Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idomsubr Structured version   Visualization version   GIF version

Theorem idomsubr 33266
Description: Every integral domain is isomorphic with a subring of some field. (Proposed by Gerard Lang, 10-May-2025.) (Contributed by Thierry Arnoux, 10-May-2025.)
Hypothesis
Ref Expression
idomsubr.1 (𝜑𝑅 ∈ IDomn)
Assertion
Ref Expression
idomsubr (𝜑 → ∃𝑓 ∈ Field ∃𝑠 ∈ (SubRing‘𝑓)𝑅𝑟 (𝑓s 𝑠))
Distinct variable groups:   𝑅,𝑓,𝑠   𝜑,𝑓,𝑠

Proof of Theorem idomsubr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6861 . . 3 (𝑓 = ( Frac ‘𝑅) → (SubRing‘𝑓) = (SubRing‘( Frac ‘𝑅)))
2 oveq1 7397 . . . 4 (𝑓 = ( Frac ‘𝑅) → (𝑓s 𝑠) = (( Frac ‘𝑅) ↾s 𝑠))
32breq2d 5122 . . 3 (𝑓 = ( Frac ‘𝑅) → (𝑅𝑟 (𝑓s 𝑠) ↔ 𝑅𝑟 (( Frac ‘𝑅) ↾s 𝑠)))
41, 3rexeqbidv 3322 . 2 (𝑓 = ( Frac ‘𝑅) → (∃𝑠 ∈ (SubRing‘𝑓)𝑅𝑟 (𝑓s 𝑠) ↔ ∃𝑠 ∈ (SubRing‘( Frac ‘𝑅))𝑅𝑟 (( Frac ‘𝑅) ↾s 𝑠)))
5 idomsubr.1 . . 3 (𝜑𝑅 ∈ IDomn)
65fracfld 33265 . 2 (𝜑 → ( Frac ‘𝑅) ∈ Field)
7 oveq2 7398 . . . 4 (𝑠 = ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) → (( Frac ‘𝑅) ↾s 𝑠) = (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))))
87breq2d 5122 . . 3 (𝑠 = ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) → (𝑅𝑟 (( Frac ‘𝑅) ↾s 𝑠) ↔ 𝑅𝑟 (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))))
9 eqid 2730 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
10 eqid 2730 . . . . 5 (RLReg‘𝑅) = (RLReg‘𝑅)
11 eqid 2730 . . . . 5 (1r𝑅) = (1r𝑅)
125idomcringd 20643 . . . . 5 (𝜑𝑅 ∈ CRing)
13 eqid 2730 . . . . 5 (𝑅 ~RL (RLReg‘𝑅)) = (𝑅 ~RL (RLReg‘𝑅))
14 opeq1 4840 . . . . . . 7 (𝑥 = 𝑦 → ⟨𝑥, (1r𝑅)⟩ = ⟨𝑦, (1r𝑅)⟩)
1514eceq1d 8714 . . . . . 6 (𝑥 = 𝑦 → [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)) = [⟨𝑦, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))
1615cbvmptv 5214 . . . . 5 (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) = (𝑦 ∈ (Base‘𝑅) ↦ [⟨𝑦, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))
179, 10, 11, 12, 13, 16fracf1 33264 . . . 4 (𝜑 → ((𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1→(((Base‘𝑅) × (RLReg‘𝑅)) / (𝑅 ~RL (RLReg‘𝑅))) ∧ (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom ( Frac ‘𝑅))))
18 rnrhmsubrg 20521 . . . 4 ((𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom ( Frac ‘𝑅)) → ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (SubRing‘( Frac ‘𝑅)))
1917, 18simpl2im 503 . . 3 (𝜑 → ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (SubRing‘( Frac ‘𝑅)))
20 ssidd 3973 . . . . . 6 (𝜑 → ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ⊆ ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))
2117simprd 495 . . . . . 6 (𝜑 → (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom ( Frac ‘𝑅)))
22 eqid 2730 . . . . . . . 8 (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))) = (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))
2322resrhm2b 20518 . . . . . . 7 ((ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (SubRing‘( Frac ‘𝑅)) ∧ ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ⊆ ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))) → ((𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom ( Frac ‘𝑅)) ↔ (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))))))
2423biimpa 476 . . . . . 6 (((ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (SubRing‘( Frac ‘𝑅)) ∧ ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ⊆ ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))) ∧ (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom ( Frac ‘𝑅))) → (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))))
2519, 20, 21, 24syl21anc 837 . . . . 5 (𝜑 → (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))))
2617simpld 494 . . . . . . 7 (𝜑 → (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1→(((Base‘𝑅) × (RLReg‘𝑅)) / (𝑅 ~RL (RLReg‘𝑅))))
27 f1f1orn 6814 . . . . . . 7 ((𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1→(((Base‘𝑅) × (RLReg‘𝑅)) / (𝑅 ~RL (RLReg‘𝑅))) → (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1-onto→ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))
2826, 27syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1-onto→ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))
29 f1f 6759 . . . . . . . . . . 11 ((𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1→(((Base‘𝑅) × (RLReg‘𝑅)) / (𝑅 ~RL (RLReg‘𝑅))) → (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)⟶(((Base‘𝑅) × (RLReg‘𝑅)) / (𝑅 ~RL (RLReg‘𝑅))))
3026, 29syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)⟶(((Base‘𝑅) × (RLReg‘𝑅)) / (𝑅 ~RL (RLReg‘𝑅))))
3130frnd 6699 . . . . . . . . 9 (𝜑 → ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ⊆ (((Base‘𝑅) × (RLReg‘𝑅)) / (𝑅 ~RL (RLReg‘𝑅))))
32 eqid 2730 . . . . . . . . . 10 ( Frac ‘𝑅) = ( Frac ‘𝑅)
339, 10, 32, 13fracbas 33262 . . . . . . . . 9 (((Base‘𝑅) × (RLReg‘𝑅)) / (𝑅 ~RL (RLReg‘𝑅))) = (Base‘( Frac ‘𝑅))
3431, 33sseqtrdi 3990 . . . . . . . 8 (𝜑 → ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ⊆ (Base‘( Frac ‘𝑅)))
35 eqid 2730 . . . . . . . . 9 (Base‘( Frac ‘𝑅)) = (Base‘( Frac ‘𝑅))
3622, 35ressbas2 17215 . . . . . . . 8 (ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ⊆ (Base‘( Frac ‘𝑅)) → ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) = (Base‘(( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))))
3734, 36syl 17 . . . . . . 7 (𝜑 → ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) = (Base‘(( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))))
3837f1oeq3d 6800 . . . . . 6 (𝜑 → ((𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1-onto→ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ↔ (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1-onto→(Base‘(( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))))))
3928, 38mpbid 232 . . . . 5 (𝜑 → (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1-onto→(Base‘(( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))))
40 eqid 2730 . . . . . 6 (Base‘(( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))) = (Base‘(( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))))
419, 40isrim 20408 . . . . 5 ((𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingIso (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))) ↔ ((𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingHom (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))) ∧ (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))):(Base‘𝑅)–1-1-onto→(Base‘(( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))))))
4225, 39, 41sylanbrc 583 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingIso (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))))
43 brrici 20421 . . . 4 ((𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))) ∈ (𝑅 RingIso (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅))))) → 𝑅𝑟 (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))))
4442, 43syl 17 . . 3 (𝜑𝑅𝑟 (( Frac ‘𝑅) ↾s ran (𝑥 ∈ (Base‘𝑅) ↦ [⟨𝑥, (1r𝑅)⟩](𝑅 ~RL (RLReg‘𝑅)))))
458, 19, 44rspcedvdw 3594 . 2 (𝜑 → ∃𝑠 ∈ (SubRing‘( Frac ‘𝑅))𝑅𝑟 (( Frac ‘𝑅) ↾s 𝑠))
464, 6, 45rspcedvdw 3594 1 (𝜑 → ∃𝑓 ∈ Field ∃𝑠 ∈ (SubRing‘𝑓)𝑅𝑟 (𝑓s 𝑠))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3054  wss 3917  cop 4598   class class class wbr 5110  cmpt 5191   × cxp 5639  ran crn 5642  wf 6510  1-1wf1 6511  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  [cec 8672   / cqs 8673  Basecbs 17186  s cress 17207  1rcur 20097   RingHom crh 20385   RingIso crs 20386  𝑟 cric 20387  SubRingcsubrg 20485  RLRegcrlreg 20607  IDomncidom 20609  Fieldcfield 20646   ~RL cerl 33211   Frac cfrac 33259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-0g 17411  df-imas 17478  df-qus 17479  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-ghm 19152  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-rhm 20388  df-rim 20389  df-ric 20391  df-nzr 20429  df-subrng 20462  df-subrg 20486  df-rlreg 20610  df-domn 20611  df-idom 20612  df-drng 20647  df-field 20648  df-erl 33213  df-rloc 33214  df-frac 33260
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator