| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pzriprnglem13 | Structured version Visualization version GIF version | ||
| Description: Lemma 13 for pzriprng 21439: 𝑄 is a unital ring. (Contributed by AV, 23-Mar-2025.) |
| Ref | Expression |
|---|---|
| pzriprng.r | ⊢ 𝑅 = (ℤring ×s ℤring) |
| pzriprng.i | ⊢ 𝐼 = (ℤ × {0}) |
| pzriprng.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| pzriprng.1 | ⊢ 1 = (1r‘𝐽) |
| pzriprng.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
| pzriprng.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
| Ref | Expression |
|---|---|
| pzriprnglem13 | ⊢ 𝑄 ∈ Ring |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pzriprng.r | . . . 4 ⊢ 𝑅 = (ℤring ×s ℤring) | |
| 2 | 1 | pzriprnglem1 21423 | . . 3 ⊢ 𝑅 ∈ Rng |
| 3 | pzriprng.i | . . . 4 ⊢ 𝐼 = (ℤ × {0}) | |
| 4 | pzriprng.j | . . . 4 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 5 | 1, 3, 4 | pzriprnglem8 21430 | . . 3 ⊢ 𝐼 ∈ (2Ideal‘𝑅) |
| 6 | 1, 3 | pzriprnglem4 21426 | . . 3 ⊢ 𝐼 ∈ (SubGrp‘𝑅) |
| 7 | pzriprng.q | . . . . 5 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
| 8 | pzriprng.g | . . . . . 6 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
| 9 | 8 | oveq2i 7380 | . . . . 5 ⊢ (𝑅 /s ∼ ) = (𝑅 /s (𝑅 ~QG 𝐼)) |
| 10 | 7, 9 | eqtri 2752 | . . . 4 ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) |
| 11 | eqid 2729 | . . . 4 ⊢ (2Ideal‘𝑅) = (2Ideal‘𝑅) | |
| 12 | 10, 11 | qus2idrng 21215 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅) ∧ 𝐼 ∈ (SubGrp‘𝑅)) → 𝑄 ∈ Rng) |
| 13 | 2, 5, 6, 12 | mp3an 1463 | . 2 ⊢ 𝑄 ∈ Rng |
| 14 | 1z 12539 | . . . . . 6 ⊢ 1 ∈ ℤ | |
| 15 | zex 12514 | . . . . . . . 8 ⊢ ℤ ∈ V | |
| 16 | snex 5386 | . . . . . . . 8 ⊢ {1} ∈ V | |
| 17 | 15, 16 | xpex 7709 | . . . . . . 7 ⊢ (ℤ × {1}) ∈ V |
| 18 | 17 | snid 4622 | . . . . . 6 ⊢ (ℤ × {1}) ∈ {(ℤ × {1})} |
| 19 | sneq 4595 | . . . . . . . . . 10 ⊢ (𝑦 = 1 → {𝑦} = {1}) | |
| 20 | 19 | xpeq2d 5661 | . . . . . . . . 9 ⊢ (𝑦 = 1 → (ℤ × {𝑦}) = (ℤ × {1})) |
| 21 | 20 | sneqd 4597 | . . . . . . . 8 ⊢ (𝑦 = 1 → {(ℤ × {𝑦})} = {(ℤ × {1})}) |
| 22 | 21 | eleq2d 2814 | . . . . . . 7 ⊢ (𝑦 = 1 → ((ℤ × {1}) ∈ {(ℤ × {𝑦})} ↔ (ℤ × {1}) ∈ {(ℤ × {1})})) |
| 23 | 22 | rspcev 3585 | . . . . . 6 ⊢ ((1 ∈ ℤ ∧ (ℤ × {1}) ∈ {(ℤ × {1})}) → ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})}) |
| 24 | 14, 18, 23 | mp2an 692 | . . . . 5 ⊢ ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})} |
| 25 | eliun 4955 | . . . . 5 ⊢ ((ℤ × {1}) ∈ ∪ 𝑦 ∈ ℤ {(ℤ × {𝑦})} ↔ ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})}) | |
| 26 | 24, 25 | mpbir 231 | . . . 4 ⊢ (ℤ × {1}) ∈ ∪ 𝑦 ∈ ℤ {(ℤ × {𝑦})} |
| 27 | pzriprng.1 | . . . . 5 ⊢ 1 = (1r‘𝐽) | |
| 28 | 1, 3, 4, 27, 8, 7 | pzriprnglem11 21433 | . . . 4 ⊢ (Base‘𝑄) = ∪ 𝑦 ∈ ℤ {(ℤ × {𝑦})} |
| 29 | 26, 28 | eleqtrri 2827 | . . 3 ⊢ (ℤ × {1}) ∈ (Base‘𝑄) |
| 30 | oveq1 7376 | . . . . . 6 ⊢ (𝑖 = (ℤ × {1}) → (𝑖(.r‘𝑄)𝑥) = ((ℤ × {1})(.r‘𝑄)𝑥)) | |
| 31 | 30 | eqeq1d 2731 | . . . . 5 ⊢ (𝑖 = (ℤ × {1}) → ((𝑖(.r‘𝑄)𝑥) = 𝑥 ↔ ((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥)) |
| 32 | 31 | ovanraleqv 7393 | . . . 4 ⊢ (𝑖 = (ℤ × {1}) → (∀𝑥 ∈ (Base‘𝑄)((𝑖(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)𝑖) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)(ℤ × {1})) = 𝑥))) |
| 33 | id 22 | . . . 4 ⊢ ((ℤ × {1}) ∈ (Base‘𝑄) → (ℤ × {1}) ∈ (Base‘𝑄)) | |
| 34 | 1, 3, 4, 27, 8, 7 | pzriprnglem12 21434 | . . . . . 6 ⊢ (𝑥 ∈ (Base‘𝑄) → (((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)(ℤ × {1})) = 𝑥)) |
| 35 | 34 | a1i 11 | . . . . 5 ⊢ ((ℤ × {1}) ∈ (Base‘𝑄) → (𝑥 ∈ (Base‘𝑄) → (((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)(ℤ × {1})) = 𝑥))) |
| 36 | 35 | ralrimiv 3124 | . . . 4 ⊢ ((ℤ × {1}) ∈ (Base‘𝑄) → ∀𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)(ℤ × {1})) = 𝑥)) |
| 37 | 32, 33, 36 | rspcedvdw 3588 | . . 3 ⊢ ((ℤ × {1}) ∈ (Base‘𝑄) → ∃𝑖 ∈ (Base‘𝑄)∀𝑥 ∈ (Base‘𝑄)((𝑖(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)𝑖) = 𝑥)) |
| 38 | 29, 37 | ax-mp 5 | . 2 ⊢ ∃𝑖 ∈ (Base‘𝑄)∀𝑥 ∈ (Base‘𝑄)((𝑖(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)𝑖) = 𝑥) |
| 39 | eqid 2729 | . . 3 ⊢ (Base‘𝑄) = (Base‘𝑄) | |
| 40 | eqid 2729 | . . 3 ⊢ (.r‘𝑄) = (.r‘𝑄) | |
| 41 | 39, 40 | isringrng 20207 | . 2 ⊢ (𝑄 ∈ Ring ↔ (𝑄 ∈ Rng ∧ ∃𝑖 ∈ (Base‘𝑄)∀𝑥 ∈ (Base‘𝑄)((𝑖(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)𝑖) = 𝑥))) |
| 42 | 13, 38, 41 | mpbir2an 711 | 1 ⊢ 𝑄 ∈ Ring |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {csn 4585 ∪ ciun 4951 × cxp 5629 ‘cfv 6499 (class class class)co 7369 0cc0 11044 1c1 11045 ℤcz 12505 Basecbs 17155 ↾s cress 17176 .rcmulr 17197 /s cqus 17444 ×s cxps 17445 SubGrpcsubg 19034 ~QG cqg 19036 Rngcrng 20072 1rcur 20101 Ringcrg 20153 2Idealc2idl 21191 ℤringczring 21388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-addf 11123 ax-mulf 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-ec 8650 df-qs 8654 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-0g 17380 df-prds 17386 df-imas 17447 df-qus 17448 df-xps 17449 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-grp 18850 df-minusg 18851 df-sbg 18852 df-subg 19037 df-nsg 19038 df-eqg 19039 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-oppr 20257 df-subrng 20466 df-subrg 20490 df-lss 20870 df-sra 21112 df-rgmod 21113 df-lidl 21150 df-2idl 21192 df-cnfld 21297 df-zring 21389 |
| This theorem is referenced by: pzriprnglem14 21436 pzriprngALT 21437 pzriprng1ALT 21438 |
| Copyright terms: Public domain | W3C validator |