![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pzriprnglem13 | Structured version Visualization version GIF version |
Description: Lemma 13 for pzriprng 21266: π is a unital ring. (Contributed by AV, 23-Mar-2025.) |
Ref | Expression |
---|---|
pzriprng.r | β’ π = (β€ring Γs β€ring) |
pzriprng.i | β’ πΌ = (β€ Γ {0}) |
pzriprng.j | β’ π½ = (π βΎs πΌ) |
pzriprng.1 | β’ 1 = (1rβπ½) |
pzriprng.g | β’ βΌ = (π ~QG πΌ) |
pzriprng.q | β’ π = (π /s βΌ ) |
Ref | Expression |
---|---|
pzriprnglem13 | β’ π β Ring |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pzriprng.r | . . . 4 β’ π = (β€ring Γs β€ring) | |
2 | 1 | pzriprnglem1 21250 | . . 3 β’ π β Rng |
3 | pzriprng.i | . . . 4 β’ πΌ = (β€ Γ {0}) | |
4 | pzriprng.j | . . . 4 β’ π½ = (π βΎs πΌ) | |
5 | 1, 3, 4 | pzriprnglem8 21257 | . . 3 β’ πΌ β (2Idealβπ ) |
6 | 1, 3 | pzriprnglem4 21253 | . . 3 β’ πΌ β (SubGrpβπ ) |
7 | pzriprng.q | . . . . 5 β’ π = (π /s βΌ ) | |
8 | pzriprng.g | . . . . . 6 β’ βΌ = (π ~QG πΌ) | |
9 | 8 | oveq2i 7422 | . . . . 5 β’ (π /s βΌ ) = (π /s (π ~QG πΌ)) |
10 | 7, 9 | eqtri 2758 | . . . 4 β’ π = (π /s (π ~QG πΌ)) |
11 | eqid 2730 | . . . 4 β’ (2Idealβπ ) = (2Idealβπ ) | |
12 | 10, 11 | qus2idrng 21044 | . . 3 β’ ((π β Rng β§ πΌ β (2Idealβπ ) β§ πΌ β (SubGrpβπ )) β π β Rng) |
13 | 2, 5, 6, 12 | mp3an 1459 | . 2 β’ π β Rng |
14 | 1z 12596 | . . . . . 6 β’ 1 β β€ | |
15 | zex 12571 | . . . . . . . 8 β’ β€ β V | |
16 | snex 5430 | . . . . . . . 8 β’ {1} β V | |
17 | 15, 16 | xpex 7742 | . . . . . . 7 β’ (β€ Γ {1}) β V |
18 | 17 | snid 4663 | . . . . . 6 β’ (β€ Γ {1}) β {(β€ Γ {1})} |
19 | sneq 4637 | . . . . . . . . . 10 β’ (π¦ = 1 β {π¦} = {1}) | |
20 | 19 | xpeq2d 5705 | . . . . . . . . 9 β’ (π¦ = 1 β (β€ Γ {π¦}) = (β€ Γ {1})) |
21 | 20 | sneqd 4639 | . . . . . . . 8 β’ (π¦ = 1 β {(β€ Γ {π¦})} = {(β€ Γ {1})}) |
22 | 21 | eleq2d 2817 | . . . . . . 7 β’ (π¦ = 1 β ((β€ Γ {1}) β {(β€ Γ {π¦})} β (β€ Γ {1}) β {(β€ Γ {1})})) |
23 | 22 | rspcev 3611 | . . . . . 6 β’ ((1 β β€ β§ (β€ Γ {1}) β {(β€ Γ {1})}) β βπ¦ β β€ (β€ Γ {1}) β {(β€ Γ {π¦})}) |
24 | 14, 18, 23 | mp2an 688 | . . . . 5 β’ βπ¦ β β€ (β€ Γ {1}) β {(β€ Γ {π¦})} |
25 | eliun 5000 | . . . . 5 β’ ((β€ Γ {1}) β βͺ π¦ β β€ {(β€ Γ {π¦})} β βπ¦ β β€ (β€ Γ {1}) β {(β€ Γ {π¦})}) | |
26 | 24, 25 | mpbir 230 | . . . 4 β’ (β€ Γ {1}) β βͺ π¦ β β€ {(β€ Γ {π¦})} |
27 | pzriprng.1 | . . . . 5 β’ 1 = (1rβπ½) | |
28 | 1, 3, 4, 27, 8, 7 | pzriprnglem11 21260 | . . . 4 β’ (Baseβπ) = βͺ π¦ β β€ {(β€ Γ {π¦})} |
29 | 26, 28 | eleqtrri 2830 | . . 3 β’ (β€ Γ {1}) β (Baseβπ) |
30 | oveq1 7418 | . . . . . 6 β’ (π = (β€ Γ {1}) β (π(.rβπ)π₯) = ((β€ Γ {1})(.rβπ)π₯)) | |
31 | 30 | eqeq1d 2732 | . . . . 5 β’ (π = (β€ Γ {1}) β ((π(.rβπ)π₯) = π₯ β ((β€ Γ {1})(.rβπ)π₯) = π₯)) |
32 | 31 | ovanraleqv 7435 | . . . 4 β’ (π = (β€ Γ {1}) β (βπ₯ β (Baseβπ)((π(.rβπ)π₯) = π₯ β§ (π₯(.rβπ)π) = π₯) β βπ₯ β (Baseβπ)(((β€ Γ {1})(.rβπ)π₯) = π₯ β§ (π₯(.rβπ)(β€ Γ {1})) = π₯))) |
33 | id 22 | . . . 4 β’ ((β€ Γ {1}) β (Baseβπ) β (β€ Γ {1}) β (Baseβπ)) | |
34 | 1, 3, 4, 27, 8, 7 | pzriprnglem12 21261 | . . . . . 6 β’ (π₯ β (Baseβπ) β (((β€ Γ {1})(.rβπ)π₯) = π₯ β§ (π₯(.rβπ)(β€ Γ {1})) = π₯)) |
35 | 34 | a1i 11 | . . . . 5 β’ ((β€ Γ {1}) β (Baseβπ) β (π₯ β (Baseβπ) β (((β€ Γ {1})(.rβπ)π₯) = π₯ β§ (π₯(.rβπ)(β€ Γ {1})) = π₯))) |
36 | 35 | ralrimiv 3143 | . . . 4 β’ ((β€ Γ {1}) β (Baseβπ) β βπ₯ β (Baseβπ)(((β€ Γ {1})(.rβπ)π₯) = π₯ β§ (π₯(.rβπ)(β€ Γ {1})) = π₯)) |
37 | 32, 33, 36 | rspcedvdw 3614 | . . 3 β’ ((β€ Γ {1}) β (Baseβπ) β βπ β (Baseβπ)βπ₯ β (Baseβπ)((π(.rβπ)π₯) = π₯ β§ (π₯(.rβπ)π) = π₯)) |
38 | 29, 37 | ax-mp 5 | . 2 β’ βπ β (Baseβπ)βπ₯ β (Baseβπ)((π(.rβπ)π₯) = π₯ β§ (π₯(.rβπ)π) = π₯) |
39 | eqid 2730 | . . 3 β’ (Baseβπ) = (Baseβπ) | |
40 | eqid 2730 | . . 3 β’ (.rβπ) = (.rβπ) | |
41 | 39, 40 | isringrng 20175 | . 2 β’ (π β Ring β (π β Rng β§ βπ β (Baseβπ)βπ₯ β (Baseβπ)((π(.rβπ)π₯) = π₯ β§ (π₯(.rβπ)π) = π₯))) |
42 | 13, 38, 41 | mpbir2an 707 | 1 β’ π β Ring |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 βwral 3059 βwrex 3068 {csn 4627 βͺ ciun 4996 Γ cxp 5673 βcfv 6542 (class class class)co 7411 0cc0 11112 1c1 11113 β€cz 12562 Basecbs 17148 βΎs cress 17177 .rcmulr 17202 /s cqus 17455 Γs cxps 17456 SubGrpcsubg 19036 ~QG cqg 19038 Rngcrng 20046 1rcur 20075 Ringcrg 20127 2Idealc2idl 21005 β€ringczring 21217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-tpos 8213 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-er 8705 df-ec 8707 df-qs 8711 df-map 8824 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13489 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-starv 17216 df-sca 17217 df-vsca 17218 df-ip 17219 df-tset 17220 df-ple 17221 df-ds 17223 df-unif 17224 df-hom 17225 df-cco 17226 df-0g 17391 df-prds 17397 df-imas 17458 df-qus 17459 df-xps 17460 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-grp 18858 df-minusg 18859 df-sbg 18860 df-subg 19039 df-nsg 19040 df-eqg 19041 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-cring 20130 df-oppr 20225 df-subrng 20434 df-subrg 20459 df-lss 20687 df-sra 20930 df-rgmod 20931 df-lidl 20932 df-2idl 21006 df-cnfld 21145 df-zring 21218 |
This theorem is referenced by: pzriprnglem14 21263 pzriprngALT 21264 pzriprng1ALT 21265 |
Copyright terms: Public domain | W3C validator |