MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprnglem13 Structured version   Visualization version   GIF version

Theorem pzriprnglem13 21435
Description: Lemma 13 for pzriprng 21439: 𝑄 is a unital ring. (Contributed by AV, 23-Mar-2025.)
Hypotheses
Ref Expression
pzriprng.r 𝑅 = (ℤring ×sring)
pzriprng.i 𝐼 = (ℤ × {0})
pzriprng.j 𝐽 = (𝑅s 𝐼)
pzriprng.1 1 = (1r𝐽)
pzriprng.g = (𝑅 ~QG 𝐼)
pzriprng.q 𝑄 = (𝑅 /s )
Assertion
Ref Expression
pzriprnglem13 𝑄 ∈ Ring

Proof of Theorem pzriprnglem13
Dummy variables 𝑥 𝑦 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pzriprng.r . . . 4 𝑅 = (ℤring ×sring)
21pzriprnglem1 21423 . . 3 𝑅 ∈ Rng
3 pzriprng.i . . . 4 𝐼 = (ℤ × {0})
4 pzriprng.j . . . 4 𝐽 = (𝑅s 𝐼)
51, 3, 4pzriprnglem8 21430 . . 3 𝐼 ∈ (2Ideal‘𝑅)
61, 3pzriprnglem4 21426 . . 3 𝐼 ∈ (SubGrp‘𝑅)
7 pzriprng.q . . . . 5 𝑄 = (𝑅 /s )
8 pzriprng.g . . . . . 6 = (𝑅 ~QG 𝐼)
98oveq2i 7380 . . . . 5 (𝑅 /s ) = (𝑅 /s (𝑅 ~QG 𝐼))
107, 9eqtri 2752 . . . 4 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
11 eqid 2729 . . . 4 (2Ideal‘𝑅) = (2Ideal‘𝑅)
1210, 11qus2idrng 21215 . . 3 ((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅) ∧ 𝐼 ∈ (SubGrp‘𝑅)) → 𝑄 ∈ Rng)
132, 5, 6, 12mp3an 1463 . 2 𝑄 ∈ Rng
14 1z 12539 . . . . . 6 1 ∈ ℤ
15 zex 12514 . . . . . . . 8 ℤ ∈ V
16 snex 5386 . . . . . . . 8 {1} ∈ V
1715, 16xpex 7709 . . . . . . 7 (ℤ × {1}) ∈ V
1817snid 4622 . . . . . 6 (ℤ × {1}) ∈ {(ℤ × {1})}
19 sneq 4595 . . . . . . . . . 10 (𝑦 = 1 → {𝑦} = {1})
2019xpeq2d 5661 . . . . . . . . 9 (𝑦 = 1 → (ℤ × {𝑦}) = (ℤ × {1}))
2120sneqd 4597 . . . . . . . 8 (𝑦 = 1 → {(ℤ × {𝑦})} = {(ℤ × {1})})
2221eleq2d 2814 . . . . . . 7 (𝑦 = 1 → ((ℤ × {1}) ∈ {(ℤ × {𝑦})} ↔ (ℤ × {1}) ∈ {(ℤ × {1})}))
2322rspcev 3585 . . . . . 6 ((1 ∈ ℤ ∧ (ℤ × {1}) ∈ {(ℤ × {1})}) → ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})})
2414, 18, 23mp2an 692 . . . . 5 𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})}
25 eliun 4955 . . . . 5 ((ℤ × {1}) ∈ 𝑦 ∈ ℤ {(ℤ × {𝑦})} ↔ ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})})
2624, 25mpbir 231 . . . 4 (ℤ × {1}) ∈ 𝑦 ∈ ℤ {(ℤ × {𝑦})}
27 pzriprng.1 . . . . 5 1 = (1r𝐽)
281, 3, 4, 27, 8, 7pzriprnglem11 21433 . . . 4 (Base‘𝑄) = 𝑦 ∈ ℤ {(ℤ × {𝑦})}
2926, 28eleqtrri 2827 . . 3 (ℤ × {1}) ∈ (Base‘𝑄)
30 oveq1 7376 . . . . . 6 (𝑖 = (ℤ × {1}) → (𝑖(.r𝑄)𝑥) = ((ℤ × {1})(.r𝑄)𝑥))
3130eqeq1d 2731 . . . . 5 (𝑖 = (ℤ × {1}) → ((𝑖(.r𝑄)𝑥) = 𝑥 ↔ ((ℤ × {1})(.r𝑄)𝑥) = 𝑥))
3231ovanraleqv 7393 . . . 4 (𝑖 = (ℤ × {1}) → (∀𝑥 ∈ (Base‘𝑄)((𝑖(.r𝑄)𝑥) = 𝑥 ∧ (𝑥(.r𝑄)𝑖) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r𝑄)𝑥) = 𝑥 ∧ (𝑥(.r𝑄)(ℤ × {1})) = 𝑥)))
33 id 22 . . . 4 ((ℤ × {1}) ∈ (Base‘𝑄) → (ℤ × {1}) ∈ (Base‘𝑄))
341, 3, 4, 27, 8, 7pzriprnglem12 21434 . . . . . 6 (𝑥 ∈ (Base‘𝑄) → (((ℤ × {1})(.r𝑄)𝑥) = 𝑥 ∧ (𝑥(.r𝑄)(ℤ × {1})) = 𝑥))
3534a1i 11 . . . . 5 ((ℤ × {1}) ∈ (Base‘𝑄) → (𝑥 ∈ (Base‘𝑄) → (((ℤ × {1})(.r𝑄)𝑥) = 𝑥 ∧ (𝑥(.r𝑄)(ℤ × {1})) = 𝑥)))
3635ralrimiv 3124 . . . 4 ((ℤ × {1}) ∈ (Base‘𝑄) → ∀𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r𝑄)𝑥) = 𝑥 ∧ (𝑥(.r𝑄)(ℤ × {1})) = 𝑥))
3732, 33, 36rspcedvdw 3588 . . 3 ((ℤ × {1}) ∈ (Base‘𝑄) → ∃𝑖 ∈ (Base‘𝑄)∀𝑥 ∈ (Base‘𝑄)((𝑖(.r𝑄)𝑥) = 𝑥 ∧ (𝑥(.r𝑄)𝑖) = 𝑥))
3829, 37ax-mp 5 . 2 𝑖 ∈ (Base‘𝑄)∀𝑥 ∈ (Base‘𝑄)((𝑖(.r𝑄)𝑥) = 𝑥 ∧ (𝑥(.r𝑄)𝑖) = 𝑥)
39 eqid 2729 . . 3 (Base‘𝑄) = (Base‘𝑄)
40 eqid 2729 . . 3 (.r𝑄) = (.r𝑄)
4139, 40isringrng 20207 . 2 (𝑄 ∈ Ring ↔ (𝑄 ∈ Rng ∧ ∃𝑖 ∈ (Base‘𝑄)∀𝑥 ∈ (Base‘𝑄)((𝑖(.r𝑄)𝑥) = 𝑥 ∧ (𝑥(.r𝑄)𝑖) = 𝑥)))
4213, 38, 41mpbir2an 711 1 𝑄 ∈ Ring
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {csn 4585   ciun 4951   × cxp 5629  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045  cz 12505  Basecbs 17155  s cress 17176  .rcmulr 17197   /s cqus 17444   ×s cxps 17445  SubGrpcsubg 19034   ~QG cqg 19036  Rngcrng 20072  1rcur 20101  Ringcrg 20153  2Idealc2idl 21191  ringczring 21388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-ec 8650  df-qs 8654  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-prds 17386  df-imas 17447  df-qus 17448  df-xps 17449  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-sbg 18852  df-subg 19037  df-nsg 19038  df-eqg 19039  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-subrng 20466  df-subrg 20490  df-lss 20870  df-sra 21112  df-rgmod 21113  df-lidl 21150  df-2idl 21192  df-cnfld 21297  df-zring 21389
This theorem is referenced by:  pzriprnglem14  21436  pzriprngALT  21437  pzriprng1ALT  21438
  Copyright terms: Public domain W3C validator