| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opprring | Structured version Visualization version GIF version | ||
| Description: An opposite ring is a ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.) (Proof shortened by AV, 30-Mar-2025.) |
| Ref | Expression |
|---|---|
| opprbas.1 | ⊢ 𝑂 = (oppr‘𝑅) |
| Ref | Expression |
|---|---|
| opprring | ⊢ (𝑅 ∈ Ring → 𝑂 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringrng 20245 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Rng) | |
| 2 | opprbas.1 | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
| 3 | 2 | opprrng 20305 | . . 3 ⊢ (𝑅 ∈ Rng → 𝑂 ∈ Rng) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ (𝑅 ∈ Ring → 𝑂 ∈ Rng) |
| 5 | oveq1 7412 | . . . . 5 ⊢ (𝑧 = (1r‘𝑅) → (𝑧(.r‘𝑂)𝑥) = ((1r‘𝑅)(.r‘𝑂)𝑥)) | |
| 6 | 5 | eqeq1d 2737 | . . . 4 ⊢ (𝑧 = (1r‘𝑅) → ((𝑧(.r‘𝑂)𝑥) = 𝑥 ↔ ((1r‘𝑅)(.r‘𝑂)𝑥) = 𝑥)) |
| 7 | 6 | ovanraleqv 7429 | . . 3 ⊢ (𝑧 = (1r‘𝑅) → (∀𝑥 ∈ (Base‘𝑅)((𝑧(.r‘𝑂)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑂)𝑧) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝑅)(((1r‘𝑅)(.r‘𝑂)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑂)(1r‘𝑅)) = 𝑥))) |
| 8 | eqid 2735 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 9 | eqid 2735 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 10 | 8, 9 | ringidcl 20225 | . . 3 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 11 | eqid 2735 | . . . . . . 7 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 12 | eqid 2735 | . . . . . . 7 ⊢ (.r‘𝑂) = (.r‘𝑂) | |
| 13 | 8, 11, 2, 12 | opprmul 20300 | . . . . . 6 ⊢ ((1r‘𝑅)(.r‘𝑂)𝑥) = (𝑥(.r‘𝑅)(1r‘𝑅)) |
| 14 | 8, 11, 9 | ringridm 20230 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑅)(1r‘𝑅)) = 𝑥) |
| 15 | 13, 14 | eqtrid 2782 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → ((1r‘𝑅)(.r‘𝑂)𝑥) = 𝑥) |
| 16 | 8, 11, 2, 12 | opprmul 20300 | . . . . . 6 ⊢ (𝑥(.r‘𝑂)(1r‘𝑅)) = ((1r‘𝑅)(.r‘𝑅)𝑥) |
| 17 | 8, 11, 9 | ringlidm 20229 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → ((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥) |
| 18 | 16, 17 | eqtrid 2782 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑂)(1r‘𝑅)) = 𝑥) |
| 19 | 15, 18 | jca 511 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (((1r‘𝑅)(.r‘𝑂)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑂)(1r‘𝑅)) = 𝑥)) |
| 20 | 19 | ralrimiva 3132 | . . 3 ⊢ (𝑅 ∈ Ring → ∀𝑥 ∈ (Base‘𝑅)(((1r‘𝑅)(.r‘𝑂)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑂)(1r‘𝑅)) = 𝑥)) |
| 21 | 7, 10, 20 | rspcedvdw 3604 | . 2 ⊢ (𝑅 ∈ Ring → ∃𝑧 ∈ (Base‘𝑅)∀𝑥 ∈ (Base‘𝑅)((𝑧(.r‘𝑂)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑂)𝑧) = 𝑥)) |
| 22 | 2, 8 | opprbas 20303 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑂) |
| 23 | 22, 12 | isringrng 20247 | . 2 ⊢ (𝑂 ∈ Ring ↔ (𝑂 ∈ Rng ∧ ∃𝑧 ∈ (Base‘𝑅)∀𝑥 ∈ (Base‘𝑅)((𝑧(.r‘𝑂)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑂)𝑧) = 𝑥))) |
| 24 | 4, 21, 23 | sylanbrc 583 | 1 ⊢ (𝑅 ∈ Ring → 𝑂 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 .rcmulr 17272 Rngcrng 20112 1rcur 20141 Ringcrg 20193 opprcoppr 20296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-mulr 17285 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-oppr 20297 |
| This theorem is referenced by: opprringb 20308 mulgass3 20313 1unit 20334 unitmulcl 20340 unitnegcl 20357 irredlmul 20388 isdrngrd 20726 isdrngrdOLD 20728 issrngd 20815 isridl 21213 ridl0 21219 ridl1 21220 ply1divalg2 26096 crngmxidl 33484 opprmxidlabs 33502 opprqusmulr 33506 opprqusdrng 33508 qsdrngilem 33509 qsdrngi 33510 qsdrng 33512 lduallmodlem 39170 |
| Copyright terms: Public domain | W3C validator |