | . . . . . . 7 ⊢ (ℤ × {1}) ∈ {(ℤ × {1})} |
| 11 | 10 | a1i 11 | . . . . . 6 ⊢ (1 ∈ ℤ → (ℤ × {1}) ∈ {(ℤ × {1})}) |
| 12 | 5, 6, 11 | rspcedvdw 3580 | . . . . 5 ⊢ (1 ∈ ℤ → ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})}) |
| 13 | 1, 12 | ax-mp 5 | . . . 4 ⊢ ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})} |
| 14 | pzriprng.r | . . . . . . 7 ⊢ 𝑅 = (ℤring ×s ℤring) | |
| 15 | pzriprng.i | . . . . . . 7 ⊢ 𝐼 = (ℤ × {0}) | |
| 16 | pzriprng.j | . . . . . . 7 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 17 | pzriprng.1 | . . . . . . 7 ⊢ 1 = (1r‘𝐽) | |
| 18 | pzriprng.g | . . . . . . 7 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
| 19 | pzriprng.q | . . . . . . 7 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
| 20 | 14, 15, 16, 17, 18, 19 | pzriprnglem11 21398 | . . . . . 6 ⊢ (Base‘𝑄) = ∪ 𝑦 ∈ ℤ {(ℤ × {𝑦})} |
| 21 | 20 | eleq2i 2820 | . . . . 5 ⊢ ((ℤ × {1}) ∈ (Base‘𝑄) ↔ (ℤ × {1}) ∈ ∪ 𝑦 ∈ ℤ {(ℤ × {𝑦})}) |
| 22 | eliun 4945 | . . . . 5 ⊢ ((ℤ × {1}) ∈ ∪ 𝑦 ∈ ℤ {(ℤ × {𝑦})} ↔ ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})}) | |
| 23 | 21, 22 | bitri 275 | . . . 4 ⊢ ((ℤ × {1}) ∈ (Base‘𝑄) ↔ ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})}) |
| 24 | 13, 23 | mpbir 231 | . . 3 ⊢ (ℤ × {1}) ∈ (Base‘𝑄) |
| 25 | 14, 15, 16, 17, 18, 19 | pzriprnglem12 21399 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝑄) → (((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)(ℤ × {1})) = 𝑥)) |
| 26 | 25 | rgen 3046 | . . 3 ⊢ ∀𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)(ℤ × {1})) = 𝑥) |
| 27 | 24, 26 | pm3.2i 470 | . 2 ⊢ ((ℤ × {1}) ∈ (Base‘𝑄) ∧ ∀𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)(ℤ × {1})) = 𝑥)) |
| 28 | 14, 15, 16, 17, 18, 19 | pzriprnglem13 21400 | . . 3 ⊢ 𝑄 ∈ Ring |
| 29 | eqid 2729 | . . . 4 ⊢ (Base‘𝑄) = (Base‘𝑄) | |
| 30 | eqid 2729 | . . . 4 ⊢ (.r‘𝑄) = (.r‘𝑄) | |
| 31 | eqid 2729 | . . . 4 ⊢ (1r‘𝑄) = (1r‘𝑄) | |
| 32 | 29, 30, 31 | isringid 20156 | . . 3 ⊢ (𝑄 ∈ Ring → (((ℤ × {1}) ∈ (Base‘𝑄) ∧ ∀𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)(ℤ × {1})) = 𝑥)) ↔ (1r‘𝑄) = (ℤ × {1}))) |
| 33 | 28, 32 | ax-mp 5 | . 2 ⊢ (((ℤ × {1}) ∈ (Base‘𝑄) ∧ ∀𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)(ℤ × {1})) = 𝑥)) ↔ (1r‘𝑄) = (ℤ × {1})) |
| 34 | 27, 33 | mpbi 230 | 1 ⊢ (1r‘𝑄) = (ℤ × {1}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {csn 4577 ∪ ciun 4941 × cxp 5617 ‘cfv 6482 (class class class)co 7349 0cc0 11009 1c1 11010 ℤcz 12471 Basecbs 17120 ↾s cress 17141 .rcmulr 17162 /s cqus 17409 ×s cxps 17410 ~QG cqg 19001 1rcur 20066 Ringcrg 20118 ℤringczring 21353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-addf 11088 ax-mulf 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-ec 8627 df-qs 8631 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-prds 17351 df-imas 17412 df-qus 17413 df-xps 17414 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-sbg 18817 df-subg 19002 df-nsg 19003 df-eqg 19004 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-oppr 20222 df-subrng 20431 df-subrg 20455 df-lss 20835 df-sra 21077 df-rgmod 21078 df-lidl 21115 df-2idl 21157 df-cnfld 21262 df-zring 21354 |
| This theorem is referenced by: pzriprng1ALT 21403 |
| Copyright terms: Public domain | W3C validator |