MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprnglem14 Structured version   Visualization version   GIF version

Theorem pzriprnglem14 21431
Description: Lemma 14 for pzriprng 21434: The ring unity of the ring 𝑄. (Contributed by AV, 23-Mar-2025.)
Hypotheses
Ref Expression
pzriprng.r 𝑅 = (ℤring ×sring)
pzriprng.i 𝐼 = (ℤ × {0})
pzriprng.j 𝐽 = (𝑅s 𝐼)
pzriprng.1 1 = (1r𝐽)
pzriprng.g = (𝑅 ~QG 𝐼)
pzriprng.q 𝑄 = (𝑅 /s )
Assertion
Ref Expression
pzriprnglem14 (1r𝑄) = (ℤ × {1})

Proof of Theorem pzriprnglem14
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1z 12502 . . . . 5 1 ∈ ℤ
2 sneq 4583 . . . . . . . . 9 (𝑦 = 1 → {𝑦} = {1})
32xpeq2d 5644 . . . . . . . 8 (𝑦 = 1 → (ℤ × {𝑦}) = (ℤ × {1}))
43sneqd 4585 . . . . . . 7 (𝑦 = 1 → {(ℤ × {𝑦})} = {(ℤ × {1})})
54eleq2d 2817 . . . . . 6 (𝑦 = 1 → ((ℤ × {1}) ∈ {(ℤ × {𝑦})} ↔ (ℤ × {1}) ∈ {(ℤ × {1})}))
6 id 22 . . . . . 6 (1 ∈ ℤ → 1 ∈ ℤ)
7 zex 12477 . . . . . . . . 9 ℤ ∈ V
8 snex 5372 . . . . . . . . 9 {1} ∈ V
97, 8xpex 7686 . . . . . . . 8 (ℤ × {1}) ∈ V
109snid 4612 . . . . . . 7 (ℤ × {1}) ∈ {(ℤ × {1})}
1110a1i 11 . . . . . 6 (1 ∈ ℤ → (ℤ × {1}) ∈ {(ℤ × {1})})
125, 6, 11rspcedvdw 3575 . . . . 5 (1 ∈ ℤ → ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})})
131, 12ax-mp 5 . . . 4 𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})}
14 pzriprng.r . . . . . . 7 𝑅 = (ℤring ×sring)
15 pzriprng.i . . . . . . 7 𝐼 = (ℤ × {0})
16 pzriprng.j . . . . . . 7 𝐽 = (𝑅s 𝐼)
17 pzriprng.1 . . . . . . 7 1 = (1r𝐽)
18 pzriprng.g . . . . . . 7 = (𝑅 ~QG 𝐼)
19 pzriprng.q . . . . . . 7 𝑄 = (𝑅 /s )
2014, 15, 16, 17, 18, 19pzriprnglem11 21428 . . . . . 6 (Base‘𝑄) = 𝑦 ∈ ℤ {(ℤ × {𝑦})}
2120eleq2i 2823 . . . . 5 ((ℤ × {1}) ∈ (Base‘𝑄) ↔ (ℤ × {1}) ∈ 𝑦 ∈ ℤ {(ℤ × {𝑦})})
22 eliun 4943 . . . . 5 ((ℤ × {1}) ∈ 𝑦 ∈ ℤ {(ℤ × {𝑦})} ↔ ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})})
2321, 22bitri 275 . . . 4 ((ℤ × {1}) ∈ (Base‘𝑄) ↔ ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})})
2413, 23mpbir 231 . . 3 (ℤ × {1}) ∈ (Base‘𝑄)
2514, 15, 16, 17, 18, 19pzriprnglem12 21429 . . . 4 (𝑥 ∈ (Base‘𝑄) → (((ℤ × {1})(.r𝑄)𝑥) = 𝑥 ∧ (𝑥(.r𝑄)(ℤ × {1})) = 𝑥))
2625rgen 3049 . . 3 𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r𝑄)𝑥) = 𝑥 ∧ (𝑥(.r𝑄)(ℤ × {1})) = 𝑥)
2724, 26pm3.2i 470 . 2 ((ℤ × {1}) ∈ (Base‘𝑄) ∧ ∀𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r𝑄)𝑥) = 𝑥 ∧ (𝑥(.r𝑄)(ℤ × {1})) = 𝑥))
2814, 15, 16, 17, 18, 19pzriprnglem13 21430 . . 3 𝑄 ∈ Ring
29 eqid 2731 . . . 4 (Base‘𝑄) = (Base‘𝑄)
30 eqid 2731 . . . 4 (.r𝑄) = (.r𝑄)
31 eqid 2731 . . . 4 (1r𝑄) = (1r𝑄)
3229, 30, 31isringid 20189 . . 3 (𝑄 ∈ Ring → (((ℤ × {1}) ∈ (Base‘𝑄) ∧ ∀𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r𝑄)𝑥) = 𝑥 ∧ (𝑥(.r𝑄)(ℤ × {1})) = 𝑥)) ↔ (1r𝑄) = (ℤ × {1})))
3328, 32ax-mp 5 . 2 (((ℤ × {1}) ∈ (Base‘𝑄) ∧ ∀𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r𝑄)𝑥) = 𝑥 ∧ (𝑥(.r𝑄)(ℤ × {1})) = 𝑥)) ↔ (1r𝑄) = (ℤ × {1}))
3427, 33mpbi 230 1 (1r𝑄) = (ℤ × {1})
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {csn 4573   ciun 4939   × cxp 5612  cfv 6481  (class class class)co 7346  0cc0 11006  1c1 11007  cz 12468  Basecbs 17120  s cress 17141  .rcmulr 17162   /s cqus 17409   ×s cxps 17410   ~QG cqg 19035  1rcur 20099  Ringcrg 20151  ringczring 21383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-ec 8624  df-qs 8628  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-imas 17412  df-qus 17413  df-xps 17414  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-nsg 19037  df-eqg 19038  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-oppr 20255  df-subrng 20461  df-subrg 20485  df-lss 20865  df-sra 21107  df-rgmod 21108  df-lidl 21145  df-2idl 21187  df-cnfld 21292  df-zring 21384
This theorem is referenced by:  pzriprng1ALT  21433
  Copyright terms: Public domain W3C validator