![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pzriprnglem14 | Structured version Visualization version GIF version |
Description: Lemma 14 for pzriprng 21270: The ring unity of the ring 𝑄. (Contributed by AV, 23-Mar-2025.) |
Ref | Expression |
---|---|
pzriprng.r | ⊢ 𝑅 = (ℤring ×s ℤring) |
pzriprng.i | ⊢ 𝐼 = (ℤ × {0}) |
pzriprng.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
pzriprng.1 | ⊢ 1 = (1r‘𝐽) |
pzriprng.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
pzriprng.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
Ref | Expression |
---|---|
pzriprnglem14 | ⊢ (1r‘𝑄) = (ℤ × {1}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 12599 | . . . . 5 ⊢ 1 ∈ ℤ | |
2 | sneq 4638 | . . . . . . . . 9 ⊢ (𝑦 = 1 → {𝑦} = {1}) | |
3 | 2 | xpeq2d 5706 | . . . . . . . 8 ⊢ (𝑦 = 1 → (ℤ × {𝑦}) = (ℤ × {1})) |
4 | 3 | sneqd 4640 | . . . . . . 7 ⊢ (𝑦 = 1 → {(ℤ × {𝑦})} = {(ℤ × {1})}) |
5 | 4 | eleq2d 2818 | . . . . . 6 ⊢ (𝑦 = 1 → ((ℤ × {1}) ∈ {(ℤ × {𝑦})} ↔ (ℤ × {1}) ∈ {(ℤ × {1})})) |
6 | id 22 | . . . . . 6 ⊢ (1 ∈ ℤ → 1 ∈ ℤ) | |
7 | zex 12574 | . . . . . . . . 9 ⊢ ℤ ∈ V | |
8 | snex 5431 | . . . . . . . . 9 ⊢ {1} ∈ V | |
9 | 7, 8 | xpex 7744 | . . . . . . . 8 ⊢ (ℤ × {1}) ∈ V |
10 | 9 | snid 4664 | . . . . . . 7 ⊢ (ℤ × {1}) ∈ {(ℤ × {1})} |
11 | 10 | a1i 11 | . . . . . 6 ⊢ (1 ∈ ℤ → (ℤ × {1}) ∈ {(ℤ × {1})}) |
12 | 5, 6, 11 | rspcedvdw 3615 | . . . . 5 ⊢ (1 ∈ ℤ → ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})}) |
13 | 1, 12 | ax-mp 5 | . . . 4 ⊢ ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})} |
14 | pzriprng.r | . . . . . . 7 ⊢ 𝑅 = (ℤring ×s ℤring) | |
15 | pzriprng.i | . . . . . . 7 ⊢ 𝐼 = (ℤ × {0}) | |
16 | pzriprng.j | . . . . . . 7 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
17 | pzriprng.1 | . . . . . . 7 ⊢ 1 = (1r‘𝐽) | |
18 | pzriprng.g | . . . . . . 7 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
19 | pzriprng.q | . . . . . . 7 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
20 | 14, 15, 16, 17, 18, 19 | pzriprnglem11 21264 | . . . . . 6 ⊢ (Base‘𝑄) = ∪ 𝑦 ∈ ℤ {(ℤ × {𝑦})} |
21 | 20 | eleq2i 2824 | . . . . 5 ⊢ ((ℤ × {1}) ∈ (Base‘𝑄) ↔ (ℤ × {1}) ∈ ∪ 𝑦 ∈ ℤ {(ℤ × {𝑦})}) |
22 | eliun 5001 | . . . . 5 ⊢ ((ℤ × {1}) ∈ ∪ 𝑦 ∈ ℤ {(ℤ × {𝑦})} ↔ ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})}) | |
23 | 21, 22 | bitri 275 | . . . 4 ⊢ ((ℤ × {1}) ∈ (Base‘𝑄) ↔ ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})}) |
24 | 13, 23 | mpbir 230 | . . 3 ⊢ (ℤ × {1}) ∈ (Base‘𝑄) |
25 | 14, 15, 16, 17, 18, 19 | pzriprnglem12 21265 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝑄) → (((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)(ℤ × {1})) = 𝑥)) |
26 | 25 | rgen 3062 | . . 3 ⊢ ∀𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)(ℤ × {1})) = 𝑥) |
27 | 24, 26 | pm3.2i 470 | . 2 ⊢ ((ℤ × {1}) ∈ (Base‘𝑄) ∧ ∀𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)(ℤ × {1})) = 𝑥)) |
28 | 14, 15, 16, 17, 18, 19 | pzriprnglem13 21266 | . . 3 ⊢ 𝑄 ∈ Ring |
29 | eqid 2731 | . . . 4 ⊢ (Base‘𝑄) = (Base‘𝑄) | |
30 | eqid 2731 | . . . 4 ⊢ (.r‘𝑄) = (.r‘𝑄) | |
31 | eqid 2731 | . . . 4 ⊢ (1r‘𝑄) = (1r‘𝑄) | |
32 | 29, 30, 31 | isringid 20163 | . . 3 ⊢ (𝑄 ∈ Ring → (((ℤ × {1}) ∈ (Base‘𝑄) ∧ ∀𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)(ℤ × {1})) = 𝑥)) ↔ (1r‘𝑄) = (ℤ × {1}))) |
33 | 28, 32 | ax-mp 5 | . 2 ⊢ (((ℤ × {1}) ∈ (Base‘𝑄) ∧ ∀𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)(ℤ × {1})) = 𝑥)) ↔ (1r‘𝑄) = (ℤ × {1})) |
34 | 27, 33 | mpbi 229 | 1 ⊢ (1r‘𝑄) = (ℤ × {1}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ∃wrex 3069 {csn 4628 ∪ ciun 4997 × cxp 5674 ‘cfv 6543 (class class class)co 7412 0cc0 11116 1c1 11117 ℤcz 12565 Basecbs 17151 ↾s cress 17180 .rcmulr 17205 /s cqus 17458 ×s cxps 17459 ~QG cqg 19042 1rcur 20079 Ringcrg 20131 ℤringczring 21221 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-addf 11195 ax-mulf 11196 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8217 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-2o 8473 df-er 8709 df-ec 8711 df-qs 8715 df-map 8828 df-ixp 8898 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-sup 9443 df-inf 9444 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-fz 13492 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-hom 17228 df-cco 17229 df-0g 17394 df-prds 17400 df-imas 17461 df-qus 17462 df-xps 17463 df-mgm 18568 df-sgrp 18647 df-mnd 18663 df-grp 18861 df-minusg 18862 df-sbg 18863 df-subg 19043 df-nsg 19044 df-eqg 19045 df-cmn 19695 df-abl 19696 df-mgp 20033 df-rng 20051 df-ur 20080 df-ring 20133 df-cring 20134 df-oppr 20229 df-subrng 20438 df-subrg 20463 df-lss 20691 df-sra 20934 df-rgmod 20935 df-lidl 20936 df-2idl 21010 df-cnfld 21149 df-zring 21222 |
This theorem is referenced by: pzriprng1ALT 21269 |
Copyright terms: Public domain | W3C validator |