Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flt4lem2 Structured version   Visualization version   GIF version

Theorem flt4lem2 40400
Description: If 𝐴 is even, 𝐵 is odd. (Contributed by SN, 22-Aug-2024.)
Hypotheses
Ref Expression
flt4lem2.a (𝜑𝐴 ∈ ℕ)
flt4lem2.b (𝜑𝐵 ∈ ℕ)
flt4lem2.c (𝜑𝐶 ∈ ℕ)
flt4lem2.1 (𝜑 → 2 ∥ 𝐴)
flt4lem2.2 (𝜑 → (𝐴 gcd 𝐶) = 1)
flt4lem2.3 (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
Assertion
Ref Expression
flt4lem2 (𝜑 → ¬ 2 ∥ 𝐵)

Proof of Theorem flt4lem2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 flt4lem2.2 . 2 (𝜑 → (𝐴 gcd 𝐶) = 1)
2 breq1 5073 . . . . . . 7 (𝑖 = 2 → (𝑖𝐴 ↔ 2 ∥ 𝐴))
3 breq1 5073 . . . . . . 7 (𝑖 = 2 → (𝑖𝐶 ↔ 2 ∥ 𝐶))
42, 3anbi12d 630 . . . . . 6 (𝑖 = 2 → ((𝑖𝐴𝑖𝐶) ↔ (2 ∥ 𝐴 ∧ 2 ∥ 𝐶)))
5 2z 12282 . . . . . . . 8 2 ∈ ℤ
6 uzid 12526 . . . . . . . 8 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
75, 6ax-mp 5 . . . . . . 7 2 ∈ (ℤ‘2)
87a1i 11 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∈ (ℤ‘2))
9 flt4lem2.1 . . . . . . . 8 (𝜑 → 2 ∥ 𝐴)
109adantr 480 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∥ 𝐴)
115a1i 11 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∈ ℤ)
12 flt4lem2.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℕ)
13 flt4lem2.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℕ)
14 gcdnncl 16142 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ)
1512, 13, 14syl2anc 583 . . . . . . . . . 10 (𝜑 → (𝐴 gcd 𝐵) ∈ ℕ)
1615nnzd 12354 . . . . . . . . 9 (𝜑 → (𝐴 gcd 𝐵) ∈ ℤ)
1716adantr 480 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝐵) → (𝐴 gcd 𝐵) ∈ ℤ)
18 flt4lem2.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℕ)
1918adantr 480 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝐵) → 𝐶 ∈ ℕ)
2019nnzd 12354 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝐵) → 𝐶 ∈ ℤ)
21 simpr 484 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∥ 𝐵)
2212adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ 2 ∥ 𝐵) → 𝐴 ∈ ℕ)
2322nnzd 12354 . . . . . . . . . 10 ((𝜑 ∧ 2 ∥ 𝐵) → 𝐴 ∈ ℤ)
2413nnzd 12354 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℤ)
2524adantr 480 . . . . . . . . . 10 ((𝜑 ∧ 2 ∥ 𝐵) → 𝐵 ∈ ℤ)
26 dvdsgcd 16180 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((2 ∥ 𝐴 ∧ 2 ∥ 𝐵) → 2 ∥ (𝐴 gcd 𝐵)))
2711, 23, 25, 26syl3anc 1369 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝐵) → ((2 ∥ 𝐴 ∧ 2 ∥ 𝐵) → 2 ∥ (𝐴 gcd 𝐵)))
2810, 21, 27mp2and 695 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∥ (𝐴 gcd 𝐵))
29 2nn 11976 . . . . . . . . . . 11 2 ∈ ℕ
3029a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℕ)
31 flt4lem2.3 . . . . . . . . . 10 (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
3212, 13, 18, 30, 31fltdvdsabdvdsc 40391 . . . . . . . . 9 (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐶)
3332adantr 480 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐶)
3411, 17, 20, 28, 33dvdstrd 15932 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∥ 𝐶)
3510, 34jca 511 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝐵) → (2 ∥ 𝐴 ∧ 2 ∥ 𝐶))
364, 8, 35rspcedvdw 40107 . . . . 5 ((𝜑 ∧ 2 ∥ 𝐵) → ∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐶))
37 ncoprmgcdne1b 16283 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐶) ↔ (𝐴 gcd 𝐶) ≠ 1))
3822, 19, 37syl2anc 583 . . . . 5 ((𝜑 ∧ 2 ∥ 𝐵) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐶) ↔ (𝐴 gcd 𝐶) ≠ 1))
3936, 38mpbid 231 . . . 4 ((𝜑 ∧ 2 ∥ 𝐵) → (𝐴 gcd 𝐶) ≠ 1)
4039ex 412 . . 3 (𝜑 → (2 ∥ 𝐵 → (𝐴 gcd 𝐶) ≠ 1))
4140necon2bd 2958 . 2 (𝜑 → ((𝐴 gcd 𝐶) = 1 → ¬ 2 ∥ 𝐵))
421, 41mpd 15 1 (𝜑 → ¬ 2 ∥ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wrex 3064   class class class wbr 5070  cfv 6418  (class class class)co 7255  1c1 10803   + caddc 10805  cn 11903  2c2 11958  cz 12249  cuz 12511  cexp 13710  cdvds 15891   gcd cgcd 16129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130
This theorem is referenced by:  flt4lem3  40401  flt4lem7  40412  nna4b4nsq  40413
  Copyright terms: Public domain W3C validator