Step | Hyp | Ref
| Expression |
1 | | opprbas.1 |
. . . 4
⊢ 𝑂 =
(oppr‘𝑅) |
2 | | eqid 2738 |
. . . 4
⊢
(Base‘𝑅) =
(Base‘𝑅) |
3 | 1, 2 | opprbas 19784 |
. . 3
⊢
(Base‘𝑅) =
(Base‘𝑂) |
4 | 3 | a1i 11 |
. 2
⊢ (𝑅 ∈ Ring →
(Base‘𝑅) =
(Base‘𝑂)) |
5 | | eqid 2738 |
. . . 4
⊢
(+g‘𝑅) = (+g‘𝑅) |
6 | 1, 5 | oppradd 19786 |
. . 3
⊢
(+g‘𝑅) = (+g‘𝑂) |
7 | 6 | a1i 11 |
. 2
⊢ (𝑅 ∈ Ring →
(+g‘𝑅) =
(+g‘𝑂)) |
8 | | eqidd 2739 |
. 2
⊢ (𝑅 ∈ Ring →
(.r‘𝑂) =
(.r‘𝑂)) |
9 | | ringgrp 19703 |
. . 3
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
10 | 3, 6 | grpprop 18510 |
. . 3
⊢ (𝑅 ∈ Grp ↔ 𝑂 ∈ Grp) |
11 | 9, 10 | sylib 217 |
. 2
⊢ (𝑅 ∈ Ring → 𝑂 ∈ Grp) |
12 | | eqid 2738 |
. . . 4
⊢
(.r‘𝑅) = (.r‘𝑅) |
13 | | eqid 2738 |
. . . 4
⊢
(.r‘𝑂) = (.r‘𝑂) |
14 | 2, 12, 1, 13 | opprmul 19780 |
. . 3
⊢ (𝑥(.r‘𝑂)𝑦) = (𝑦(.r‘𝑅)𝑥) |
15 | 2, 12 | ringcl 19715 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(.r‘𝑅)𝑥) ∈ (Base‘𝑅)) |
16 | 15 | 3com23 1124 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(.r‘𝑅)𝑥) ∈ (Base‘𝑅)) |
17 | 14, 16 | eqeltrid 2843 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑂)𝑦) ∈ (Base‘𝑅)) |
18 | | simpl 482 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑅 ∈ Ring) |
19 | | simpr3 1194 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑧 ∈ (Base‘𝑅)) |
20 | | simpr2 1193 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅)) |
21 | | simpr1 1192 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅)) |
22 | 2, 12 | ringass 19718 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅))) → ((𝑧(.r‘𝑅)𝑦)(.r‘𝑅)𝑥) = (𝑧(.r‘𝑅)(𝑦(.r‘𝑅)𝑥))) |
23 | 18, 19, 20, 21, 22 | syl13anc 1370 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑧(.r‘𝑅)𝑦)(.r‘𝑅)𝑥) = (𝑧(.r‘𝑅)(𝑦(.r‘𝑅)𝑥))) |
24 | 23 | eqcomd 2744 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑧(.r‘𝑅)(𝑦(.r‘𝑅)𝑥)) = ((𝑧(.r‘𝑅)𝑦)(.r‘𝑅)𝑥)) |
25 | 14 | oveq1i 7265 |
. . . 4
⊢ ((𝑥(.r‘𝑂)𝑦)(.r‘𝑂)𝑧) = ((𝑦(.r‘𝑅)𝑥)(.r‘𝑂)𝑧) |
26 | 2, 12, 1, 13 | opprmul 19780 |
. . . 4
⊢ ((𝑦(.r‘𝑅)𝑥)(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)(𝑦(.r‘𝑅)𝑥)) |
27 | 25, 26 | eqtri 2766 |
. . 3
⊢ ((𝑥(.r‘𝑂)𝑦)(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)(𝑦(.r‘𝑅)𝑥)) |
28 | 2, 12, 1, 13 | opprmul 19780 |
. . . . 5
⊢ (𝑦(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)𝑦) |
29 | 28 | oveq2i 7266 |
. . . 4
⊢ (𝑥(.r‘𝑂)(𝑦(.r‘𝑂)𝑧)) = (𝑥(.r‘𝑂)(𝑧(.r‘𝑅)𝑦)) |
30 | 2, 12, 1, 13 | opprmul 19780 |
. . . 4
⊢ (𝑥(.r‘𝑂)(𝑧(.r‘𝑅)𝑦)) = ((𝑧(.r‘𝑅)𝑦)(.r‘𝑅)𝑥) |
31 | 29, 30 | eqtri 2766 |
. . 3
⊢ (𝑥(.r‘𝑂)(𝑦(.r‘𝑂)𝑧)) = ((𝑧(.r‘𝑅)𝑦)(.r‘𝑅)𝑥) |
32 | 24, 27, 31 | 3eqtr4g 2804 |
. 2
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r‘𝑂)𝑦)(.r‘𝑂)𝑧) = (𝑥(.r‘𝑂)(𝑦(.r‘𝑂)𝑧))) |
33 | 2, 5, 12 | ringdir 19721 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅))) → ((𝑦(+g‘𝑅)𝑧)(.r‘𝑅)𝑥) = ((𝑦(.r‘𝑅)𝑥)(+g‘𝑅)(𝑧(.r‘𝑅)𝑥))) |
34 | 18, 20, 19, 21, 33 | syl13anc 1370 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑦(+g‘𝑅)𝑧)(.r‘𝑅)𝑥) = ((𝑦(.r‘𝑅)𝑥)(+g‘𝑅)(𝑧(.r‘𝑅)𝑥))) |
35 | 2, 12, 1, 13 | opprmul 19780 |
. . 3
⊢ (𝑥(.r‘𝑂)(𝑦(+g‘𝑅)𝑧)) = ((𝑦(+g‘𝑅)𝑧)(.r‘𝑅)𝑥) |
36 | 2, 12, 1, 13 | opprmul 19780 |
. . . 4
⊢ (𝑥(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)𝑥) |
37 | 14, 36 | oveq12i 7267 |
. . 3
⊢ ((𝑥(.r‘𝑂)𝑦)(+g‘𝑅)(𝑥(.r‘𝑂)𝑧)) = ((𝑦(.r‘𝑅)𝑥)(+g‘𝑅)(𝑧(.r‘𝑅)𝑥)) |
38 | 34, 35, 37 | 3eqtr4g 2804 |
. 2
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑂)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑂)𝑦)(+g‘𝑅)(𝑥(.r‘𝑂)𝑧))) |
39 | 2, 5, 12 | ringdi 19720 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑧(.r‘𝑅)(𝑥(+g‘𝑅)𝑦)) = ((𝑧(.r‘𝑅)𝑥)(+g‘𝑅)(𝑧(.r‘𝑅)𝑦))) |
40 | 18, 19, 21, 20, 39 | syl13anc 1370 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑧(.r‘𝑅)(𝑥(+g‘𝑅)𝑦)) = ((𝑧(.r‘𝑅)𝑥)(+g‘𝑅)(𝑧(.r‘𝑅)𝑦))) |
41 | 2, 12, 1, 13 | opprmul 19780 |
. . 3
⊢ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)(𝑥(+g‘𝑅)𝑦)) |
42 | 36, 28 | oveq12i 7267 |
. . 3
⊢ ((𝑥(.r‘𝑂)𝑧)(+g‘𝑅)(𝑦(.r‘𝑂)𝑧)) = ((𝑧(.r‘𝑅)𝑥)(+g‘𝑅)(𝑧(.r‘𝑅)𝑦)) |
43 | 40, 41, 42 | 3eqtr4g 2804 |
. 2
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(+g‘𝑅)𝑦)(.r‘𝑂)𝑧) = ((𝑥(.r‘𝑂)𝑧)(+g‘𝑅)(𝑦(.r‘𝑂)𝑧))) |
44 | | eqid 2738 |
. . 3
⊢
(1r‘𝑅) = (1r‘𝑅) |
45 | 2, 44 | ringidcl 19722 |
. 2
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) |
46 | 2, 12, 1, 13 | opprmul 19780 |
. . 3
⊢
((1r‘𝑅)(.r‘𝑂)𝑥) = (𝑥(.r‘𝑅)(1r‘𝑅)) |
47 | 2, 12, 44 | ringridm 19726 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑅)(1r‘𝑅)) = 𝑥) |
48 | 46, 47 | eqtrid 2790 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) →
((1r‘𝑅)(.r‘𝑂)𝑥) = 𝑥) |
49 | 2, 12, 1, 13 | opprmul 19780 |
. . 3
⊢ (𝑥(.r‘𝑂)(1r‘𝑅)) = ((1r‘𝑅)(.r‘𝑅)𝑥) |
50 | 2, 12, 44 | ringlidm 19725 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) →
((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥) |
51 | 49, 50 | eqtrid 2790 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑂)(1r‘𝑅)) = 𝑥) |
52 | 4, 7, 8, 11, 17, 32, 38, 43, 45, 48, 51 | isringd 19739 |
1
⊢ (𝑅 ∈ Ring → 𝑂 ∈ Ring) |