| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pzriprnglem14 | Structured version Visualization version GIF version | ||
| Description: Lemma 14 for pzriprng 21407: The ring unity of the ring 𝑄. (Contributed by AV, 23-Mar-2025.) |
| Ref | Expression |
|---|---|
| pzriprng.r | ⊢ 𝑅 = (ℤring ×s ℤring) |
| pzriprng.i | ⊢ 𝐼 = (ℤ × {0}) |
| pzriprng.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| pzriprng.1 | ⊢ 1 = (1r‘𝐽) |
| pzriprng.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
| pzriprng.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
| Ref | Expression |
|---|---|
| pzriprnglem14 | ⊢ (1r‘𝑄) = (ℤ × {1}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z 12563 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 2 | sneq 4599 | . . . . . . . . 9 ⊢ (𝑦 = 1 → {𝑦} = {1}) | |
| 3 | 2 | xpeq2d 5668 | . . . . . . . 8 ⊢ (𝑦 = 1 → (ℤ × {𝑦}) = (ℤ × {1})) |
| 4 | 3 | sneqd 4601 | . . . . . . 7 ⊢ (𝑦 = 1 → {(ℤ × {𝑦})} = {(ℤ × {1})}) |
| 5 | 4 | eleq2d 2814 | . . . . . 6 ⊢ (𝑦 = 1 → ((ℤ × {1}) ∈ {(ℤ × {𝑦})} ↔ (ℤ × {1}) ∈ {(ℤ × {1})})) |
| 6 | id 22 | . . . . . 6 ⊢ (1 ∈ ℤ → 1 ∈ ℤ) | |
| 7 | zex 12538 | . . . . . . . . 9 ⊢ ℤ ∈ V | |
| 8 | snex 5391 | . . . . . . . . 9 ⊢ {1} ∈ V | |
| 9 | 7, 8 | xpex 7729 | . . . . . . . 8 ⊢ (ℤ × {1}) ∈ V |
| 10 | 9 | snid 4626 | . . . . . . 7 ⊢ (ℤ × {1}) ∈ {(ℤ × {1})} |
| 11 | 10 | a1i 11 | . . . . . 6 ⊢ (1 ∈ ℤ → (ℤ × {1}) ∈ {(ℤ × {1})}) |
| 12 | 5, 6, 11 | rspcedvdw 3591 | . . . . 5 ⊢ (1 ∈ ℤ → ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})}) |
| 13 | 1, 12 | ax-mp 5 | . . . 4 ⊢ ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})} |
| 14 | pzriprng.r | . . . . . . 7 ⊢ 𝑅 = (ℤring ×s ℤring) | |
| 15 | pzriprng.i | . . . . . . 7 ⊢ 𝐼 = (ℤ × {0}) | |
| 16 | pzriprng.j | . . . . . . 7 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 17 | pzriprng.1 | . . . . . . 7 ⊢ 1 = (1r‘𝐽) | |
| 18 | pzriprng.g | . . . . . . 7 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
| 19 | pzriprng.q | . . . . . . 7 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
| 20 | 14, 15, 16, 17, 18, 19 | pzriprnglem11 21401 | . . . . . 6 ⊢ (Base‘𝑄) = ∪ 𝑦 ∈ ℤ {(ℤ × {𝑦})} |
| 21 | 20 | eleq2i 2820 | . . . . 5 ⊢ ((ℤ × {1}) ∈ (Base‘𝑄) ↔ (ℤ × {1}) ∈ ∪ 𝑦 ∈ ℤ {(ℤ × {𝑦})}) |
| 22 | eliun 4959 | . . . . 5 ⊢ ((ℤ × {1}) ∈ ∪ 𝑦 ∈ ℤ {(ℤ × {𝑦})} ↔ ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})}) | |
| 23 | 21, 22 | bitri 275 | . . . 4 ⊢ ((ℤ × {1}) ∈ (Base‘𝑄) ↔ ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})}) |
| 24 | 13, 23 | mpbir 231 | . . 3 ⊢ (ℤ × {1}) ∈ (Base‘𝑄) |
| 25 | 14, 15, 16, 17, 18, 19 | pzriprnglem12 21402 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝑄) → (((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)(ℤ × {1})) = 𝑥)) |
| 26 | 25 | rgen 3046 | . . 3 ⊢ ∀𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)(ℤ × {1})) = 𝑥) |
| 27 | 24, 26 | pm3.2i 470 | . 2 ⊢ ((ℤ × {1}) ∈ (Base‘𝑄) ∧ ∀𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)(ℤ × {1})) = 𝑥)) |
| 28 | 14, 15, 16, 17, 18, 19 | pzriprnglem13 21403 | . . 3 ⊢ 𝑄 ∈ Ring |
| 29 | eqid 2729 | . . . 4 ⊢ (Base‘𝑄) = (Base‘𝑄) | |
| 30 | eqid 2729 | . . . 4 ⊢ (.r‘𝑄) = (.r‘𝑄) | |
| 31 | eqid 2729 | . . . 4 ⊢ (1r‘𝑄) = (1r‘𝑄) | |
| 32 | 29, 30, 31 | isringid 20180 | . . 3 ⊢ (𝑄 ∈ Ring → (((ℤ × {1}) ∈ (Base‘𝑄) ∧ ∀𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)(ℤ × {1})) = 𝑥)) ↔ (1r‘𝑄) = (ℤ × {1}))) |
| 33 | 28, 32 | ax-mp 5 | . 2 ⊢ (((ℤ × {1}) ∈ (Base‘𝑄) ∧ ∀𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)(ℤ × {1})) = 𝑥)) ↔ (1r‘𝑄) = (ℤ × {1})) |
| 34 | 27, 33 | mpbi 230 | 1 ⊢ (1r‘𝑄) = (ℤ × {1}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {csn 4589 ∪ ciun 4955 × cxp 5636 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 ℤcz 12529 Basecbs 17179 ↾s cress 17200 .rcmulr 17221 /s cqus 17468 ×s cxps 17469 ~QG cqg 19054 1rcur 20090 Ringcrg 20142 ℤringczring 21356 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-ec 8673 df-qs 8677 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-0g 17404 df-prds 17410 df-imas 17471 df-qus 17472 df-xps 17473 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-nsg 19056 df-eqg 19057 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-subrng 20455 df-subrg 20479 df-lss 20838 df-sra 21080 df-rgmod 21081 df-lidl 21118 df-2idl 21160 df-cnfld 21265 df-zring 21357 |
| This theorem is referenced by: pzriprng1ALT 21406 |
| Copyright terms: Public domain | W3C validator |