![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > flt4lem2 | Structured version Visualization version GIF version |
Description: If 𝐴 is even, 𝐵 is odd. (Contributed by SN, 22-Aug-2024.) |
Ref | Expression |
---|---|
flt4lem2.a | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
flt4lem2.b | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
flt4lem2.c | ⊢ (𝜑 → 𝐶 ∈ ℕ) |
flt4lem2.1 | ⊢ (𝜑 → 2 ∥ 𝐴) |
flt4lem2.2 | ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) |
flt4lem2.3 | ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) |
Ref | Expression |
---|---|
flt4lem2 | ⊢ (𝜑 → ¬ 2 ∥ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flt4lem2.2 | . 2 ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) | |
2 | breq1 5151 | . . . . . . 7 ⊢ (𝑖 = 2 → (𝑖 ∥ 𝐴 ↔ 2 ∥ 𝐴)) | |
3 | breq1 5151 | . . . . . . 7 ⊢ (𝑖 = 2 → (𝑖 ∥ 𝐶 ↔ 2 ∥ 𝐶)) | |
4 | 2, 3 | anbi12d 631 | . . . . . 6 ⊢ (𝑖 = 2 → ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶) ↔ (2 ∥ 𝐴 ∧ 2 ∥ 𝐶))) |
5 | 2z 12593 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
6 | uzid 12836 | . . . . . . . 8 ⊢ (2 ∈ ℤ → 2 ∈ (ℤ≥‘2)) | |
7 | 5, 6 | ax-mp 5 | . . . . . . 7 ⊢ 2 ∈ (ℤ≥‘2) |
8 | 7 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∈ (ℤ≥‘2)) |
9 | flt4lem2.1 | . . . . . . . 8 ⊢ (𝜑 → 2 ∥ 𝐴) | |
10 | 9 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∥ 𝐴) |
11 | 5 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∈ ℤ) |
12 | flt4lem2.a | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
13 | flt4lem2.b | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
14 | gcdnncl 16447 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ) | |
15 | 12, 13, 14 | syl2anc 584 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐴 gcd 𝐵) ∈ ℕ) |
16 | 15 | nnzd 12584 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 gcd 𝐵) ∈ ℤ) |
17 | 16 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → (𝐴 gcd 𝐵) ∈ ℤ) |
18 | flt4lem2.c | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶 ∈ ℕ) | |
19 | 18 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → 𝐶 ∈ ℕ) |
20 | 19 | nnzd 12584 | . . . . . . . 8 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → 𝐶 ∈ ℤ) |
21 | simpr 485 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∥ 𝐵) | |
22 | 12 | adantr 481 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → 𝐴 ∈ ℕ) |
23 | 22 | nnzd 12584 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → 𝐴 ∈ ℤ) |
24 | 13 | nnzd 12584 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ℤ) |
25 | 24 | adantr 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → 𝐵 ∈ ℤ) |
26 | dvdsgcd 16485 | . . . . . . . . . 10 ⊢ ((2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((2 ∥ 𝐴 ∧ 2 ∥ 𝐵) → 2 ∥ (𝐴 gcd 𝐵))) | |
27 | 11, 23, 25, 26 | syl3anc 1371 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → ((2 ∥ 𝐴 ∧ 2 ∥ 𝐵) → 2 ∥ (𝐴 gcd 𝐵))) |
28 | 10, 21, 27 | mp2and 697 | . . . . . . . 8 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∥ (𝐴 gcd 𝐵)) |
29 | 2nn 12284 | . . . . . . . . . . 11 ⊢ 2 ∈ ℕ | |
30 | 29 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → 2 ∈ ℕ) |
31 | flt4lem2.3 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) | |
32 | 12, 13, 18, 30, 31 | fltdvdsabdvdsc 41381 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐶) |
33 | 32 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐶) |
34 | 11, 17, 20, 28, 33 | dvdstrd 16237 | . . . . . . 7 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∥ 𝐶) |
35 | 10, 34 | jca 512 | . . . . . 6 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → (2 ∥ 𝐴 ∧ 2 ∥ 𝐶)) |
36 | 4, 8, 35 | rspcedvdw 3615 | . . . . 5 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → ∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶)) |
37 | ncoprmgcdne1b 16586 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶) ↔ (𝐴 gcd 𝐶) ≠ 1)) | |
38 | 22, 19, 37 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶) ↔ (𝐴 gcd 𝐶) ≠ 1)) |
39 | 36, 38 | mpbid 231 | . . . 4 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → (𝐴 gcd 𝐶) ≠ 1) |
40 | 39 | ex 413 | . . 3 ⊢ (𝜑 → (2 ∥ 𝐵 → (𝐴 gcd 𝐶) ≠ 1)) |
41 | 40 | necon2bd 2956 | . 2 ⊢ (𝜑 → ((𝐴 gcd 𝐶) = 1 → ¬ 2 ∥ 𝐵)) |
42 | 1, 41 | mpd 15 | 1 ⊢ (𝜑 → ¬ 2 ∥ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∃wrex 3070 class class class wbr 5148 ‘cfv 6543 (class class class)co 7408 1c1 11110 + caddc 11112 ℕcn 12211 2c2 12266 ℤcz 12557 ℤ≥cuz 12821 ↑cexp 14026 ∥ cdvds 16196 gcd cgcd 16434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-inf 9437 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-fl 13756 df-mod 13834 df-seq 13966 df-exp 14027 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-dvds 16197 df-gcd 16435 |
This theorem is referenced by: flt4lem3 41391 flt4lem7 41402 nna4b4nsq 41403 |
Copyright terms: Public domain | W3C validator |