Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idomsubr Structured version   Visualization version   GIF version

Theorem idomsubr 33275
Description: Every integral domain is isomorphic with a subring of some field. (Proposed by Gerard Lang, 10-May-2025.) (Contributed by Thierry Arnoux, 10-May-2025.)
Hypothesis
Ref Expression
idomsubr.1 (𝜑𝑅 ∈ IDomn)
Assertion
Ref Expression
idomsubr (𝜑 → ∃𝑓 ∈ Field ∃𝑠 ∈ (SubRing‘𝑓)𝑅𝑟 (𝑓s 𝑠))
Distinct variable groups:   𝑅,𝑓,𝑠   𝜑,𝑓,𝑠

Proof of Theorem idomsubr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6840 . . 3 (𝑓 = ( Frac ‘𝑅) → (SubRing‘𝑓) = (SubRing‘( Frac ‘𝑅)))
2 oveq1 7376 . . . 4 (𝑓 = ( Frac ‘𝑅) → (𝑓s 𝑠) = (( Frac ‘𝑅) ↾s 𝑠))
32breq2d 5114 . . 3 (𝑓 = ( Frac ‘𝑅) → (𝑅𝑟 (𝑓s 𝑠) ↔ 𝑅𝑟 (( Frac ‘𝑅) ↾s 𝑠)))
41, 3rexeqbidv 3317 . 2 (𝑓 = ( Frac ‘𝑅) → (∃𝑠 ∈ (SubRing‘𝑓)𝑅𝑟 (𝑓s 𝑠) ↔ ∃𝑠 ∈ (SubRing‘( Frac ‘𝑅))𝑅𝑟 (( Frac ‘𝑅) ↾s 𝑠)))
5 idomsubr.1 . . 3 (𝜑𝑅 ∈ IDomn)
65fracfld 33274 . 2 (𝜑 → ( Frac ‘𝑅) ∈ Field)
7 oveq2 7377 . . . 4 (𝑠 = ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) → (( Frac ‘𝑅) ↾s 𝑠) = (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))))
87breq2d 5114 . . 3 (𝑠 = ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) → (𝑅𝑟 (( Frac ‘𝑅) ↾s 𝑠) ↔ 𝑅𝑟 (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))))
9 eqid 2729 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
10 eqid 2729 . . . . 5 (RLReg‘𝑅) = (RLReg‘𝑅)
11 eqid 2729 . . . . 5 (1r𝑅) = (1r𝑅)
125idomcringd 20647 . . . . 5 (𝜑𝑅 ∈ CRing)
13 eqid 2729 . . . . 5 (𝑅 ~RL (RLReg‘𝑅)) = (𝑅 ~RL (RLReg‘𝑅))
14 opeq1 4833 . . . . . . 7 (𝑥 = 𝑦 → ⟨𝑥, (1r𝑅)⟩ = ⟨𝑦, (1r𝑅)⟩)
1514eceq1d 8688 . . . . . 6 (𝑥 = 𝑦 → [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)) = [⟨𝑦, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))
1615cbvmptv 5206 . . . . 5 (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) = (𝑦 ∈ (Base‘𝑅) ↦ [⟨𝑦, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))
179, 10, 11, 12, 13, 16fracf1 33273 . . . 4 (𝜑 → ((𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1→(((Base‘𝑅) × (RLReg‘𝑅)) / (𝑅 ~RL (RLReg‘𝑅))) ∧ (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom ( Frac ‘𝑅))))
18 rnrhmsubrg 20525 . . . 4 ((𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom ( Frac ‘𝑅)) → ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (SubRing‘( Frac ‘𝑅)))
1917, 18simpl2im 503 . . 3 (𝜑 → ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (SubRing‘( Frac ‘𝑅)))
20 ssidd 3967 . . . . . 6 (𝜑 → ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ⊆ ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))
2117simprd 495 . . . . . 6 (𝜑 → (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom ( Frac ‘𝑅)))
22 eqid 2729 . . . . . . . 8 (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))) = (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))
2322resrhm2b 20522 . . . . . . 7 ((ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (SubRing‘( Frac ‘𝑅)) ∧ ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ⊆ ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))) → ((𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom ( Frac ‘𝑅)) ↔ (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))))))
2423biimpa 476 . . . . . 6 (((ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (SubRing‘( Frac ‘𝑅)) ∧ ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ⊆ ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))) ∧ (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom ( Frac ‘𝑅))) → (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))))
2519, 20, 21, 24syl21anc 837 . . . . 5 (𝜑 → (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))))
2617simpld 494 . . . . . . 7 (𝜑 → (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1→(((Base‘𝑅) × (RLReg‘𝑅)) / (𝑅 ~RL (RLReg‘𝑅))))
27 f1f1orn 6793 . . . . . . 7 ((𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1→(((Base‘𝑅) × (RLReg‘𝑅)) / (𝑅 ~RL (RLReg‘𝑅))) → (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1-onto→ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))
2826, 27syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1-onto→ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))
29 f1f 6738 . . . . . . . . . . 11 ((𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1→(((Base‘𝑅) × (RLReg‘𝑅)) / (𝑅 ~RL (RLReg‘𝑅))) → (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)⟶(((Base‘𝑅) × (RLReg‘𝑅)) / (𝑅 ~RL (RLReg‘𝑅))))
3026, 29syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)⟶(((Base‘𝑅) × (RLReg‘𝑅)) / (𝑅 ~RL (RLReg‘𝑅))))
3130frnd 6678 . . . . . . . . 9 (𝜑 → ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ⊆ (((Base‘𝑅) × (RLReg‘𝑅)) / (𝑅 ~RL (RLReg‘𝑅))))
32 eqid 2729 . . . . . . . . . 10 ( Frac ‘𝑅) = ( Frac ‘𝑅)
339, 10, 32, 13fracbas 33271 . . . . . . . . 9 (((Base‘𝑅) × (RLReg‘𝑅)) / (𝑅 ~RL (RLReg‘𝑅))) = (Base‘( Frac ‘𝑅))
3431, 33sseqtrdi 3984 . . . . . . . 8 (𝜑 → ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ⊆ (Base‘( Frac ‘𝑅)))
35 eqid 2729 . . . . . . . . 9 (Base‘( Frac ‘𝑅)) = (Base‘( Frac ‘𝑅))
3622, 35ressbas2 17184 . . . . . . . 8 (ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ⊆ (Base‘( Frac ‘𝑅)) → ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) = (Base‘(( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))))
3734, 36syl 17 . . . . . . 7 (𝜑 → ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) = (Base‘(( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))))
3837f1oeq3d 6779 . . . . . 6 (𝜑 → ((𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1-onto→ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ↔ (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1-onto→(Base‘(( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))))))
3928, 38mpbid 232 . . . . 5 (𝜑 → (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1-onto→(Base‘(( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))))
40 eqid 2729 . . . . . 6 (Base‘(( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))) = (Base‘(( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))))
419, 40isrim 20412 . . . . 5 ((𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingIso (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))) ↔ ((𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))) ∧ (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1-onto→(Base‘(( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))))))
4225, 39, 41sylanbrc 583 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingIso (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))))
43 brrici 20425 . . . 4 ((𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingIso (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))) → 𝑅𝑟 (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))))
4442, 43syl 17 . . 3 (𝜑𝑅𝑟 (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))))
458, 19, 44rspcedvdw 3588 . 2 (𝜑 → ∃𝑠 ∈ (SubRing‘( Frac ‘𝑅))𝑅𝑟 (( Frac ‘𝑅) ↾s 𝑠))
464, 6, 45rspcedvdw 3588 1 (𝜑 → ∃𝑓 ∈ Field ∃𝑠 ∈ (SubRing‘𝑓)𝑅𝑟 (𝑓s 𝑠))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  wss 3911  cop 4591   class class class wbr 5102  cmpt 5183   × cxp 5629  ran crn 5632  wf 6495  1-1wf1 6496  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  [cec 8646   / cqs 8647  Basecbs 17155  s cress 17176  1rcur 20101   RingHom crh 20389   RingIso crs 20390  𝑟 cric 20391  SubRingcsubrg 20489  RLRegcrlreg 20611  IDomncidom 20613  Fieldcfield 20650   ~RL cerl 33220   Frac cfrac 33268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-ec 8650  df-qs 8654  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-0g 17380  df-imas 17447  df-qus 17448  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-subg 19037  df-ghm 19127  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-rhm 20392  df-rim 20393  df-ric 20395  df-nzr 20433  df-subrng 20466  df-subrg 20490  df-rlreg 20614  df-domn 20615  df-idom 20616  df-drng 20651  df-field 20652  df-erl 33222  df-rloc 33223  df-frac 33269
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator