![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > flt4lem2 | Structured version Visualization version GIF version |
Description: If 𝐴 is even, 𝐵 is odd. (Contributed by SN, 22-Aug-2024.) |
Ref | Expression |
---|---|
flt4lem2.a | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
flt4lem2.b | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
flt4lem2.c | ⊢ (𝜑 → 𝐶 ∈ ℕ) |
flt4lem2.1 | ⊢ (𝜑 → 2 ∥ 𝐴) |
flt4lem2.2 | ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) |
flt4lem2.3 | ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) |
Ref | Expression |
---|---|
flt4lem2 | ⊢ (𝜑 → ¬ 2 ∥ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flt4lem2.2 | . 2 ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) | |
2 | breq1 5151 | . . . . . . 7 ⊢ (𝑖 = 2 → (𝑖 ∥ 𝐴 ↔ 2 ∥ 𝐴)) | |
3 | breq1 5151 | . . . . . . 7 ⊢ (𝑖 = 2 → (𝑖 ∥ 𝐶 ↔ 2 ∥ 𝐶)) | |
4 | 2, 3 | anbi12d 631 | . . . . . 6 ⊢ (𝑖 = 2 → ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶) ↔ (2 ∥ 𝐴 ∧ 2 ∥ 𝐶))) |
5 | 2z 12624 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
6 | uzid 12867 | . . . . . . . 8 ⊢ (2 ∈ ℤ → 2 ∈ (ℤ≥‘2)) | |
7 | 5, 6 | ax-mp 5 | . . . . . . 7 ⊢ 2 ∈ (ℤ≥‘2) |
8 | 7 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∈ (ℤ≥‘2)) |
9 | flt4lem2.1 | . . . . . . . 8 ⊢ (𝜑 → 2 ∥ 𝐴) | |
10 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∥ 𝐴) |
11 | 5 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∈ ℤ) |
12 | flt4lem2.a | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
13 | flt4lem2.b | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
14 | gcdnncl 16481 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ) | |
15 | 12, 13, 14 | syl2anc 583 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐴 gcd 𝐵) ∈ ℕ) |
16 | 15 | nnzd 12615 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 gcd 𝐵) ∈ ℤ) |
17 | 16 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → (𝐴 gcd 𝐵) ∈ ℤ) |
18 | flt4lem2.c | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶 ∈ ℕ) | |
19 | 18 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → 𝐶 ∈ ℕ) |
20 | 19 | nnzd 12615 | . . . . . . . 8 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → 𝐶 ∈ ℤ) |
21 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∥ 𝐵) | |
22 | 12 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → 𝐴 ∈ ℕ) |
23 | 22 | nnzd 12615 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → 𝐴 ∈ ℤ) |
24 | 13 | nnzd 12615 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ℤ) |
25 | 24 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → 𝐵 ∈ ℤ) |
26 | dvdsgcd 16519 | . . . . . . . . . 10 ⊢ ((2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((2 ∥ 𝐴 ∧ 2 ∥ 𝐵) → 2 ∥ (𝐴 gcd 𝐵))) | |
27 | 11, 23, 25, 26 | syl3anc 1369 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → ((2 ∥ 𝐴 ∧ 2 ∥ 𝐵) → 2 ∥ (𝐴 gcd 𝐵))) |
28 | 10, 21, 27 | mp2and 698 | . . . . . . . 8 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∥ (𝐴 gcd 𝐵)) |
29 | 2nn 12315 | . . . . . . . . . . 11 ⊢ 2 ∈ ℕ | |
30 | 29 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → 2 ∈ ℕ) |
31 | flt4lem2.3 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) | |
32 | 12, 13, 18, 30, 31 | fltdvdsabdvdsc 42062 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐶) |
33 | 32 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐶) |
34 | 11, 17, 20, 28, 33 | dvdstrd 16271 | . . . . . . 7 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∥ 𝐶) |
35 | 10, 34 | jca 511 | . . . . . 6 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → (2 ∥ 𝐴 ∧ 2 ∥ 𝐶)) |
36 | 4, 8, 35 | rspcedvdw 3612 | . . . . 5 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → ∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶)) |
37 | ncoprmgcdne1b 16620 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶) ↔ (𝐴 gcd 𝐶) ≠ 1)) | |
38 | 22, 19, 37 | syl2anc 583 | . . . . 5 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶) ↔ (𝐴 gcd 𝐶) ≠ 1)) |
39 | 36, 38 | mpbid 231 | . . . 4 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → (𝐴 gcd 𝐶) ≠ 1) |
40 | 39 | ex 412 | . . 3 ⊢ (𝜑 → (2 ∥ 𝐵 → (𝐴 gcd 𝐶) ≠ 1)) |
41 | 40 | necon2bd 2953 | . 2 ⊢ (𝜑 → ((𝐴 gcd 𝐶) = 1 → ¬ 2 ∥ 𝐵)) |
42 | 1, 41 | mpd 15 | 1 ⊢ (𝜑 → ¬ 2 ∥ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 ∃wrex 3067 class class class wbr 5148 ‘cfv 6548 (class class class)co 7420 1c1 11139 + caddc 11141 ℕcn 12242 2c2 12297 ℤcz 12588 ℤ≥cuz 12852 ↑cexp 14058 ∥ cdvds 16230 gcd cgcd 16468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-n0 12503 df-z 12589 df-uz 12853 df-rp 13007 df-fl 13789 df-mod 13867 df-seq 13999 df-exp 14059 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-dvds 16231 df-gcd 16469 |
This theorem is referenced by: flt4lem3 42072 flt4lem7 42083 nna4b4nsq 42084 |
Copyright terms: Public domain | W3C validator |