Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flt4lem2 Structured version   Visualization version   GIF version

Theorem flt4lem2 42620
Description: If 𝐴 is even, 𝐵 is odd. (Contributed by SN, 22-Aug-2024.)
Hypotheses
Ref Expression
flt4lem2.a (𝜑𝐴 ∈ ℕ)
flt4lem2.b (𝜑𝐵 ∈ ℕ)
flt4lem2.c (𝜑𝐶 ∈ ℕ)
flt4lem2.1 (𝜑 → 2 ∥ 𝐴)
flt4lem2.2 (𝜑 → (𝐴 gcd 𝐶) = 1)
flt4lem2.3 (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
Assertion
Ref Expression
flt4lem2 (𝜑 → ¬ 2 ∥ 𝐵)

Proof of Theorem flt4lem2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 flt4lem2.2 . 2 (𝜑 → (𝐴 gcd 𝐶) = 1)
2 breq1 5098 . . . . . . 7 (𝑖 = 2 → (𝑖𝐴 ↔ 2 ∥ 𝐴))
3 breq1 5098 . . . . . . 7 (𝑖 = 2 → (𝑖𝐶 ↔ 2 ∥ 𝐶))
42, 3anbi12d 632 . . . . . 6 (𝑖 = 2 → ((𝑖𝐴𝑖𝐶) ↔ (2 ∥ 𝐴 ∧ 2 ∥ 𝐶)))
5 2z 12525 . . . . . . . 8 2 ∈ ℤ
6 uzid 12768 . . . . . . . 8 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
75, 6ax-mp 5 . . . . . . 7 2 ∈ (ℤ‘2)
87a1i 11 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∈ (ℤ‘2))
9 flt4lem2.1 . . . . . . . 8 (𝜑 → 2 ∥ 𝐴)
109adantr 480 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∥ 𝐴)
115a1i 11 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∈ ℤ)
12 flt4lem2.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℕ)
13 flt4lem2.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℕ)
14 gcdnncl 16436 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ)
1512, 13, 14syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐴 gcd 𝐵) ∈ ℕ)
1615nnzd 12516 . . . . . . . . 9 (𝜑 → (𝐴 gcd 𝐵) ∈ ℤ)
1716adantr 480 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝐵) → (𝐴 gcd 𝐵) ∈ ℤ)
18 flt4lem2.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℕ)
1918adantr 480 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝐵) → 𝐶 ∈ ℕ)
2019nnzd 12516 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝐵) → 𝐶 ∈ ℤ)
21 simpr 484 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∥ 𝐵)
2212adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ 2 ∥ 𝐵) → 𝐴 ∈ ℕ)
2322nnzd 12516 . . . . . . . . . 10 ((𝜑 ∧ 2 ∥ 𝐵) → 𝐴 ∈ ℤ)
2413nnzd 12516 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℤ)
2524adantr 480 . . . . . . . . . 10 ((𝜑 ∧ 2 ∥ 𝐵) → 𝐵 ∈ ℤ)
26 dvdsgcd 16473 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((2 ∥ 𝐴 ∧ 2 ∥ 𝐵) → 2 ∥ (𝐴 gcd 𝐵)))
2711, 23, 25, 26syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝐵) → ((2 ∥ 𝐴 ∧ 2 ∥ 𝐵) → 2 ∥ (𝐴 gcd 𝐵)))
2810, 21, 27mp2and 699 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∥ (𝐴 gcd 𝐵))
29 2nn 12219 . . . . . . . . . . 11 2 ∈ ℕ
3029a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℕ)
31 flt4lem2.3 . . . . . . . . . 10 (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
3212, 13, 18, 30, 31fltdvdsabdvdsc 42611 . . . . . . . . 9 (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐶)
3332adantr 480 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐶)
3411, 17, 20, 28, 33dvdstrd 16224 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∥ 𝐶)
3510, 34jca 511 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝐵) → (2 ∥ 𝐴 ∧ 2 ∥ 𝐶))
364, 8, 35rspcedvdw 3582 . . . . 5 ((𝜑 ∧ 2 ∥ 𝐵) → ∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐶))
37 ncoprmgcdne1b 16579 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐶) ↔ (𝐴 gcd 𝐶) ≠ 1))
3822, 19, 37syl2anc 584 . . . . 5 ((𝜑 ∧ 2 ∥ 𝐵) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐶) ↔ (𝐴 gcd 𝐶) ≠ 1))
3936, 38mpbid 232 . . . 4 ((𝜑 ∧ 2 ∥ 𝐵) → (𝐴 gcd 𝐶) ≠ 1)
4039ex 412 . . 3 (𝜑 → (2 ∥ 𝐵 → (𝐴 gcd 𝐶) ≠ 1))
4140necon2bd 2941 . 2 (𝜑 → ((𝐴 gcd 𝐶) = 1 → ¬ 2 ∥ 𝐵))
421, 41mpd 15 1 (𝜑 → ¬ 2 ∥ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5095  cfv 6486  (class class class)co 7353  1c1 11029   + caddc 11031  cn 12146  2c2 12201  cz 12489  cuz 12753  cexp 13986  cdvds 16181   gcd cgcd 16423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-dvds 16182  df-gcd 16424
This theorem is referenced by:  flt4lem3  42621  flt4lem7  42632  nna4b4nsq  42633
  Copyright terms: Public domain W3C validator