Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idomsubr Structured version   Visualization version   GIF version

Theorem idomsubr 33308
Description: Every integral domain is isomorphic with a subring of some field. (Proposed by Gerard Lang, 10-May-2025.) (Contributed by Thierry Arnoux, 10-May-2025.)
Hypothesis
Ref Expression
idomsubr.1 (𝜑𝑅 ∈ IDomn)
Assertion
Ref Expression
idomsubr (𝜑 → ∃𝑓 ∈ Field ∃𝑠 ∈ (SubRing‘𝑓)𝑅𝑟 (𝑓s 𝑠))
Distinct variable groups:   𝑅,𝑓,𝑠   𝜑,𝑓,𝑠

Proof of Theorem idomsubr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6881 . . 3 (𝑓 = ( Frac ‘𝑅) → (SubRing‘𝑓) = (SubRing‘( Frac ‘𝑅)))
2 oveq1 7417 . . . 4 (𝑓 = ( Frac ‘𝑅) → (𝑓s 𝑠) = (( Frac ‘𝑅) ↾s 𝑠))
32breq2d 5136 . . 3 (𝑓 = ( Frac ‘𝑅) → (𝑅𝑟 (𝑓s 𝑠) ↔ 𝑅𝑟 (( Frac ‘𝑅) ↾s 𝑠)))
41, 3rexeqbidv 3330 . 2 (𝑓 = ( Frac ‘𝑅) → (∃𝑠 ∈ (SubRing‘𝑓)𝑅𝑟 (𝑓s 𝑠) ↔ ∃𝑠 ∈ (SubRing‘( Frac ‘𝑅))𝑅𝑟 (( Frac ‘𝑅) ↾s 𝑠)))
5 idomsubr.1 . . 3 (𝜑𝑅 ∈ IDomn)
65fracfld 33307 . 2 (𝜑 → ( Frac ‘𝑅) ∈ Field)
7 oveq2 7418 . . . 4 (𝑠 = ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) → (( Frac ‘𝑅) ↾s 𝑠) = (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))))
87breq2d 5136 . . 3 (𝑠 = ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) → (𝑅𝑟 (( Frac ‘𝑅) ↾s 𝑠) ↔ 𝑅𝑟 (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))))
9 eqid 2736 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
10 eqid 2736 . . . . 5 (RLReg‘𝑅) = (RLReg‘𝑅)
11 eqid 2736 . . . . 5 (1r𝑅) = (1r𝑅)
125idomcringd 20692 . . . . 5 (𝜑𝑅 ∈ CRing)
13 eqid 2736 . . . . 5 (𝑅 ~RL (RLReg‘𝑅)) = (𝑅 ~RL (RLReg‘𝑅))
14 opeq1 4854 . . . . . . 7 (𝑥 = 𝑦 → ⟨𝑥, (1r𝑅)⟩ = ⟨𝑦, (1r𝑅)⟩)
1514eceq1d 8764 . . . . . 6 (𝑥 = 𝑦 → [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)) = [⟨𝑦, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))
1615cbvmptv 5230 . . . . 5 (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) = (𝑦 ∈ (Base‘𝑅) ↦ [⟨𝑦, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))
179, 10, 11, 12, 13, 16fracf1 33306 . . . 4 (𝜑 → ((𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1→(((Base‘𝑅) × (RLReg‘𝑅)) / (𝑅 ~RL (RLReg‘𝑅))) ∧ (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom ( Frac ‘𝑅))))
18 rnrhmsubrg 20570 . . . 4 ((𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom ( Frac ‘𝑅)) → ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (SubRing‘( Frac ‘𝑅)))
1917, 18simpl2im 503 . . 3 (𝜑 → ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (SubRing‘( Frac ‘𝑅)))
20 ssidd 3987 . . . . . 6 (𝜑 → ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ⊆ ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))
2117simprd 495 . . . . . 6 (𝜑 → (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom ( Frac ‘𝑅)))
22 eqid 2736 . . . . . . . 8 (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))) = (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))
2322resrhm2b 20567 . . . . . . 7 ((ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (SubRing‘( Frac ‘𝑅)) ∧ ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ⊆ ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))) → ((𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom ( Frac ‘𝑅)) ↔ (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))))))
2423biimpa 476 . . . . . 6 (((ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (SubRing‘( Frac ‘𝑅)) ∧ ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ⊆ ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))) ∧ (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom ( Frac ‘𝑅))) → (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))))
2519, 20, 21, 24syl21anc 837 . . . . 5 (𝜑 → (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))))
2617simpld 494 . . . . . . 7 (𝜑 → (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1→(((Base‘𝑅) × (RLReg‘𝑅)) / (𝑅 ~RL (RLReg‘𝑅))))
27 f1f1orn 6834 . . . . . . 7 ((𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1→(((Base‘𝑅) × (RLReg‘𝑅)) / (𝑅 ~RL (RLReg‘𝑅))) → (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1-onto→ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))
2826, 27syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1-onto→ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))
29 f1f 6779 . . . . . . . . . . 11 ((𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1→(((Base‘𝑅) × (RLReg‘𝑅)) / (𝑅 ~RL (RLReg‘𝑅))) → (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)⟶(((Base‘𝑅) × (RLReg‘𝑅)) / (𝑅 ~RL (RLReg‘𝑅))))
3026, 29syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)⟶(((Base‘𝑅) × (RLReg‘𝑅)) / (𝑅 ~RL (RLReg‘𝑅))))
3130frnd 6719 . . . . . . . . 9 (𝜑 → ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ⊆ (((Base‘𝑅) × (RLReg‘𝑅)) / (𝑅 ~RL (RLReg‘𝑅))))
32 eqid 2736 . . . . . . . . . 10 ( Frac ‘𝑅) = ( Frac ‘𝑅)
339, 10, 32, 13fracbas 33304 . . . . . . . . 9 (((Base‘𝑅) × (RLReg‘𝑅)) / (𝑅 ~RL (RLReg‘𝑅))) = (Base‘( Frac ‘𝑅))
3431, 33sseqtrdi 4004 . . . . . . . 8 (𝜑 → ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ⊆ (Base‘( Frac ‘𝑅)))
35 eqid 2736 . . . . . . . . 9 (Base‘( Frac ‘𝑅)) = (Base‘( Frac ‘𝑅))
3622, 35ressbas2 17264 . . . . . . . 8 (ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ⊆ (Base‘( Frac ‘𝑅)) → ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) = (Base‘(( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))))
3734, 36syl 17 . . . . . . 7 (𝜑 → ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) = (Base‘(( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))))
3837f1oeq3d 6820 . . . . . 6 (𝜑 → ((𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1-onto→ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ↔ (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1-onto→(Base‘(( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))))))
3928, 38mpbid 232 . . . . 5 (𝜑 → (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1-onto→(Base‘(( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))))
40 eqid 2736 . . . . . 6 (Base‘(( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))) = (Base‘(( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))))
419, 40isrim 20457 . . . . 5 ((𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingIso (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))) ↔ ((𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))) ∧ (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1-onto→(Base‘(( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))))))
4225, 39, 41sylanbrc 583 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingIso (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))))
43 brrici 20470 . . . 4 ((𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingIso (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))) → 𝑅𝑟 (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))))
4442, 43syl 17 . . 3 (𝜑𝑅𝑟 (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))))
458, 19, 44rspcedvdw 3609 . 2 (𝜑 → ∃𝑠 ∈ (SubRing‘( Frac ‘𝑅))𝑅𝑟 (( Frac ‘𝑅) ↾s 𝑠))
464, 6, 45rspcedvdw 3609 1 (𝜑 → ∃𝑓 ∈ Field ∃𝑠 ∈ (SubRing‘𝑓)𝑅𝑟 (𝑓s 𝑠))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3061  wss 3931  cop 4612   class class class wbr 5124  cmpt 5206   × cxp 5657  ran crn 5660  wf 6532  1-1wf1 6533  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  [cec 8722   / cqs 8723  Basecbs 17233  s cress 17256  1rcur 20146   RingHom crh 20434   RingIso crs 20435  𝑟 cric 20436  SubRingcsubrg 20534  RLRegcrlreg 20656  IDomncidom 20658  Fieldcfield 20695   ~RL cerl 33253   Frac cfrac 33301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-ec 8726  df-qs 8730  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-0g 17460  df-imas 17527  df-qus 17528  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-ghm 19201  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-rhm 20437  df-rim 20438  df-ric 20440  df-nzr 20478  df-subrng 20511  df-subrg 20535  df-rlreg 20659  df-domn 20660  df-idom 20661  df-drng 20696  df-field 20697  df-erl 33255  df-rloc 33256  df-frac 33302
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator