Step | Hyp | Ref
| Expression |
1 | | fveq2 6896 |
. . 3
⊢ (𝑓 = ( Frac ‘𝑅) → (SubRing‘𝑓) = (SubRing‘( Frac
‘𝑅))) |
2 | | oveq1 7426 |
. . . 4
⊢ (𝑓 = ( Frac ‘𝑅) → (𝑓 ↾s 𝑠) = (( Frac ‘𝑅) ↾s 𝑠)) |
3 | 2 | breq2d 5161 |
. . 3
⊢ (𝑓 = ( Frac ‘𝑅) → (𝑅 ≃𝑟 (𝑓 ↾s 𝑠) ↔ 𝑅 ≃𝑟 (( Frac
‘𝑅)
↾s 𝑠))) |
4 | 1, 3 | rexeqbidv 3330 |
. 2
⊢ (𝑓 = ( Frac ‘𝑅) → (∃𝑠 ∈ (SubRing‘𝑓)𝑅 ≃𝑟 (𝑓 ↾s 𝑠) ↔ ∃𝑠 ∈ (SubRing‘( Frac
‘𝑅))𝑅 ≃𝑟 (( Frac
‘𝑅)
↾s 𝑠))) |
5 | | idomsubr.1 |
. . 3
⊢ (𝜑 → 𝑅 ∈ IDomn) |
6 | 5 | fracfld 33094 |
. 2
⊢ (𝜑 → ( Frac ‘𝑅) ∈ Field) |
7 | | oveq2 7427 |
. . . 4
⊢ (𝑠 = ran (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))) → (( Frac ‘𝑅) ↾s 𝑠) = (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))))) |
8 | 7 | breq2d 5161 |
. . 3
⊢ (𝑠 = ran (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))) → (𝑅 ≃𝑟 (( Frac
‘𝑅)
↾s 𝑠)
↔ 𝑅
≃𝑟 (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅)))))) |
9 | | eqid 2725 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) |
10 | | eqid 2725 |
. . . . 5
⊢
(RLReg‘𝑅) =
(RLReg‘𝑅) |
11 | | eqid 2725 |
. . . . 5
⊢
(1r‘𝑅) = (1r‘𝑅) |
12 | 5 | idomcringd 21273 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ CRing) |
13 | | eqid 2725 |
. . . . 5
⊢ (𝑅 ~RL
(RLReg‘𝑅)) = (𝑅 ~RL
(RLReg‘𝑅)) |
14 | | opeq1 4875 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → 〈𝑥, (1r‘𝑅)〉 = 〈𝑦, (1r‘𝑅)〉) |
15 | 14 | eceq1d 8764 |
. . . . . 6
⊢ (𝑥 = 𝑦 → [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅)) = [〈𝑦, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))) |
16 | 15 | cbvmptv 5262 |
. . . . 5
⊢ (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))) = (𝑦 ∈ (Base‘𝑅) ↦ [〈𝑦, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))) |
17 | 9, 10, 11, 12, 13, 16 | fracf1 33093 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1→(((Base‘𝑅) × (RLReg‘𝑅)) / (𝑅 ~RL (RLReg‘𝑅))) ∧ (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom ( Frac ‘𝑅)))) |
18 | | rnrhmsubrg 20556 |
. . . 4
⊢ ((𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom ( Frac ‘𝑅)) → ran (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))) ∈ (SubRing‘( Frac
‘𝑅))) |
19 | 17, 18 | simpl2im 502 |
. . 3
⊢ (𝜑 → ran (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))) ∈ (SubRing‘( Frac
‘𝑅))) |
20 | | ssidd 4000 |
. . . . . 6
⊢ (𝜑 → ran (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))) ⊆ ran (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅)))) |
21 | 17 | simprd 494 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom ( Frac ‘𝑅))) |
22 | | eqid 2725 |
. . . . . . . 8
⊢ (( Frac
‘𝑅)
↾s ran (𝑥
∈ (Base‘𝑅)
↦ [〈𝑥,
(1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅)))) = (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅)))) |
23 | 22 | resrhm2b 20553 |
. . . . . . 7
⊢ ((ran
(𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))) ∈ (SubRing‘( Frac
‘𝑅)) ∧ ran (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))) ⊆ ran (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅)))) → ((𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom ( Frac ‘𝑅)) ↔ (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))))))) |
24 | 23 | biimpa 475 |
. . . . . 6
⊢ (((ran
(𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))) ∈ (SubRing‘( Frac
‘𝑅)) ∧ ran (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))) ⊆ ran (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅)))) ∧ (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom ( Frac ‘𝑅))) → (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅)))))) |
25 | 19, 20, 21, 24 | syl21anc 836 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅)))))) |
26 | 17 | simpld 493 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1→(((Base‘𝑅) × (RLReg‘𝑅)) / (𝑅 ~RL (RLReg‘𝑅)))) |
27 | | f1f1orn 6849 |
. . . . . . 7
⊢ ((𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1→(((Base‘𝑅) × (RLReg‘𝑅)) / (𝑅 ~RL (RLReg‘𝑅))) → (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1-onto→ran
(𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅)))) |
28 | 26, 27 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1-onto→ran
(𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅)))) |
29 | | f1f 6793 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1→(((Base‘𝑅) × (RLReg‘𝑅)) / (𝑅 ~RL (RLReg‘𝑅))) → (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)⟶(((Base‘𝑅) × (RLReg‘𝑅)) / (𝑅 ~RL (RLReg‘𝑅)))) |
30 | 26, 29 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)⟶(((Base‘𝑅) × (RLReg‘𝑅)) / (𝑅 ~RL (RLReg‘𝑅)))) |
31 | 30 | frnd 6731 |
. . . . . . . . 9
⊢ (𝜑 → ran (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))) ⊆ (((Base‘𝑅) × (RLReg‘𝑅)) / (𝑅 ~RL (RLReg‘𝑅)))) |
32 | | eqid 2725 |
. . . . . . . . . 10
⊢ ( Frac
‘𝑅) = ( Frac
‘𝑅) |
33 | 9, 10, 32, 13 | fracbas 33091 |
. . . . . . . . 9
⊢
(((Base‘𝑅)
× (RLReg‘𝑅))
/ (𝑅
~RL (RLReg‘𝑅))) = (Base‘( Frac ‘𝑅)) |
34 | 31, 33 | sseqtrdi 4027 |
. . . . . . . 8
⊢ (𝜑 → ran (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))) ⊆ (Base‘( Frac
‘𝑅))) |
35 | | eqid 2725 |
. . . . . . . . 9
⊢
(Base‘( Frac ‘𝑅)) = (Base‘( Frac ‘𝑅)) |
36 | 22, 35 | ressbas2 17221 |
. . . . . . . 8
⊢ (ran
(𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))) ⊆ (Base‘( Frac
‘𝑅)) → ran
(𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))) = (Base‘(( Frac
‘𝑅)
↾s ran (𝑥
∈ (Base‘𝑅)
↦ [〈𝑥,
(1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅)))))) |
37 | 34, 36 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ran (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))) = (Base‘(( Frac
‘𝑅)
↾s ran (𝑥
∈ (Base‘𝑅)
↦ [〈𝑥,
(1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅)))))) |
38 | 37 | f1oeq3d 6835 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1-onto→ran
(𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))) ↔ (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1-onto→(Base‘(( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))))))) |
39 | 28, 38 | mpbid 231 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1-onto→(Base‘(( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅)))))) |
40 | | eqid 2725 |
. . . . . 6
⊢
(Base‘(( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))))) = (Base‘(( Frac
‘𝑅)
↾s ran (𝑥
∈ (Base‘𝑅)
↦ [〈𝑥,
(1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))))) |
41 | 9, 40 | isrim 20443 |
. . . . 5
⊢ ((𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingIso (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))))) ↔ ((𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))))) ∧ (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1-onto→(Base‘(( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))))))) |
42 | 25, 39, 41 | sylanbrc 581 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingIso (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅)))))) |
43 | | brrici 20456 |
. . . 4
⊢ ((𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingIso (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [〈𝑥, (1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))))) → 𝑅 ≃𝑟 (( Frac
‘𝑅)
↾s ran (𝑥
∈ (Base‘𝑅)
↦ [〈𝑥,
(1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))))) |
44 | 42, 43 | syl 17 |
. . 3
⊢ (𝜑 → 𝑅 ≃𝑟 (( Frac
‘𝑅)
↾s ran (𝑥
∈ (Base‘𝑅)
↦ [〈𝑥,
(1r‘𝑅)〉](𝑅 ~RL (RLReg‘𝑅))))) |
45 | 8, 19, 44 | rspcedvdw 3609 |
. 2
⊢ (𝜑 → ∃𝑠 ∈ (SubRing‘( Frac ‘𝑅))𝑅 ≃𝑟 (( Frac
‘𝑅)
↾s 𝑠)) |
46 | 4, 6, 45 | rspcedvdw 3609 |
1
⊢ (𝜑 → ∃𝑓 ∈ Field ∃𝑠 ∈ (SubRing‘𝑓)𝑅 ≃𝑟 (𝑓 ↾s 𝑠)) |