![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pzriprnglem13 | Structured version Visualization version GIF version |
Description: Lemma 13 for pzriprng 21270: 𝑄 is a unital ring. (Contributed by AV, 23-Mar-2025.) |
Ref | Expression |
---|---|
pzriprng.r | ⊢ 𝑅 = (ℤring ×s ℤring) |
pzriprng.i | ⊢ 𝐼 = (ℤ × {0}) |
pzriprng.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
pzriprng.1 | ⊢ 1 = (1r‘𝐽) |
pzriprng.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
pzriprng.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
Ref | Expression |
---|---|
pzriprnglem13 | ⊢ 𝑄 ∈ Ring |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pzriprng.r | . . . 4 ⊢ 𝑅 = (ℤring ×s ℤring) | |
2 | 1 | pzriprnglem1 21254 | . . 3 ⊢ 𝑅 ∈ Rng |
3 | pzriprng.i | . . . 4 ⊢ 𝐼 = (ℤ × {0}) | |
4 | pzriprng.j | . . . 4 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
5 | 1, 3, 4 | pzriprnglem8 21261 | . . 3 ⊢ 𝐼 ∈ (2Ideal‘𝑅) |
6 | 1, 3 | pzriprnglem4 21257 | . . 3 ⊢ 𝐼 ∈ (SubGrp‘𝑅) |
7 | pzriprng.q | . . . . 5 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
8 | pzriprng.g | . . . . . 6 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
9 | 8 | oveq2i 7423 | . . . . 5 ⊢ (𝑅 /s ∼ ) = (𝑅 /s (𝑅 ~QG 𝐼)) |
10 | 7, 9 | eqtri 2759 | . . . 4 ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) |
11 | eqid 2731 | . . . 4 ⊢ (2Ideal‘𝑅) = (2Ideal‘𝑅) | |
12 | 10, 11 | qus2idrng 21048 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅) ∧ 𝐼 ∈ (SubGrp‘𝑅)) → 𝑄 ∈ Rng) |
13 | 2, 5, 6, 12 | mp3an 1460 | . 2 ⊢ 𝑄 ∈ Rng |
14 | 1z 12599 | . . . . . 6 ⊢ 1 ∈ ℤ | |
15 | zex 12574 | . . . . . . . 8 ⊢ ℤ ∈ V | |
16 | snex 5431 | . . . . . . . 8 ⊢ {1} ∈ V | |
17 | 15, 16 | xpex 7744 | . . . . . . 7 ⊢ (ℤ × {1}) ∈ V |
18 | 17 | snid 4664 | . . . . . 6 ⊢ (ℤ × {1}) ∈ {(ℤ × {1})} |
19 | sneq 4638 | . . . . . . . . . 10 ⊢ (𝑦 = 1 → {𝑦} = {1}) | |
20 | 19 | xpeq2d 5706 | . . . . . . . . 9 ⊢ (𝑦 = 1 → (ℤ × {𝑦}) = (ℤ × {1})) |
21 | 20 | sneqd 4640 | . . . . . . . 8 ⊢ (𝑦 = 1 → {(ℤ × {𝑦})} = {(ℤ × {1})}) |
22 | 21 | eleq2d 2818 | . . . . . . 7 ⊢ (𝑦 = 1 → ((ℤ × {1}) ∈ {(ℤ × {𝑦})} ↔ (ℤ × {1}) ∈ {(ℤ × {1})})) |
23 | 22 | rspcev 3612 | . . . . . 6 ⊢ ((1 ∈ ℤ ∧ (ℤ × {1}) ∈ {(ℤ × {1})}) → ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})}) |
24 | 14, 18, 23 | mp2an 689 | . . . . 5 ⊢ ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})} |
25 | eliun 5001 | . . . . 5 ⊢ ((ℤ × {1}) ∈ ∪ 𝑦 ∈ ℤ {(ℤ × {𝑦})} ↔ ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})}) | |
26 | 24, 25 | mpbir 230 | . . . 4 ⊢ (ℤ × {1}) ∈ ∪ 𝑦 ∈ ℤ {(ℤ × {𝑦})} |
27 | pzriprng.1 | . . . . 5 ⊢ 1 = (1r‘𝐽) | |
28 | 1, 3, 4, 27, 8, 7 | pzriprnglem11 21264 | . . . 4 ⊢ (Base‘𝑄) = ∪ 𝑦 ∈ ℤ {(ℤ × {𝑦})} |
29 | 26, 28 | eleqtrri 2831 | . . 3 ⊢ (ℤ × {1}) ∈ (Base‘𝑄) |
30 | oveq1 7419 | . . . . . 6 ⊢ (𝑖 = (ℤ × {1}) → (𝑖(.r‘𝑄)𝑥) = ((ℤ × {1})(.r‘𝑄)𝑥)) | |
31 | 30 | eqeq1d 2733 | . . . . 5 ⊢ (𝑖 = (ℤ × {1}) → ((𝑖(.r‘𝑄)𝑥) = 𝑥 ↔ ((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥)) |
32 | 31 | ovanraleqv 7436 | . . . 4 ⊢ (𝑖 = (ℤ × {1}) → (∀𝑥 ∈ (Base‘𝑄)((𝑖(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)𝑖) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)(ℤ × {1})) = 𝑥))) |
33 | id 22 | . . . 4 ⊢ ((ℤ × {1}) ∈ (Base‘𝑄) → (ℤ × {1}) ∈ (Base‘𝑄)) | |
34 | 1, 3, 4, 27, 8, 7 | pzriprnglem12 21265 | . . . . . 6 ⊢ (𝑥 ∈ (Base‘𝑄) → (((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)(ℤ × {1})) = 𝑥)) |
35 | 34 | a1i 11 | . . . . 5 ⊢ ((ℤ × {1}) ∈ (Base‘𝑄) → (𝑥 ∈ (Base‘𝑄) → (((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)(ℤ × {1})) = 𝑥))) |
36 | 35 | ralrimiv 3144 | . . . 4 ⊢ ((ℤ × {1}) ∈ (Base‘𝑄) → ∀𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)(ℤ × {1})) = 𝑥)) |
37 | 32, 33, 36 | rspcedvdw 3615 | . . 3 ⊢ ((ℤ × {1}) ∈ (Base‘𝑄) → ∃𝑖 ∈ (Base‘𝑄)∀𝑥 ∈ (Base‘𝑄)((𝑖(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)𝑖) = 𝑥)) |
38 | 29, 37 | ax-mp 5 | . 2 ⊢ ∃𝑖 ∈ (Base‘𝑄)∀𝑥 ∈ (Base‘𝑄)((𝑖(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)𝑖) = 𝑥) |
39 | eqid 2731 | . . 3 ⊢ (Base‘𝑄) = (Base‘𝑄) | |
40 | eqid 2731 | . . 3 ⊢ (.r‘𝑄) = (.r‘𝑄) | |
41 | 39, 40 | isringrng 20179 | . 2 ⊢ (𝑄 ∈ Ring ↔ (𝑄 ∈ Rng ∧ ∃𝑖 ∈ (Base‘𝑄)∀𝑥 ∈ (Base‘𝑄)((𝑖(.r‘𝑄)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑄)𝑖) = 𝑥))) |
42 | 13, 38, 41 | mpbir2an 708 | 1 ⊢ 𝑄 ∈ Ring |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ∃wrex 3069 {csn 4628 ∪ ciun 4997 × cxp 5674 ‘cfv 6543 (class class class)co 7412 0cc0 11116 1c1 11117 ℤcz 12565 Basecbs 17151 ↾s cress 17180 .rcmulr 17205 /s cqus 17458 ×s cxps 17459 SubGrpcsubg 19040 ~QG cqg 19042 Rngcrng 20050 1rcur 20079 Ringcrg 20131 2Idealc2idl 21009 ℤringczring 21221 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-addf 11195 ax-mulf 11196 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8217 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-2o 8473 df-er 8709 df-ec 8711 df-qs 8715 df-map 8828 df-ixp 8898 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-sup 9443 df-inf 9444 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-fz 13492 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-hom 17228 df-cco 17229 df-0g 17394 df-prds 17400 df-imas 17461 df-qus 17462 df-xps 17463 df-mgm 18568 df-sgrp 18647 df-mnd 18663 df-grp 18861 df-minusg 18862 df-sbg 18863 df-subg 19043 df-nsg 19044 df-eqg 19045 df-cmn 19695 df-abl 19696 df-mgp 20033 df-rng 20051 df-ur 20080 df-ring 20133 df-cring 20134 df-oppr 20229 df-subrng 20438 df-subrg 20463 df-lss 20691 df-sra 20934 df-rgmod 20935 df-lidl 20936 df-2idl 21010 df-cnfld 21149 df-zring 21222 |
This theorem is referenced by: pzriprnglem14 21267 pzriprngALT 21268 pzriprng1ALT 21269 |
Copyright terms: Public domain | W3C validator |