| Step | Hyp | Ref
| Expression |
| 1 | | isuspgrim0lem.j |
. . . . . . . 8
⊢ 𝐽 = (iEdg‘𝐻) |
| 2 | 1 | uspgrf1oedg 29190 |
. . . . . . 7
⊢ (𝐻 ∈ USPGraph → 𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻)) |
| 3 | 2 | 3ad2ant2 1135 |
. . . . . 6
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) → 𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻)) |
| 4 | 3 | ad2antrr 726 |
. . . . 5
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) → 𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻)) |
| 5 | | f1of 6848 |
. . . . . . . . 9
⊢ (𝑀:𝐸–1-1-onto→𝐷 → 𝑀:𝐸⟶𝐷) |
| 6 | 5 | adantl 481 |
. . . . . . . 8
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) → 𝑀:𝐸⟶𝐷) |
| 7 | 6 | adantr 480 |
. . . . . . 7
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑥 ∈ dom 𝐼) → 𝑀:𝐸⟶𝐷) |
| 8 | | uspgruhgr 29201 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ USPGraph → 𝐺 ∈
UHGraph) |
| 9 | | isuspgrim0lem.i |
. . . . . . . . . . . . 13
⊢ 𝐼 = (iEdg‘𝐺) |
| 10 | 9 | uhgrfun 29083 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ UHGraph → Fun 𝐼) |
| 11 | 8, 10 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ USPGraph → Fun
𝐼) |
| 12 | | isusgrim.e |
. . . . . . . . . . . . . 14
⊢ 𝐸 = (Edg‘𝐺) |
| 13 | | edgval 29066 |
. . . . . . . . . . . . . 14
⊢
(Edg‘𝐺) = ran
(iEdg‘𝐺) |
| 14 | 9 | eqcomi 2746 |
. . . . . . . . . . . . . . 15
⊢
(iEdg‘𝐺) =
𝐼 |
| 15 | 14 | rneqi 5948 |
. . . . . . . . . . . . . 14
⊢ ran
(iEdg‘𝐺) = ran 𝐼 |
| 16 | 12, 13, 15 | 3eqtri 2769 |
. . . . . . . . . . . . 13
⊢ 𝐸 = ran 𝐼 |
| 17 | | feq3 6718 |
. . . . . . . . . . . . 13
⊢ (𝐸 = ran 𝐼 → (𝐼:dom 𝐼⟶𝐸 ↔ 𝐼:dom 𝐼⟶ran 𝐼)) |
| 18 | 16, 17 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (𝐼:dom 𝐼⟶𝐸 ↔ 𝐼:dom 𝐼⟶ran 𝐼) |
| 19 | | fdmrn 6767 |
. . . . . . . . . . . 12
⊢ (Fun
𝐼 ↔ 𝐼:dom 𝐼⟶ran 𝐼) |
| 20 | 18, 19 | bitr4i 278 |
. . . . . . . . . . 11
⊢ (𝐼:dom 𝐼⟶𝐸 ↔ Fun 𝐼) |
| 21 | 11, 20 | sylibr 234 |
. . . . . . . . . 10
⊢ (𝐺 ∈ USPGraph → 𝐼:dom 𝐼⟶𝐸) |
| 22 | 21 | 3ad2ant1 1134 |
. . . . . . . . 9
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) → 𝐼:dom 𝐼⟶𝐸) |
| 23 | 22 | ad2antrr 726 |
. . . . . . . 8
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) → 𝐼:dom 𝐼⟶𝐸) |
| 24 | 23 | ffvelcdmda 7104 |
. . . . . . 7
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑥 ∈ dom 𝐼) → (𝐼‘𝑥) ∈ 𝐸) |
| 25 | 7, 24 | ffvelcdmd 7105 |
. . . . . 6
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑥 ∈ dom 𝐼) → (𝑀‘(𝐼‘𝑥)) ∈ 𝐷) |
| 26 | | isusgrim.d |
. . . . . 6
⊢ 𝐷 = (Edg‘𝐻) |
| 27 | 25, 26 | eleqtrdi 2851 |
. . . . 5
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑥 ∈ dom 𝐼) → (𝑀‘(𝐼‘𝑥)) ∈ (Edg‘𝐻)) |
| 28 | | f1ocnvdm 7305 |
. . . . 5
⊢ ((𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻) ∧ (𝑀‘(𝐼‘𝑥)) ∈ (Edg‘𝐻)) → (◡𝐽‘(𝑀‘(𝐼‘𝑥))) ∈ dom 𝐽) |
| 29 | 4, 27, 28 | syl2an2r 685 |
. . . 4
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑥 ∈ dom 𝐼) → (◡𝐽‘(𝑀‘(𝐼‘𝑥))) ∈ dom 𝐽) |
| 30 | 29 | ralrimiva 3146 |
. . 3
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) → ∀𝑥 ∈ dom 𝐼(◡𝐽‘(𝑀‘(𝐼‘𝑥))) ∈ dom 𝐽) |
| 31 | | 2fveq3 6911 |
. . . . . . . . 9
⊢ (𝑥 = (◡𝐼‘(◡𝑀‘(𝐽‘𝑖))) → (𝑀‘(𝐼‘𝑥)) = (𝑀‘(𝐼‘(◡𝐼‘(◡𝑀‘(𝐽‘𝑖)))))) |
| 32 | 31 | eqeq2d 2748 |
. . . . . . . 8
⊢ (𝑥 = (◡𝐼‘(◡𝑀‘(𝐽‘𝑖))) → ((𝐽‘𝑖) = (𝑀‘(𝐼‘𝑥)) ↔ (𝐽‘𝑖) = (𝑀‘(𝐼‘(◡𝐼‘(◡𝑀‘(𝐽‘𝑖))))))) |
| 33 | 9 | uspgrf1oedg 29190 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ USPGraph → 𝐼:dom 𝐼–1-1-onto→(Edg‘𝐺)) |
| 34 | 33 | 3ad2ant1 1134 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) → 𝐼:dom 𝐼–1-1-onto→(Edg‘𝐺)) |
| 35 | 34 | ad2antrr 726 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) → 𝐼:dom 𝐼–1-1-onto→(Edg‘𝐺)) |
| 36 | | f1oeq2 6837 |
. . . . . . . . . . . . 13
⊢ (𝐸 = (Edg‘𝐺) → (𝑀:𝐸–1-1-onto→𝐷 ↔ 𝑀:(Edg‘𝐺)–1-1-onto→𝐷)) |
| 37 | 12, 36 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (𝑀:𝐸–1-1-onto→𝐷 ↔ 𝑀:(Edg‘𝐺)–1-1-onto→𝐷) |
| 38 | 37 | biimpi 216 |
. . . . . . . . . . 11
⊢ (𝑀:𝐸–1-1-onto→𝐷 → 𝑀:(Edg‘𝐺)–1-1-onto→𝐷) |
| 39 | 38 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) → 𝑀:(Edg‘𝐺)–1-1-onto→𝐷) |
| 40 | | f1oeq3 6838 |
. . . . . . . . . . . . . 14
⊢ (𝐷 = (Edg‘𝐻) → (𝐽:dom 𝐽–1-1-onto→𝐷 ↔ 𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻))) |
| 41 | 26, 40 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (𝐽:dom 𝐽–1-1-onto→𝐷 ↔ 𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻)) |
| 42 | 4, 41 | sylibr 234 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) → 𝐽:dom 𝐽–1-1-onto→𝐷) |
| 43 | | f1of 6848 |
. . . . . . . . . . . 12
⊢ (𝐽:dom 𝐽–1-1-onto→𝐷 → 𝐽:dom 𝐽⟶𝐷) |
| 44 | 42, 43 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) → 𝐽:dom 𝐽⟶𝐷) |
| 45 | 44 | ffvelcdmda 7104 |
. . . . . . . . . 10
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) → (𝐽‘𝑖) ∈ 𝐷) |
| 46 | | f1ocnvdm 7305 |
. . . . . . . . . 10
⊢ ((𝑀:(Edg‘𝐺)–1-1-onto→𝐷 ∧ (𝐽‘𝑖) ∈ 𝐷) → (◡𝑀‘(𝐽‘𝑖)) ∈ (Edg‘𝐺)) |
| 47 | 39, 45, 46 | syl2an2r 685 |
. . . . . . . . 9
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) → (◡𝑀‘(𝐽‘𝑖)) ∈ (Edg‘𝐺)) |
| 48 | | f1ocnvdm 7305 |
. . . . . . . . 9
⊢ ((𝐼:dom 𝐼–1-1-onto→(Edg‘𝐺) ∧ (◡𝑀‘(𝐽‘𝑖)) ∈ (Edg‘𝐺)) → (◡𝐼‘(◡𝑀‘(𝐽‘𝑖))) ∈ dom 𝐼) |
| 49 | 35, 47, 48 | syl2an2r 685 |
. . . . . . . 8
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) → (◡𝐼‘(◡𝑀‘(𝐽‘𝑖))) ∈ dom 𝐼) |
| 50 | | simpll1 1213 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) → 𝐺 ∈ USPGraph) |
| 51 | 50, 33 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) → 𝐼:dom 𝐼–1-1-onto→(Edg‘𝐺)) |
| 52 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) → 𝑀:𝐸–1-1-onto→𝐷) |
| 53 | | f1ocnvdm 7305 |
. . . . . . . . . . . . 13
⊢ ((𝑀:𝐸–1-1-onto→𝐷 ∧ (𝐽‘𝑖) ∈ 𝐷) → (◡𝑀‘(𝐽‘𝑖)) ∈ 𝐸) |
| 54 | 52, 45, 53 | syl2an2r 685 |
. . . . . . . . . . . 12
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) → (◡𝑀‘(𝐽‘𝑖)) ∈ 𝐸) |
| 55 | 54, 12 | eleqtrdi 2851 |
. . . . . . . . . . 11
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) → (◡𝑀‘(𝐽‘𝑖)) ∈ (Edg‘𝐺)) |
| 56 | | f1ocnvfv2 7297 |
. . . . . . . . . . 11
⊢ ((𝐼:dom 𝐼–1-1-onto→(Edg‘𝐺) ∧ (◡𝑀‘(𝐽‘𝑖)) ∈ (Edg‘𝐺)) → (𝐼‘(◡𝐼‘(◡𝑀‘(𝐽‘𝑖)))) = (◡𝑀‘(𝐽‘𝑖))) |
| 57 | 51, 55, 56 | syl2an2r 685 |
. . . . . . . . . 10
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) → (𝐼‘(◡𝐼‘(◡𝑀‘(𝐽‘𝑖)))) = (◡𝑀‘(𝐽‘𝑖))) |
| 58 | 57 | fveq2d 6910 |
. . . . . . . . 9
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) → (𝑀‘(𝐼‘(◡𝐼‘(◡𝑀‘(𝐽‘𝑖))))) = (𝑀‘(◡𝑀‘(𝐽‘𝑖)))) |
| 59 | | f1ocnvfv2 7297 |
. . . . . . . . . 10
⊢ ((𝑀:𝐸–1-1-onto→𝐷 ∧ (𝐽‘𝑖) ∈ 𝐷) → (𝑀‘(◡𝑀‘(𝐽‘𝑖))) = (𝐽‘𝑖)) |
| 60 | 52, 45, 59 | syl2an2r 685 |
. . . . . . . . 9
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) → (𝑀‘(◡𝑀‘(𝐽‘𝑖))) = (𝐽‘𝑖)) |
| 61 | 58, 60 | eqtr2d 2778 |
. . . . . . . 8
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) → (𝐽‘𝑖) = (𝑀‘(𝐼‘(◡𝐼‘(◡𝑀‘(𝐽‘𝑖)))))) |
| 62 | 32, 49, 61 | rspcedvdw 3625 |
. . . . . . 7
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) → ∃𝑥 ∈ dom 𝐼(𝐽‘𝑖) = (𝑀‘(𝐼‘𝑥))) |
| 63 | | eqtr2 2761 |
. . . . . . . . 9
⊢ (((𝐽‘𝑖) = (𝑀‘(𝐼‘𝑥)) ∧ (𝐽‘𝑖) = (𝑀‘(𝐼‘𝑦))) → (𝑀‘(𝐼‘𝑥)) = (𝑀‘(𝐼‘𝑦))) |
| 64 | | f1of1 6847 |
. . . . . . . . . . . . 13
⊢ (𝑀:𝐸–1-1-onto→𝐷 → 𝑀:𝐸–1-1→𝐷) |
| 65 | 64 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) → 𝑀:𝐸–1-1→𝐷) |
| 66 | 65 | adantr 480 |
. . . . . . . . . . 11
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) → 𝑀:𝐸–1-1→𝐷) |
| 67 | 9 | iedgedg 29067 |
. . . . . . . . . . . . . . . . . 18
⊢ ((Fun
𝐼 ∧ 𝑥 ∈ dom 𝐼) → (𝐼‘𝑥) ∈ (Edg‘𝐺)) |
| 68 | 11, 67 | sylan 580 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ USPGraph ∧ 𝑥 ∈ dom 𝐼) → (𝐼‘𝑥) ∈ (Edg‘𝐺)) |
| 69 | 68, 12 | eleqtrrdi 2852 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ USPGraph ∧ 𝑥 ∈ dom 𝐼) → (𝐼‘𝑥) ∈ 𝐸) |
| 70 | 69 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ∈ USPGraph → (𝑥 ∈ dom 𝐼 → (𝐼‘𝑥) ∈ 𝐸)) |
| 71 | 9 | iedgedg 29067 |
. . . . . . . . . . . . . . . . . 18
⊢ ((Fun
𝐼 ∧ 𝑦 ∈ dom 𝐼) → (𝐼‘𝑦) ∈ (Edg‘𝐺)) |
| 72 | 11, 71 | sylan 580 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ USPGraph ∧ 𝑦 ∈ dom 𝐼) → (𝐼‘𝑦) ∈ (Edg‘𝐺)) |
| 73 | 72, 12 | eleqtrrdi 2852 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ USPGraph ∧ 𝑦 ∈ dom 𝐼) → (𝐼‘𝑦) ∈ 𝐸) |
| 74 | 73 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ∈ USPGraph → (𝑦 ∈ dom 𝐼 → (𝐼‘𝑦) ∈ 𝐸)) |
| 75 | 70, 74 | anim12d 609 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ∈ USPGraph → ((𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼) → ((𝐼‘𝑥) ∈ 𝐸 ∧ (𝐼‘𝑦) ∈ 𝐸))) |
| 76 | 75 | 3ad2ant1 1134 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) → ((𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼) → ((𝐼‘𝑥) ∈ 𝐸 ∧ (𝐼‘𝑦) ∈ 𝐸))) |
| 77 | 76 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) → ((𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼) → ((𝐼‘𝑥) ∈ 𝐸 ∧ (𝐼‘𝑦) ∈ 𝐸))) |
| 78 | 77 | imp 406 |
. . . . . . . . . . 11
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) ∧ (𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼)) → ((𝐼‘𝑥) ∈ 𝐸 ∧ (𝐼‘𝑦) ∈ 𝐸)) |
| 79 | | f1fveq 7282 |
. . . . . . . . . . 11
⊢ ((𝑀:𝐸–1-1→𝐷 ∧ ((𝐼‘𝑥) ∈ 𝐸 ∧ (𝐼‘𝑦) ∈ 𝐸)) → ((𝑀‘(𝐼‘𝑥)) = (𝑀‘(𝐼‘𝑦)) ↔ (𝐼‘𝑥) = (𝐼‘𝑦))) |
| 80 | 66, 78, 79 | syl2an2r 685 |
. . . . . . . . . 10
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) ∧ (𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼)) → ((𝑀‘(𝐼‘𝑥)) = (𝑀‘(𝐼‘𝑦)) ↔ (𝐼‘𝑥) = (𝐼‘𝑦))) |
| 81 | | f1of1 6847 |
. . . . . . . . . . . . . 14
⊢ (𝐼:dom 𝐼–1-1-onto→(Edg‘𝐺) → 𝐼:dom 𝐼–1-1→(Edg‘𝐺)) |
| 82 | 33, 81 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ USPGraph → 𝐼:dom 𝐼–1-1→(Edg‘𝐺)) |
| 83 | 82 | 3ad2ant1 1134 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) → 𝐼:dom 𝐼–1-1→(Edg‘𝐺)) |
| 84 | 83 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) → 𝐼:dom 𝐼–1-1→(Edg‘𝐺)) |
| 85 | | f1veqaeq 7277 |
. . . . . . . . . . 11
⊢ ((𝐼:dom 𝐼–1-1→(Edg‘𝐺) ∧ (𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼)) → ((𝐼‘𝑥) = (𝐼‘𝑦) → 𝑥 = 𝑦)) |
| 86 | 84, 85 | sylan 580 |
. . . . . . . . . 10
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) ∧ (𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼)) → ((𝐼‘𝑥) = (𝐼‘𝑦) → 𝑥 = 𝑦)) |
| 87 | 80, 86 | sylbid 240 |
. . . . . . . . 9
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) ∧ (𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼)) → ((𝑀‘(𝐼‘𝑥)) = (𝑀‘(𝐼‘𝑦)) → 𝑥 = 𝑦)) |
| 88 | 63, 87 | syl5 34 |
. . . . . . . 8
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) ∧ (𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼)) → (((𝐽‘𝑖) = (𝑀‘(𝐼‘𝑥)) ∧ (𝐽‘𝑖) = (𝑀‘(𝐼‘𝑦))) → 𝑥 = 𝑦)) |
| 89 | 88 | ralrimivva 3202 |
. . . . . . 7
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) → ∀𝑥 ∈ dom 𝐼∀𝑦 ∈ dom 𝐼(((𝐽‘𝑖) = (𝑀‘(𝐼‘𝑥)) ∧ (𝐽‘𝑖) = (𝑀‘(𝐼‘𝑦))) → 𝑥 = 𝑦)) |
| 90 | | 2fveq3 6911 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑀‘(𝐼‘𝑥)) = (𝑀‘(𝐼‘𝑦))) |
| 91 | 90 | eqeq2d 2748 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝐽‘𝑖) = (𝑀‘(𝐼‘𝑥)) ↔ (𝐽‘𝑖) = (𝑀‘(𝐼‘𝑦)))) |
| 92 | 91 | reu4 3737 |
. . . . . . 7
⊢
(∃!𝑥 ∈
dom 𝐼(𝐽‘𝑖) = (𝑀‘(𝐼‘𝑥)) ↔ (∃𝑥 ∈ dom 𝐼(𝐽‘𝑖) = (𝑀‘(𝐼‘𝑥)) ∧ ∀𝑥 ∈ dom 𝐼∀𝑦 ∈ dom 𝐼(((𝐽‘𝑖) = (𝑀‘(𝐼‘𝑥)) ∧ (𝐽‘𝑖) = (𝑀‘(𝐼‘𝑦))) → 𝑥 = 𝑦))) |
| 93 | 62, 89, 92 | sylanbrc 583 |
. . . . . 6
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) → ∃!𝑥 ∈ dom 𝐼(𝐽‘𝑖) = (𝑀‘(𝐼‘𝑥))) |
| 94 | 3 | ad3antrrr 730 |
. . . . . . . . 9
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) → 𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻)) |
| 95 | 6 | ad2antrr 726 |
. . . . . . . . . . 11
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) ∧ 𝑥 ∈ dom 𝐼) → 𝑀:𝐸⟶𝐷) |
| 96 | 22 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) → 𝐼:dom 𝐼⟶𝐸) |
| 97 | 96 | ffvelcdmda 7104 |
. . . . . . . . . . 11
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) ∧ 𝑥 ∈ dom 𝐼) → (𝐼‘𝑥) ∈ 𝐸) |
| 98 | 95, 97 | ffvelcdmd 7105 |
. . . . . . . . . 10
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) ∧ 𝑥 ∈ dom 𝐼) → (𝑀‘(𝐼‘𝑥)) ∈ 𝐷) |
| 99 | 98, 26 | eleqtrdi 2851 |
. . . . . . . . 9
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) ∧ 𝑥 ∈ dom 𝐼) → (𝑀‘(𝐼‘𝑥)) ∈ (Edg‘𝐻)) |
| 100 | | f1ocnvfv2 7297 |
. . . . . . . . 9
⊢ ((𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻) ∧ (𝑀‘(𝐼‘𝑥)) ∈ (Edg‘𝐻)) → (𝐽‘(◡𝐽‘(𝑀‘(𝐼‘𝑥)))) = (𝑀‘(𝐼‘𝑥))) |
| 101 | 94, 99, 100 | syl2an2r 685 |
. . . . . . . 8
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) ∧ 𝑥 ∈ dom 𝐼) → (𝐽‘(◡𝐽‘(𝑀‘(𝐼‘𝑥)))) = (𝑀‘(𝐼‘𝑥))) |
| 102 | 101 | eqeq2d 2748 |
. . . . . . 7
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) ∧ 𝑥 ∈ dom 𝐼) → ((𝐽‘𝑖) = (𝐽‘(◡𝐽‘(𝑀‘(𝐼‘𝑥)))) ↔ (𝐽‘𝑖) = (𝑀‘(𝐼‘𝑥)))) |
| 103 | 102 | reubidva 3396 |
. . . . . 6
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) → (∃!𝑥 ∈ dom 𝐼(𝐽‘𝑖) = (𝐽‘(◡𝐽‘(𝑀‘(𝐼‘𝑥)))) ↔ ∃!𝑥 ∈ dom 𝐼(𝐽‘𝑖) = (𝑀‘(𝐼‘𝑥)))) |
| 104 | 93, 103 | mpbird 257 |
. . . . 5
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) → ∃!𝑥 ∈ dom 𝐼(𝐽‘𝑖) = (𝐽‘(◡𝐽‘(𝑀‘(𝐼‘𝑥))))) |
| 105 | 4 | ad2antrr 726 |
. . . . . . . 8
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) ∧ 𝑥 ∈ dom 𝐼) → 𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻)) |
| 106 | | f1of1 6847 |
. . . . . . . 8
⊢ (𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻) → 𝐽:dom 𝐽–1-1→(Edg‘𝐻)) |
| 107 | 105, 106 | syl 17 |
. . . . . . 7
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) ∧ 𝑥 ∈ dom 𝐼) → 𝐽:dom 𝐽–1-1→(Edg‘𝐻)) |
| 108 | | simplr 769 |
. . . . . . 7
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) ∧ 𝑥 ∈ dom 𝐼) → 𝑖 ∈ dom 𝐽) |
| 109 | 29 | adantlr 715 |
. . . . . . 7
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) ∧ 𝑥 ∈ dom 𝐼) → (◡𝐽‘(𝑀‘(𝐼‘𝑥))) ∈ dom 𝐽) |
| 110 | | f1fveq 7282 |
. . . . . . . 8
⊢ ((𝐽:dom 𝐽–1-1→(Edg‘𝐻) ∧ (𝑖 ∈ dom 𝐽 ∧ (◡𝐽‘(𝑀‘(𝐼‘𝑥))) ∈ dom 𝐽)) → ((𝐽‘𝑖) = (𝐽‘(◡𝐽‘(𝑀‘(𝐼‘𝑥)))) ↔ 𝑖 = (◡𝐽‘(𝑀‘(𝐼‘𝑥))))) |
| 111 | 110 | bicomd 223 |
. . . . . . 7
⊢ ((𝐽:dom 𝐽–1-1→(Edg‘𝐻) ∧ (𝑖 ∈ dom 𝐽 ∧ (◡𝐽‘(𝑀‘(𝐼‘𝑥))) ∈ dom 𝐽)) → (𝑖 = (◡𝐽‘(𝑀‘(𝐼‘𝑥))) ↔ (𝐽‘𝑖) = (𝐽‘(◡𝐽‘(𝑀‘(𝐼‘𝑥)))))) |
| 112 | 107, 108,
109, 111 | syl12anc 837 |
. . . . . 6
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) ∧ 𝑥 ∈ dom 𝐼) → (𝑖 = (◡𝐽‘(𝑀‘(𝐼‘𝑥))) ↔ (𝐽‘𝑖) = (𝐽‘(◡𝐽‘(𝑀‘(𝐼‘𝑥)))))) |
| 113 | 112 | reubidva 3396 |
. . . . 5
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) → (∃!𝑥 ∈ dom 𝐼 𝑖 = (◡𝐽‘(𝑀‘(𝐼‘𝑥))) ↔ ∃!𝑥 ∈ dom 𝐼(𝐽‘𝑖) = (𝐽‘(◡𝐽‘(𝑀‘(𝐼‘𝑥)))))) |
| 114 | 104, 113 | mpbird 257 |
. . . 4
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐽) → ∃!𝑥 ∈ dom 𝐼 𝑖 = (◡𝐽‘(𝑀‘(𝐼‘𝑥)))) |
| 115 | 114 | ralrimiva 3146 |
. . 3
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) → ∀𝑖 ∈ dom 𝐽∃!𝑥 ∈ dom 𝐼 𝑖 = (◡𝐽‘(𝑀‘(𝐼‘𝑥)))) |
| 116 | | isuspgrim0lem.n |
. . . 4
⊢ 𝑁 = (𝑥 ∈ dom 𝐼 ↦ (◡𝐽‘(𝑀‘(𝐼‘𝑥)))) |
| 117 | 116 | f1ompt 7131 |
. . 3
⊢ (𝑁:dom 𝐼–1-1-onto→dom
𝐽 ↔ (∀𝑥 ∈ dom 𝐼(◡𝐽‘(𝑀‘(𝐼‘𝑥))) ∈ dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐽∃!𝑥 ∈ dom 𝐼 𝑖 = (◡𝐽‘(𝑀‘(𝐼‘𝑥))))) |
| 118 | 30, 115, 117 | sylanbrc 583 |
. 2
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) → 𝑁:dom 𝐼–1-1-onto→dom
𝐽) |
| 119 | | 2fveq3 6911 |
. . . . . . . 8
⊢ (𝑥 = 𝑖 → (𝑀‘(𝐼‘𝑥)) = (𝑀‘(𝐼‘𝑖))) |
| 120 | 119 | fveq2d 6910 |
. . . . . . 7
⊢ (𝑥 = 𝑖 → (◡𝐽‘(𝑀‘(𝐼‘𝑥))) = (◡𝐽‘(𝑀‘(𝐼‘𝑖)))) |
| 121 | 120 | adantl 481 |
. . . . . 6
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐼) ∧ 𝑥 = 𝑖) → (◡𝐽‘(𝑀‘(𝐼‘𝑥))) = (◡𝐽‘(𝑀‘(𝐼‘𝑖)))) |
| 122 | | simpr 484 |
. . . . . 6
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐼) → 𝑖 ∈ dom 𝐼) |
| 123 | | fvexd 6921 |
. . . . . 6
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐼) → (◡𝐽‘(𝑀‘(𝐼‘𝑖))) ∈ V) |
| 124 | 116, 121,
122, 123 | fvmptd2 7024 |
. . . . 5
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐼) → (𝑁‘𝑖) = (◡𝐽‘(𝑀‘(𝐼‘𝑖)))) |
| 125 | 124 | fveq2d 6910 |
. . . 4
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐼) → (𝐽‘(𝑁‘𝑖)) = (𝐽‘(◡𝐽‘(𝑀‘(𝐼‘𝑖))))) |
| 126 | 6 | adantr 480 |
. . . . . . 7
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐼) → 𝑀:𝐸⟶𝐷) |
| 127 | 23 | ffvelcdmda 7104 |
. . . . . . 7
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐼) → (𝐼‘𝑖) ∈ 𝐸) |
| 128 | 126, 127 | ffvelcdmd 7105 |
. . . . . 6
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐼) → (𝑀‘(𝐼‘𝑖)) ∈ 𝐷) |
| 129 | 128, 26 | eleqtrdi 2851 |
. . . . 5
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐼) → (𝑀‘(𝐼‘𝑖)) ∈ (Edg‘𝐻)) |
| 130 | | f1ocnvfv2 7297 |
. . . . 5
⊢ ((𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻) ∧ (𝑀‘(𝐼‘𝑖)) ∈ (Edg‘𝐻)) → (𝐽‘(◡𝐽‘(𝑀‘(𝐼‘𝑖)))) = (𝑀‘(𝐼‘𝑖))) |
| 131 | 4, 129, 130 | syl2an2r 685 |
. . . 4
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐼) → (𝐽‘(◡𝐽‘(𝑀‘(𝐼‘𝑖)))) = (𝑀‘(𝐼‘𝑖))) |
| 132 | | isuspgrim0lem.m |
. . . . 5
⊢ 𝑀 = (𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥)) |
| 133 | | simpr 484 |
. . . . . 6
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐼) ∧ 𝑥 = (𝐼‘𝑖)) → 𝑥 = (𝐼‘𝑖)) |
| 134 | 133 | imaeq2d 6078 |
. . . . 5
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐼) ∧ 𝑥 = (𝐼‘𝑖)) → (𝐹 “ 𝑥) = (𝐹 “ (𝐼‘𝑖))) |
| 135 | | simp3 1139 |
. . . . . . 7
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) → 𝐹 ∈ 𝑋) |
| 136 | 135 | ad3antrrr 730 |
. . . . . 6
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐼) → 𝐹 ∈ 𝑋) |
| 137 | 136 | imaexd 7938 |
. . . . 5
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐼) → (𝐹 “ (𝐼‘𝑖)) ∈ V) |
| 138 | 132, 134,
127, 137 | fvmptd2 7024 |
. . . 4
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐼) → (𝑀‘(𝐼‘𝑖)) = (𝐹 “ (𝐼‘𝑖))) |
| 139 | 125, 131,
138 | 3eqtrd 2781 |
. . 3
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) ∧ 𝑖 ∈ dom 𝐼) → (𝐽‘(𝑁‘𝑖)) = (𝐹 “ (𝐼‘𝑖))) |
| 140 | 139 | ralrimiva 3146 |
. 2
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) → ∀𝑖 ∈ dom 𝐼(𝐽‘(𝑁‘𝑖)) = (𝐹 “ (𝐼‘𝑖))) |
| 141 | 118, 140 | jca 511 |
1
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) → (𝑁:dom 𝐼–1-1-onto→dom
𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝐽‘(𝑁‘𝑖)) = (𝐹 “ (𝐼‘𝑖)))) |