MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprnglem13 Structured version   Visualization version   GIF version

Theorem pzriprnglem13 21266
Description: Lemma 13 for pzriprng 21270: 𝑄 is a unital ring. (Contributed by AV, 23-Mar-2025.)
Hypotheses
Ref Expression
pzriprng.r 𝑅 = (ℤring ×sring)
pzriprng.i 𝐼 = (ℤ × {0})
pzriprng.j 𝐽 = (𝑅s 𝐼)
pzriprng.1 1 = (1r𝐽)
pzriprng.g = (𝑅 ~QG 𝐼)
pzriprng.q 𝑄 = (𝑅 /s )
Assertion
Ref Expression
pzriprnglem13 𝑄 ∈ Ring

Proof of Theorem pzriprnglem13
Dummy variables 𝑥 𝑦 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pzriprng.r . . . 4 𝑅 = (ℤring ×sring)
21pzriprnglem1 21254 . . 3 𝑅 ∈ Rng
3 pzriprng.i . . . 4 𝐼 = (ℤ × {0})
4 pzriprng.j . . . 4 𝐽 = (𝑅s 𝐼)
51, 3, 4pzriprnglem8 21261 . . 3 𝐼 ∈ (2Ideal‘𝑅)
61, 3pzriprnglem4 21257 . . 3 𝐼 ∈ (SubGrp‘𝑅)
7 pzriprng.q . . . . 5 𝑄 = (𝑅 /s )
8 pzriprng.g . . . . . 6 = (𝑅 ~QG 𝐼)
98oveq2i 7423 . . . . 5 (𝑅 /s ) = (𝑅 /s (𝑅 ~QG 𝐼))
107, 9eqtri 2759 . . . 4 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
11 eqid 2731 . . . 4 (2Ideal‘𝑅) = (2Ideal‘𝑅)
1210, 11qus2idrng 21048 . . 3 ((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅) ∧ 𝐼 ∈ (SubGrp‘𝑅)) → 𝑄 ∈ Rng)
132, 5, 6, 12mp3an 1460 . 2 𝑄 ∈ Rng
14 1z 12599 . . . . . 6 1 ∈ ℤ
15 zex 12574 . . . . . . . 8 ℤ ∈ V
16 snex 5431 . . . . . . . 8 {1} ∈ V
1715, 16xpex 7744 . . . . . . 7 (ℤ × {1}) ∈ V
1817snid 4664 . . . . . 6 (ℤ × {1}) ∈ {(ℤ × {1})}
19 sneq 4638 . . . . . . . . . 10 (𝑦 = 1 → {𝑦} = {1})
2019xpeq2d 5706 . . . . . . . . 9 (𝑦 = 1 → (ℤ × {𝑦}) = (ℤ × {1}))
2120sneqd 4640 . . . . . . . 8 (𝑦 = 1 → {(ℤ × {𝑦})} = {(ℤ × {1})})
2221eleq2d 2818 . . . . . . 7 (𝑦 = 1 → ((ℤ × {1}) ∈ {(ℤ × {𝑦})} ↔ (ℤ × {1}) ∈ {(ℤ × {1})}))
2322rspcev 3612 . . . . . 6 ((1 ∈ ℤ ∧ (ℤ × {1}) ∈ {(ℤ × {1})}) → ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})})
2414, 18, 23mp2an 689 . . . . 5 𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})}
25 eliun 5001 . . . . 5 ((ℤ × {1}) ∈ 𝑦 ∈ ℤ {(ℤ × {𝑦})} ↔ ∃𝑦 ∈ ℤ (ℤ × {1}) ∈ {(ℤ × {𝑦})})
2624, 25mpbir 230 . . . 4 (ℤ × {1}) ∈ 𝑦 ∈ ℤ {(ℤ × {𝑦})}
27 pzriprng.1 . . . . 5 1 = (1r𝐽)
281, 3, 4, 27, 8, 7pzriprnglem11 21264 . . . 4 (Base‘𝑄) = 𝑦 ∈ ℤ {(ℤ × {𝑦})}
2926, 28eleqtrri 2831 . . 3 (ℤ × {1}) ∈ (Base‘𝑄)
30 oveq1 7419 . . . . . 6 (𝑖 = (ℤ × {1}) → (𝑖(.r𝑄)𝑥) = ((ℤ × {1})(.r𝑄)𝑥))
3130eqeq1d 2733 . . . . 5 (𝑖 = (ℤ × {1}) → ((𝑖(.r𝑄)𝑥) = 𝑥 ↔ ((ℤ × {1})(.r𝑄)𝑥) = 𝑥))
3231ovanraleqv 7436 . . . 4 (𝑖 = (ℤ × {1}) → (∀𝑥 ∈ (Base‘𝑄)((𝑖(.r𝑄)𝑥) = 𝑥 ∧ (𝑥(.r𝑄)𝑖) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r𝑄)𝑥) = 𝑥 ∧ (𝑥(.r𝑄)(ℤ × {1})) = 𝑥)))
33 id 22 . . . 4 ((ℤ × {1}) ∈ (Base‘𝑄) → (ℤ × {1}) ∈ (Base‘𝑄))
341, 3, 4, 27, 8, 7pzriprnglem12 21265 . . . . . 6 (𝑥 ∈ (Base‘𝑄) → (((ℤ × {1})(.r𝑄)𝑥) = 𝑥 ∧ (𝑥(.r𝑄)(ℤ × {1})) = 𝑥))
3534a1i 11 . . . . 5 ((ℤ × {1}) ∈ (Base‘𝑄) → (𝑥 ∈ (Base‘𝑄) → (((ℤ × {1})(.r𝑄)𝑥) = 𝑥 ∧ (𝑥(.r𝑄)(ℤ × {1})) = 𝑥)))
3635ralrimiv 3144 . . . 4 ((ℤ × {1}) ∈ (Base‘𝑄) → ∀𝑥 ∈ (Base‘𝑄)(((ℤ × {1})(.r𝑄)𝑥) = 𝑥 ∧ (𝑥(.r𝑄)(ℤ × {1})) = 𝑥))
3732, 33, 36rspcedvdw 3615 . . 3 ((ℤ × {1}) ∈ (Base‘𝑄) → ∃𝑖 ∈ (Base‘𝑄)∀𝑥 ∈ (Base‘𝑄)((𝑖(.r𝑄)𝑥) = 𝑥 ∧ (𝑥(.r𝑄)𝑖) = 𝑥))
3829, 37ax-mp 5 . 2 𝑖 ∈ (Base‘𝑄)∀𝑥 ∈ (Base‘𝑄)((𝑖(.r𝑄)𝑥) = 𝑥 ∧ (𝑥(.r𝑄)𝑖) = 𝑥)
39 eqid 2731 . . 3 (Base‘𝑄) = (Base‘𝑄)
40 eqid 2731 . . 3 (.r𝑄) = (.r𝑄)
4139, 40isringrng 20179 . 2 (𝑄 ∈ Ring ↔ (𝑄 ∈ Rng ∧ ∃𝑖 ∈ (Base‘𝑄)∀𝑥 ∈ (Base‘𝑄)((𝑖(.r𝑄)𝑥) = 𝑥 ∧ (𝑥(.r𝑄)𝑖) = 𝑥)))
4213, 38, 41mpbir2an 708 1 𝑄 ∈ Ring
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wral 3060  wrex 3069  {csn 4628   ciun 4997   × cxp 5674  cfv 6543  (class class class)co 7412  0cc0 11116  1c1 11117  cz 12565  Basecbs 17151  s cress 17180  .rcmulr 17205   /s cqus 17458   ×s cxps 17459  SubGrpcsubg 19040   ~QG cqg 19042  Rngcrng 20050  1rcur 20079  Ringcrg 20131  2Idealc2idl 21009  ringczring 21221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-addf 11195  ax-mulf 11196
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-tpos 8217  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-er 8709  df-ec 8711  df-qs 8715  df-map 8828  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-sup 9443  df-inf 9444  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-fz 13492  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-starv 17219  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-hom 17228  df-cco 17229  df-0g 17394  df-prds 17400  df-imas 17461  df-qus 17462  df-xps 17463  df-mgm 18568  df-sgrp 18647  df-mnd 18663  df-grp 18861  df-minusg 18862  df-sbg 18863  df-subg 19043  df-nsg 19044  df-eqg 19045  df-cmn 19695  df-abl 19696  df-mgp 20033  df-rng 20051  df-ur 20080  df-ring 20133  df-cring 20134  df-oppr 20229  df-subrng 20438  df-subrg 20463  df-lss 20691  df-sra 20934  df-rgmod 20935  df-lidl 20936  df-2idl 21010  df-cnfld 21149  df-zring 21222
This theorem is referenced by:  pzriprnglem14  21267  pzriprngALT  21268  pzriprng1ALT  21269
  Copyright terms: Public domain W3C validator