| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pzriprnglem13 | Structured version Visualization version GIF version | ||
| Description: Lemma 13 for pzriprng 21414: 𝑄 is a unital ring. (Contributed by AV, 23-Mar-2025.) |
| Ref | Expression |
|---|---|
| pzriprng.r | ⊢ 𝑅 = (ℤring ×s ℤring) |
| pzriprng.i | ⊢ 𝐼 = (ℤ × {0}) |
| pzriprng.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| pzriprng.1 | ⊢ 1 = (1r‘𝐽) |
| pzriprng.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
| pzriprng.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
| Ref | Expression |
|---|---|
| pzriprnglem13 | ⊢ 𝑄 ∈ Ring |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pzriprng.r | . . . 4 ⊢ 𝑅 = (ℤring ×s ℤring) | |
| 2 | 1 | pzriprnglem1 21398 | . . 3 ⊢ 𝑅 ∈ Rng |
| 3 | pzriprng.i | . . . 4 ⊢ 𝐼 = (ℤ × {0}) | |
| 4 | pzriprng.j | . . . 4 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 5 | 1, 3, 4 | pzriprnglem8 21405 | . . 3 ⊢ 𝐼 ∈ (2Ideal‘𝑅) |
| 6 | 1, 3 | pzriprnglem4 21401 | . . 3 ⊢ 𝐼 ∈ (SubGrp‘𝑅) |
| 7 | pzriprng.q | . . . . 5 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
| 8 | pzriprng.g | . . . . . 6 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
| 9 | 8 | oveq2i 7401 | . . . . 5 ⊢ (𝑅 /s ∼ ) = (𝑅 /s (𝑅 ~QG 𝐼)) |
| 10 | 7, 9 | eqtri 2753 | . . . 4 ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) |
| 11 | eqid 2730 | . . . 4 ⊢ (2Ideal‘𝑅) = (2Ideal‘𝑅) | |
| 12 | 10, 11 | qus2idrng 21190 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅) ∧ 𝐼 ∈ (SubGrp‘𝑅)) → 𝑄 ∈ Rng) |
| 13 | 2, 5, 6, 12 | mp3an 1463 | . 2 ⊢ 𝑄 ∈ Rng |
| 14 | 1z 12570 | . . . . . 6 ⊢ 1 ∈ ℤ | |
| 15 | zex 12545 | . . . . . . . 8 ⊢ ℤ ∈ V | |
| 16 | snex 5394 | . . . . . . . 8 ⊢ {1} ∈ V | |
| 17 | 15, 16 | xpex 7732 | . . . . . . 7 ⊢ (ℤ × {1}) ∈ V |
| 18 | 17 | snid 4629 | . . . . . 6 ⊢ (ℤ × {1}) ∈ {(ℤ × {1})} |
| 19 | sneq 4602 | . . . . . . . . . 10 ⊢ (𝑦 = 1 → {𝑦} = {1}) | |
| 20 | 19 | xpeq2d 5671 | . . . . . . . . 9 ⊢ (𝑦 = 1 → (ℤ × {𝑦}) = (ℤ × {1})) |
| 21 | 20 | sneqd 4604 | . . . . . . . 8 ⊢ (𝑦 = 1 → {(ℤ × {𝑦})} = {(ℤ × {1})}) |
| 22 | 21 | eleq2d 2815 | . . . . . . 7 ⊢ (𝑦 = 1 → ((ℤ × {1}) ∈ {(ℤ × {𝑦})} ↔ (ℤ × {1}) ∈ {(ℤ × {1})})) |
| 23 | 22 | rspcev 3591 | . . . . . 6 ⊢ ((1 ∈ ℤ ∧ (ℤ × {1}) ∈ {(ℤ × {1})}) → ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})}) |
| 24 | 14, 18, 23 | mp2an 692 | . . . . 5 ⊢ ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})} |
| 25 | eliun 4962 | . . . . 5 ⊢ ((ℤ × {1}) ∈ ∪ 𝑦 ∈ ℤ {(ℤ × {𝑦})} ↔ ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})}) | |
| 26 | 24, 25 | mpbir 231 | . . . 4 ⊢ (ℤ × {1}) ∈ ∪ 𝑦 ∈ ℤ {(ℤ × {𝑦})} |
| 27 | pzriprng.1 | . . . . 5 ⊢ 1 = (1r‘𝐽) | |
| 28 | 1, 3, 4, 27, 8, 7 | pzriprnglem11 21408 | . . . 4 ⊢ (Base‘𝑄) = ∪ 𝑦 ∈ ℤ {(ℤ × {𝑦})} |
| 29 | 26, 28 | eleqtrri 2828 | . . 3 ⊢ (ℤ × {1}) ∈ (Base‘𝑄) |
| 30 | oveq1 7397 | . . . . . 6 ⊢ (𝑖 = (ℤ × {1}) → (𝑖(.r‘𝑄)𝑥) = ((ℤ × {1})(.r‘𝑄)𝑥)) | |
| 31 | 30 | eqeq1d 2732 | . . . . 5 ⊢ (𝑖 = (ℤ × {1}) → ((𝑖(.r‘𝑄)𝑥) = 𝑥 ↔ ((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥)) |
| 32 | 31 | ovanraleqv 7414 | . . . 4 ⊢ (𝑖 = (ℤ × {1}) → (∀𝑥 ∈ (Base‘𝑄)((𝑖(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)𝑖) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)(ℤ × {1})) = 𝑥))) |
| 33 | id 22 | . . . 4 ⊢ ((ℤ × {1}) ∈ (Base‘𝑄) → (ℤ × {1}) ∈ (Base‘𝑄)) | |
| 34 | 1, 3, 4, 27, 8, 7 | pzriprnglem12 21409 | . . . . . 6 ⊢ (𝑥 ∈ (Base‘𝑄) → (((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)(ℤ × {1})) = 𝑥)) |
| 35 | 34 | a1i 11 | . . . . 5 ⊢ ((ℤ × {1}) ∈ (Base‘𝑄) → (𝑥 ∈ (Base‘𝑄) → (((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)(ℤ × {1})) = 𝑥))) |
| 36 | 35 | ralrimiv 3125 | . . . 4 ⊢ ((ℤ × {1}) ∈ (Base‘𝑄) → ∀𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)(ℤ × {1})) = 𝑥)) |
| 37 | 32, 33, 36 | rspcedvdw 3594 | . . 3 ⊢ ((ℤ × {1}) ∈ (Base‘𝑄) → ∃𝑖 ∈ (Base‘𝑄)∀𝑥 ∈ (Base‘𝑄)((𝑖(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)𝑖) = 𝑥)) |
| 38 | 29, 37 | ax-mp 5 | . 2 ⊢ ∃𝑖 ∈ (Base‘𝑄)∀𝑥 ∈ (Base‘𝑄)((𝑖(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)𝑖) = 𝑥) |
| 39 | eqid 2730 | . . 3 ⊢ (Base‘𝑄) = (Base‘𝑄) | |
| 40 | eqid 2730 | . . 3 ⊢ (.r‘𝑄) = (.r‘𝑄) | |
| 41 | 39, 40 | isringrng 20203 | . 2 ⊢ (𝑄 ∈ Ring ↔ (𝑄 ∈ Rng ∧ ∃𝑖 ∈ (Base‘𝑄)∀𝑥 ∈ (Base‘𝑄)((𝑖(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)𝑖) = 𝑥))) |
| 42 | 13, 38, 41 | mpbir2an 711 | 1 ⊢ 𝑄 ∈ Ring |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 {csn 4592 ∪ ciun 4958 × cxp 5639 ‘cfv 6514 (class class class)co 7390 0cc0 11075 1c1 11076 ℤcz 12536 Basecbs 17186 ↾s cress 17207 .rcmulr 17228 /s cqus 17475 ×s cxps 17476 SubGrpcsubg 19059 ~QG cqg 19061 Rngcrng 20068 1rcur 20097 Ringcrg 20149 2Idealc2idl 21166 ℤringczring 21363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-ec 8676 df-qs 8680 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-0g 17411 df-prds 17417 df-imas 17478 df-qus 17479 df-xps 17480 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-nsg 19063 df-eqg 19064 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-subrng 20462 df-subrg 20486 df-lss 20845 df-sra 21087 df-rgmod 21088 df-lidl 21125 df-2idl 21167 df-cnfld 21272 df-zring 21364 |
| This theorem is referenced by: pzriprnglem14 21411 pzriprngALT 21412 pzriprng1ALT 21413 |
| Copyright terms: Public domain | W3C validator |