Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flt4lem2 Structured version   Visualization version   GIF version

Theorem flt4lem2 42071
Description: If 𝐴 is even, 𝐵 is odd. (Contributed by SN, 22-Aug-2024.)
Hypotheses
Ref Expression
flt4lem2.a (𝜑𝐴 ∈ ℕ)
flt4lem2.b (𝜑𝐵 ∈ ℕ)
flt4lem2.c (𝜑𝐶 ∈ ℕ)
flt4lem2.1 (𝜑 → 2 ∥ 𝐴)
flt4lem2.2 (𝜑 → (𝐴 gcd 𝐶) = 1)
flt4lem2.3 (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
Assertion
Ref Expression
flt4lem2 (𝜑 → ¬ 2 ∥ 𝐵)

Proof of Theorem flt4lem2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 flt4lem2.2 . 2 (𝜑 → (𝐴 gcd 𝐶) = 1)
2 breq1 5151 . . . . . . 7 (𝑖 = 2 → (𝑖𝐴 ↔ 2 ∥ 𝐴))
3 breq1 5151 . . . . . . 7 (𝑖 = 2 → (𝑖𝐶 ↔ 2 ∥ 𝐶))
42, 3anbi12d 631 . . . . . 6 (𝑖 = 2 → ((𝑖𝐴𝑖𝐶) ↔ (2 ∥ 𝐴 ∧ 2 ∥ 𝐶)))
5 2z 12624 . . . . . . . 8 2 ∈ ℤ
6 uzid 12867 . . . . . . . 8 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
75, 6ax-mp 5 . . . . . . 7 2 ∈ (ℤ‘2)
87a1i 11 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∈ (ℤ‘2))
9 flt4lem2.1 . . . . . . . 8 (𝜑 → 2 ∥ 𝐴)
109adantr 480 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∥ 𝐴)
115a1i 11 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∈ ℤ)
12 flt4lem2.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℕ)
13 flt4lem2.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℕ)
14 gcdnncl 16481 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ)
1512, 13, 14syl2anc 583 . . . . . . . . . 10 (𝜑 → (𝐴 gcd 𝐵) ∈ ℕ)
1615nnzd 12615 . . . . . . . . 9 (𝜑 → (𝐴 gcd 𝐵) ∈ ℤ)
1716adantr 480 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝐵) → (𝐴 gcd 𝐵) ∈ ℤ)
18 flt4lem2.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℕ)
1918adantr 480 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝐵) → 𝐶 ∈ ℕ)
2019nnzd 12615 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝐵) → 𝐶 ∈ ℤ)
21 simpr 484 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∥ 𝐵)
2212adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ 2 ∥ 𝐵) → 𝐴 ∈ ℕ)
2322nnzd 12615 . . . . . . . . . 10 ((𝜑 ∧ 2 ∥ 𝐵) → 𝐴 ∈ ℤ)
2413nnzd 12615 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℤ)
2524adantr 480 . . . . . . . . . 10 ((𝜑 ∧ 2 ∥ 𝐵) → 𝐵 ∈ ℤ)
26 dvdsgcd 16519 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((2 ∥ 𝐴 ∧ 2 ∥ 𝐵) → 2 ∥ (𝐴 gcd 𝐵)))
2711, 23, 25, 26syl3anc 1369 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝐵) → ((2 ∥ 𝐴 ∧ 2 ∥ 𝐵) → 2 ∥ (𝐴 gcd 𝐵)))
2810, 21, 27mp2and 698 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∥ (𝐴 gcd 𝐵))
29 2nn 12315 . . . . . . . . . . 11 2 ∈ ℕ
3029a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℕ)
31 flt4lem2.3 . . . . . . . . . 10 (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
3212, 13, 18, 30, 31fltdvdsabdvdsc 42062 . . . . . . . . 9 (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐶)
3332adantr 480 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐶)
3411, 17, 20, 28, 33dvdstrd 16271 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∥ 𝐶)
3510, 34jca 511 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝐵) → (2 ∥ 𝐴 ∧ 2 ∥ 𝐶))
364, 8, 35rspcedvdw 3612 . . . . 5 ((𝜑 ∧ 2 ∥ 𝐵) → ∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐶))
37 ncoprmgcdne1b 16620 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐶) ↔ (𝐴 gcd 𝐶) ≠ 1))
3822, 19, 37syl2anc 583 . . . . 5 ((𝜑 ∧ 2 ∥ 𝐵) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐶) ↔ (𝐴 gcd 𝐶) ≠ 1))
3936, 38mpbid 231 . . . 4 ((𝜑 ∧ 2 ∥ 𝐵) → (𝐴 gcd 𝐶) ≠ 1)
4039ex 412 . . 3 (𝜑 → (2 ∥ 𝐵 → (𝐴 gcd 𝐶) ≠ 1))
4140necon2bd 2953 . 2 (𝜑 → ((𝐴 gcd 𝐶) = 1 → ¬ 2 ∥ 𝐵))
421, 41mpd 15 1 (𝜑 → ¬ 2 ∥ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wne 2937  wrex 3067   class class class wbr 5148  cfv 6548  (class class class)co 7420  1c1 11139   + caddc 11141  cn 12242  2c2 12297  cz 12588  cuz 12852  cexp 14058  cdvds 16230   gcd cgcd 16468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-sup 9465  df-inf 9466  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-n0 12503  df-z 12589  df-uz 12853  df-rp 13007  df-fl 13789  df-mod 13867  df-seq 13999  df-exp 14059  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-dvds 16231  df-gcd 16469
This theorem is referenced by:  flt4lem3  42072  flt4lem7  42083  nna4b4nsq  42084
  Copyright terms: Public domain W3C validator