![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pzriprnglem14 | Structured version Visualization version GIF version |
Description: Lemma 14 for pzriprng 46821: The ring unity of the ring 𝑄. (Contributed by AV, 23-Mar-2025.) |
Ref | Expression |
---|---|
pzriprng.r | ⊢ 𝑅 = (ℤring ×s ℤring) |
pzriprng.i | ⊢ 𝐼 = (ℤ × {0}) |
pzriprng.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
pzriprng.1 | ⊢ 1 = (1r‘𝐽) |
pzriprng.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
pzriprng.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
Ref | Expression |
---|---|
pzriprnglem14 | ⊢ (1r‘𝑄) = (ℤ × {1}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 12592 | . . . . 5 ⊢ 1 ∈ ℤ | |
2 | sneq 4639 | . . . . . . . . 9 ⊢ (𝑦 = 1 → {𝑦} = {1}) | |
3 | 2 | xpeq2d 5707 | . . . . . . . 8 ⊢ (𝑦 = 1 → (ℤ × {𝑦}) = (ℤ × {1})) |
4 | 3 | sneqd 4641 | . . . . . . 7 ⊢ (𝑦 = 1 → {(ℤ × {𝑦})} = {(ℤ × {1})}) |
5 | 4 | eleq2d 2820 | . . . . . 6 ⊢ (𝑦 = 1 → ((ℤ × {1}) ∈ {(ℤ × {𝑦})} ↔ (ℤ × {1}) ∈ {(ℤ × {1})})) |
6 | id 22 | . . . . . 6 ⊢ (1 ∈ ℤ → 1 ∈ ℤ) | |
7 | zex 12567 | . . . . . . . . 9 ⊢ ℤ ∈ V | |
8 | snex 5432 | . . . . . . . . 9 ⊢ {1} ∈ V | |
9 | 7, 8 | xpex 7740 | . . . . . . . 8 ⊢ (ℤ × {1}) ∈ V |
10 | 9 | snid 4665 | . . . . . . 7 ⊢ (ℤ × {1}) ∈ {(ℤ × {1})} |
11 | 10 | a1i 11 | . . . . . 6 ⊢ (1 ∈ ℤ → (ℤ × {1}) ∈ {(ℤ × {1})}) |
12 | 5, 6, 11 | rspcedvdw 3616 | . . . . 5 ⊢ (1 ∈ ℤ → ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})}) |
13 | 1, 12 | ax-mp 5 | . . . 4 ⊢ ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})} |
14 | pzriprng.r | . . . . . . 7 ⊢ 𝑅 = (ℤring ×s ℤring) | |
15 | pzriprng.i | . . . . . . 7 ⊢ 𝐼 = (ℤ × {0}) | |
16 | pzriprng.j | . . . . . . 7 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
17 | pzriprng.1 | . . . . . . 7 ⊢ 1 = (1r‘𝐽) | |
18 | pzriprng.g | . . . . . . 7 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
19 | pzriprng.q | . . . . . . 7 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
20 | 14, 15, 16, 17, 18, 19 | pzriprnglem11 46815 | . . . . . 6 ⊢ (Base‘𝑄) = ∪ 𝑦 ∈ ℤ {(ℤ × {𝑦})} |
21 | 20 | eleq2i 2826 | . . . . 5 ⊢ ((ℤ × {1}) ∈ (Base‘𝑄) ↔ (ℤ × {1}) ∈ ∪ 𝑦 ∈ ℤ {(ℤ × {𝑦})}) |
22 | eliun 5002 | . . . . 5 ⊢ ((ℤ × {1}) ∈ ∪ 𝑦 ∈ ℤ {(ℤ × {𝑦})} ↔ ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})}) | |
23 | 21, 22 | bitri 275 | . . . 4 ⊢ ((ℤ × {1}) ∈ (Base‘𝑄) ↔ ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})}) |
24 | 13, 23 | mpbir 230 | . . 3 ⊢ (ℤ × {1}) ∈ (Base‘𝑄) |
25 | 14, 15, 16, 17, 18, 19 | pzriprnglem12 46816 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝑄) → (((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)(ℤ × {1})) = 𝑥)) |
26 | 25 | rgen 3064 | . . 3 ⊢ ∀𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)(ℤ × {1})) = 𝑥) |
27 | 24, 26 | pm3.2i 472 | . 2 ⊢ ((ℤ × {1}) ∈ (Base‘𝑄) ∧ ∀𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)(ℤ × {1})) = 𝑥)) |
28 | 14, 15, 16, 17, 18, 19 | pzriprnglem13 46817 | . . 3 ⊢ 𝑄 ∈ Ring |
29 | eqid 2733 | . . . 4 ⊢ (Base‘𝑄) = (Base‘𝑄) | |
30 | eqid 2733 | . . . 4 ⊢ (.r‘𝑄) = (.r‘𝑄) | |
31 | eqid 2733 | . . . 4 ⊢ (1r‘𝑄) = (1r‘𝑄) | |
32 | 29, 30, 31 | isringid 20088 | . . 3 ⊢ (𝑄 ∈ Ring → (((ℤ × {1}) ∈ (Base‘𝑄) ∧ ∀𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)(ℤ × {1})) = 𝑥)) ↔ (1r‘𝑄) = (ℤ × {1}))) |
33 | 28, 32 | ax-mp 5 | . 2 ⊢ (((ℤ × {1}) ∈ (Base‘𝑄) ∧ ∀𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)(ℤ × {1})) = 𝑥)) ↔ (1r‘𝑄) = (ℤ × {1})) |
34 | 27, 33 | mpbi 229 | 1 ⊢ (1r‘𝑄) = (ℤ × {1}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ∃wrex 3071 {csn 4629 ∪ ciun 4998 × cxp 5675 ‘cfv 6544 (class class class)co 7409 0cc0 11110 1c1 11111 ℤcz 12558 Basecbs 17144 ↾s cress 17173 .rcmulr 17198 /s cqus 17451 ×s cxps 17452 ~QG cqg 19002 1rcur 20004 Ringcrg 20056 ℤringczring 21017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-addf 11189 ax-mulf 11190 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-tpos 8211 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-2o 8467 df-er 8703 df-ec 8705 df-qs 8709 df-map 8822 df-ixp 8892 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-sup 9437 df-inf 9438 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-fz 13485 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-hom 17221 df-cco 17222 df-0g 17387 df-prds 17393 df-imas 17454 df-qus 17455 df-xps 17456 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-minusg 18823 df-sbg 18824 df-subg 19003 df-nsg 19004 df-eqg 19005 df-cmn 19650 df-abl 19651 df-mgp 19988 df-ur 20005 df-ring 20058 df-cring 20059 df-oppr 20150 df-subrg 20317 df-lss 20543 df-sra 20785 df-rgmod 20786 df-lidl 20787 df-2idl 20857 df-cnfld 20945 df-zring 21018 df-rng 46649 |
This theorem is referenced by: pzriprng1ALT 46820 |
Copyright terms: Public domain | W3C validator |