Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > flt4lem2 | Structured version Visualization version GIF version |
Description: If 𝐴 is even, 𝐵 is odd. (Contributed by SN, 22-Aug-2024.) |
Ref | Expression |
---|---|
flt4lem2.a | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
flt4lem2.b | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
flt4lem2.c | ⊢ (𝜑 → 𝐶 ∈ ℕ) |
flt4lem2.1 | ⊢ (𝜑 → 2 ∥ 𝐴) |
flt4lem2.2 | ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) |
flt4lem2.3 | ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) |
Ref | Expression |
---|---|
flt4lem2 | ⊢ (𝜑 → ¬ 2 ∥ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flt4lem2.2 | . 2 ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) | |
2 | breq1 5073 | . . . . . . 7 ⊢ (𝑖 = 2 → (𝑖 ∥ 𝐴 ↔ 2 ∥ 𝐴)) | |
3 | breq1 5073 | . . . . . . 7 ⊢ (𝑖 = 2 → (𝑖 ∥ 𝐶 ↔ 2 ∥ 𝐶)) | |
4 | 2, 3 | anbi12d 630 | . . . . . 6 ⊢ (𝑖 = 2 → ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶) ↔ (2 ∥ 𝐴 ∧ 2 ∥ 𝐶))) |
5 | 2z 12282 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
6 | uzid 12526 | . . . . . . . 8 ⊢ (2 ∈ ℤ → 2 ∈ (ℤ≥‘2)) | |
7 | 5, 6 | ax-mp 5 | . . . . . . 7 ⊢ 2 ∈ (ℤ≥‘2) |
8 | 7 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∈ (ℤ≥‘2)) |
9 | flt4lem2.1 | . . . . . . . 8 ⊢ (𝜑 → 2 ∥ 𝐴) | |
10 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∥ 𝐴) |
11 | 5 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∈ ℤ) |
12 | flt4lem2.a | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
13 | flt4lem2.b | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
14 | gcdnncl 16142 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ) | |
15 | 12, 13, 14 | syl2anc 583 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐴 gcd 𝐵) ∈ ℕ) |
16 | 15 | nnzd 12354 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 gcd 𝐵) ∈ ℤ) |
17 | 16 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → (𝐴 gcd 𝐵) ∈ ℤ) |
18 | flt4lem2.c | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶 ∈ ℕ) | |
19 | 18 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → 𝐶 ∈ ℕ) |
20 | 19 | nnzd 12354 | . . . . . . . 8 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → 𝐶 ∈ ℤ) |
21 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∥ 𝐵) | |
22 | 12 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → 𝐴 ∈ ℕ) |
23 | 22 | nnzd 12354 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → 𝐴 ∈ ℤ) |
24 | 13 | nnzd 12354 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ℤ) |
25 | 24 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → 𝐵 ∈ ℤ) |
26 | dvdsgcd 16180 | . . . . . . . . . 10 ⊢ ((2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((2 ∥ 𝐴 ∧ 2 ∥ 𝐵) → 2 ∥ (𝐴 gcd 𝐵))) | |
27 | 11, 23, 25, 26 | syl3anc 1369 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → ((2 ∥ 𝐴 ∧ 2 ∥ 𝐵) → 2 ∥ (𝐴 gcd 𝐵))) |
28 | 10, 21, 27 | mp2and 695 | . . . . . . . 8 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∥ (𝐴 gcd 𝐵)) |
29 | 2nn 11976 | . . . . . . . . . . 11 ⊢ 2 ∈ ℕ | |
30 | 29 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → 2 ∈ ℕ) |
31 | flt4lem2.3 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) | |
32 | 12, 13, 18, 30, 31 | fltdvdsabdvdsc 40391 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐶) |
33 | 32 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐶) |
34 | 11, 17, 20, 28, 33 | dvdstrd 15932 | . . . . . . 7 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∥ 𝐶) |
35 | 10, 34 | jca 511 | . . . . . 6 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → (2 ∥ 𝐴 ∧ 2 ∥ 𝐶)) |
36 | 4, 8, 35 | rspcedvdw 40107 | . . . . 5 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → ∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶)) |
37 | ncoprmgcdne1b 16283 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶) ↔ (𝐴 gcd 𝐶) ≠ 1)) | |
38 | 22, 19, 37 | syl2anc 583 | . . . . 5 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶) ↔ (𝐴 gcd 𝐶) ≠ 1)) |
39 | 36, 38 | mpbid 231 | . . . 4 ⊢ ((𝜑 ∧ 2 ∥ 𝐵) → (𝐴 gcd 𝐶) ≠ 1) |
40 | 39 | ex 412 | . . 3 ⊢ (𝜑 → (2 ∥ 𝐵 → (𝐴 gcd 𝐶) ≠ 1)) |
41 | 40 | necon2bd 2958 | . 2 ⊢ (𝜑 → ((𝐴 gcd 𝐶) = 1 → ¬ 2 ∥ 𝐵)) |
42 | 1, 41 | mpd 15 | 1 ⊢ (𝜑 → ¬ 2 ∥ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 1c1 10803 + caddc 10805 ℕcn 11903 2c2 11958 ℤcz 12249 ℤ≥cuz 12511 ↑cexp 13710 ∥ cdvds 15891 gcd cgcd 16129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-dvds 15892 df-gcd 16130 |
This theorem is referenced by: flt4lem3 40401 flt4lem7 40412 nna4b4nsq 40413 |
Copyright terms: Public domain | W3C validator |