Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flt4lem2 Structured version   Visualization version   GIF version

Theorem flt4lem2 42765
Description: If 𝐴 is even, 𝐵 is odd. (Contributed by SN, 22-Aug-2024.)
Hypotheses
Ref Expression
flt4lem2.a (𝜑𝐴 ∈ ℕ)
flt4lem2.b (𝜑𝐵 ∈ ℕ)
flt4lem2.c (𝜑𝐶 ∈ ℕ)
flt4lem2.1 (𝜑 → 2 ∥ 𝐴)
flt4lem2.2 (𝜑 → (𝐴 gcd 𝐶) = 1)
flt4lem2.3 (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
Assertion
Ref Expression
flt4lem2 (𝜑 → ¬ 2 ∥ 𝐵)

Proof of Theorem flt4lem2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 flt4lem2.2 . 2 (𝜑 → (𝐴 gcd 𝐶) = 1)
2 breq1 5096 . . . . . . 7 (𝑖 = 2 → (𝑖𝐴 ↔ 2 ∥ 𝐴))
3 breq1 5096 . . . . . . 7 (𝑖 = 2 → (𝑖𝐶 ↔ 2 ∥ 𝐶))
42, 3anbi12d 632 . . . . . 6 (𝑖 = 2 → ((𝑖𝐴𝑖𝐶) ↔ (2 ∥ 𝐴 ∧ 2 ∥ 𝐶)))
5 2z 12510 . . . . . . . 8 2 ∈ ℤ
6 uzid 12753 . . . . . . . 8 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
75, 6ax-mp 5 . . . . . . 7 2 ∈ (ℤ‘2)
87a1i 11 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∈ (ℤ‘2))
9 flt4lem2.1 . . . . . . . 8 (𝜑 → 2 ∥ 𝐴)
109adantr 480 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∥ 𝐴)
115a1i 11 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∈ ℤ)
12 flt4lem2.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℕ)
13 flt4lem2.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℕ)
14 gcdnncl 16420 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ)
1512, 13, 14syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐴 gcd 𝐵) ∈ ℕ)
1615nnzd 12501 . . . . . . . . 9 (𝜑 → (𝐴 gcd 𝐵) ∈ ℤ)
1716adantr 480 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝐵) → (𝐴 gcd 𝐵) ∈ ℤ)
18 flt4lem2.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℕ)
1918adantr 480 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝐵) → 𝐶 ∈ ℕ)
2019nnzd 12501 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝐵) → 𝐶 ∈ ℤ)
21 simpr 484 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∥ 𝐵)
2212adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ 2 ∥ 𝐵) → 𝐴 ∈ ℕ)
2322nnzd 12501 . . . . . . . . . 10 ((𝜑 ∧ 2 ∥ 𝐵) → 𝐴 ∈ ℤ)
2413nnzd 12501 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℤ)
2524adantr 480 . . . . . . . . . 10 ((𝜑 ∧ 2 ∥ 𝐵) → 𝐵 ∈ ℤ)
26 dvdsgcd 16457 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((2 ∥ 𝐴 ∧ 2 ∥ 𝐵) → 2 ∥ (𝐴 gcd 𝐵)))
2711, 23, 25, 26syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝐵) → ((2 ∥ 𝐴 ∧ 2 ∥ 𝐵) → 2 ∥ (𝐴 gcd 𝐵)))
2810, 21, 27mp2and 699 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∥ (𝐴 gcd 𝐵))
29 2nn 12205 . . . . . . . . . . 11 2 ∈ ℕ
3029a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℕ)
31 flt4lem2.3 . . . . . . . . . 10 (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
3212, 13, 18, 30, 31fltdvdsabdvdsc 42756 . . . . . . . . 9 (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐶)
3332adantr 480 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐶)
3411, 17, 20, 28, 33dvdstrd 16208 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝐵) → 2 ∥ 𝐶)
3510, 34jca 511 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝐵) → (2 ∥ 𝐴 ∧ 2 ∥ 𝐶))
364, 8, 35rspcedvdw 3576 . . . . 5 ((𝜑 ∧ 2 ∥ 𝐵) → ∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐶))
37 ncoprmgcdne1b 16563 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐶) ↔ (𝐴 gcd 𝐶) ≠ 1))
3822, 19, 37syl2anc 584 . . . . 5 ((𝜑 ∧ 2 ∥ 𝐵) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐶) ↔ (𝐴 gcd 𝐶) ≠ 1))
3936, 38mpbid 232 . . . 4 ((𝜑 ∧ 2 ∥ 𝐵) → (𝐴 gcd 𝐶) ≠ 1)
4039ex 412 . . 3 (𝜑 → (2 ∥ 𝐵 → (𝐴 gcd 𝐶) ≠ 1))
4140necon2bd 2945 . 2 (𝜑 → ((𝐴 gcd 𝐶) = 1 → ¬ 2 ∥ 𝐵))
421, 41mpd 15 1 (𝜑 → ¬ 2 ∥ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wrex 3057   class class class wbr 5093  cfv 6486  (class class class)co 7352  1c1 11014   + caddc 11016  cn 12132  2c2 12187  cz 12475  cuz 12738  cexp 13970  cdvds 16165   gcd cgcd 16407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-dvds 16166  df-gcd 16408
This theorem is referenced by:  flt4lem3  42766  flt4lem7  42777  nna4b4nsq  42778
  Copyright terms: Public domain W3C validator