Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flt4lem2 Structured version   Visualization version   GIF version

Theorem flt4lem2 40004
Description: If 𝐴 is even, 𝐵 is odd. (Contributed by SN, 22-Aug-2024.)
Hypotheses
Ref Expression
flt4lem2.a (𝜑𝐴 ∈ ℕ)
flt4lem2.b (𝜑𝐵 ∈ ℕ)
flt4lem2.c (𝜑𝐶 ∈ ℕ)
flt4lem2.1 (𝜑 → 2 ∥ 𝐴)
flt4lem2.2 (𝜑 → (𝐴 gcd 𝐶) = 1)
flt4lem2.3 (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
Assertion
Ref Expression
flt4lem2 (𝜑 → ¬ 2 ∥ 𝐵)

Proof of Theorem flt4lem2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 flt4lem2.2 . 2 (𝜑 → (𝐴 gcd 𝐶) = 1)
2 breq1 5038 . . . . . . 7 (𝑖 = 2 → (𝑖𝐴 ↔ 2 ∥ 𝐴))
3 breq1 5038 . . . . . . 7 (𝑖 = 2 → (𝑖𝐶 ↔ 2 ∥ 𝐶))
42, 3anbi12d 633 . . . . . 6 (𝑖 = 2 → ((𝑖𝐴𝑖𝐶) ↔ (2 ∥ 𝐴 ∧ 2 ∥ 𝐶)))
5 2z 12058 . . . . . . . 8 2 ∈ ℤ
6 uzid 12302 . . . . . . . 8 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
75, 6ax-mp 5 . . . . . . 7 2 ∈ (ℤ‘2)
87a1i 11 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∈ (ℤ‘2))
9 flt4lem2.1 . . . . . . . 8 (𝜑 → 2 ∥ 𝐴)
109adantr 484 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∥ 𝐴)
115a1i 11 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∈ ℤ)
12 flt4lem2.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℕ)
13 flt4lem2.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℕ)
14 gcdnncl 15911 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ)
1512, 13, 14syl2anc 587 . . . . . . . . . 10 (𝜑 → (𝐴 gcd 𝐵) ∈ ℕ)
1615nnzd 12130 . . . . . . . . 9 (𝜑 → (𝐴 gcd 𝐵) ∈ ℤ)
1716adantr 484 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝐵) → (𝐴 gcd 𝐵) ∈ ℤ)
18 flt4lem2.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℕ)
1918adantr 484 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝐵) → 𝐶 ∈ ℕ)
2019nnzd 12130 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝐵) → 𝐶 ∈ ℤ)
21 simpr 488 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∥ 𝐵)
2212adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ 2 ∥ 𝐵) → 𝐴 ∈ ℕ)
2322nnzd 12130 . . . . . . . . . 10 ((𝜑 ∧ 2 ∥ 𝐵) → 𝐴 ∈ ℤ)
2413nnzd 12130 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℤ)
2524adantr 484 . . . . . . . . . 10 ((𝜑 ∧ 2 ∥ 𝐵) → 𝐵 ∈ ℤ)
26 dvdsgcd 15948 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((2 ∥ 𝐴 ∧ 2 ∥ 𝐵) → 2 ∥ (𝐴 gcd 𝐵)))
2711, 23, 25, 26syl3anc 1368 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝐵) → ((2 ∥ 𝐴 ∧ 2 ∥ 𝐵) → 2 ∥ (𝐴 gcd 𝐵)))
2810, 21, 27mp2and 698 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∥ (𝐴 gcd 𝐵))
29 2nn 11752 . . . . . . . . . . 11 2 ∈ ℕ
3029a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℕ)
31 flt4lem2.3 . . . . . . . . . 10 (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
3212, 13, 18, 30, 31fltdvdsabdvdsc 39995 . . . . . . . . 9 (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐶)
3332adantr 484 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐶)
3411, 17, 20, 28, 33dvdstrd 15701 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∥ 𝐶)
3510, 34jca 515 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝐵) → (2 ∥ 𝐴 ∧ 2 ∥ 𝐶))
364, 8, 35rspcedvdw 39723 . . . . 5 ((𝜑 ∧ 2 ∥ 𝐵) → ∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐶))
37 ncoprmgcdne1b 16051 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐶) ↔ (𝐴 gcd 𝐶) ≠ 1))
3822, 19, 37syl2anc 587 . . . . 5 ((𝜑 ∧ 2 ∥ 𝐵) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐶) ↔ (𝐴 gcd 𝐶) ≠ 1))
3936, 38mpbid 235 . . . 4 ((𝜑 ∧ 2 ∥ 𝐵) → (𝐴 gcd 𝐶) ≠ 1)
4039ex 416 . . 3 (𝜑 → (2 ∥ 𝐵 → (𝐴 gcd 𝐶) ≠ 1))
4140necon2bd 2967 . 2 (𝜑 → ((𝐴 gcd 𝐶) = 1 → ¬ 2 ∥ 𝐵))
421, 41mpd 15 1 (𝜑 → ¬ 2 ∥ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2951  wrex 3071   class class class wbr 5035  cfv 6339  (class class class)co 7155  1c1 10581   + caddc 10583  cn 11679  2c2 11734  cz 12025  cuz 12287  cexp 13484  cdvds 15660   gcd cgcd 15898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-inf2 9142  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657  ax-pre-sup 10658  ax-addf 10659  ax-mulf 10660
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-se 5487  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7410  df-om 7585  df-1st 7698  df-2nd 7699  df-supp 7841  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-2o 8118  df-er 8304  df-map 8423  df-pm 8424  df-ixp 8485  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-fsupp 8872  df-fi 8913  df-sup 8944  df-inf 8945  df-oi 9012  df-card 9406  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-div 11341  df-nn 11680  df-2 11742  df-3 11743  df-4 11744  df-5 11745  df-6 11746  df-7 11747  df-8 11748  df-9 11749  df-n0 11940  df-z 12026  df-dec 12143  df-uz 12288  df-q 12394  df-rp 12436  df-xneg 12553  df-xadd 12554  df-xmul 12555  df-ioo 12788  df-ioc 12789  df-ico 12790  df-icc 12791  df-fz 12945  df-fzo 13088  df-fl 13216  df-mod 13292  df-seq 13424  df-exp 13485  df-fac 13689  df-bc 13718  df-hash 13746  df-shft 14479  df-cj 14511  df-re 14512  df-im 14513  df-sqrt 14647  df-abs 14648  df-limsup 14881  df-clim 14898  df-rlim 14899  df-sum 15096  df-ef 15474  df-sin 15476  df-cos 15477  df-pi 15479  df-dvds 15661  df-gcd 15899  df-struct 16548  df-ndx 16549  df-slot 16550  df-base 16552  df-sets 16553  df-ress 16554  df-plusg 16641  df-mulr 16642  df-starv 16643  df-sca 16644  df-vsca 16645  df-ip 16646  df-tset 16647  df-ple 16648  df-ds 16650  df-unif 16651  df-hom 16652  df-cco 16653  df-rest 16759  df-topn 16760  df-0g 16778  df-gsum 16779  df-topgen 16780  df-pt 16781  df-prds 16784  df-xrs 16838  df-qtop 16843  df-imas 16844  df-xps 16846  df-mre 16920  df-mrc 16921  df-acs 16923  df-mgm 17923  df-sgrp 17972  df-mnd 17983  df-submnd 18028  df-mulg 18297  df-cntz 18519  df-cmn 18980  df-psmet 20163  df-xmet 20164  df-met 20165  df-bl 20166  df-mopn 20167  df-fbas 20168  df-fg 20169  df-cnfld 20172  df-top 21599  df-topon 21616  df-topsp 21638  df-bases 21651  df-cld 21724  df-ntr 21725  df-cls 21726  df-nei 21803  df-lp 21841  df-perf 21842  df-cn 21932  df-cnp 21933  df-haus 22020  df-tx 22267  df-hmeo 22460  df-fil 22551  df-fm 22643  df-flim 22644  df-flf 22645  df-xms 23027  df-ms 23028  df-tms 23029  df-cncf 23584  df-limc 24570  df-dv 24571  df-log 25252  df-cxp 25253
This theorem is referenced by:  flt4lem3  40005  flt4lem7  40016  nna4b4nsq  40017
  Copyright terms: Public domain W3C validator