MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmqusnsglem1 Structured version   Visualization version   GIF version

Theorem ghmqusnsglem1 19298
Description: Lemma for ghmqusnsg 19300. (Contributed by Thierry Arnoux, 13-May-2025.)
Hypotheses
Ref Expression
ghmqusnsg.0 0 = (0g𝐻)
ghmqusnsg.f (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
ghmqusnsg.k 𝐾 = (𝐹 “ { 0 })
ghmqusnsg.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
ghmqusnsg.j 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
ghmqusnsg.n (𝜑𝑁𝐾)
ghmqusnsg.1 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
ghmqusnsglem1.x (𝜑𝑋 ∈ (Base‘𝐺))
Assertion
Ref Expression
ghmqusnsglem1 (𝜑 → (𝐽‘[𝑋](𝐺 ~QG 𝑁)) = (𝐹𝑋))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞   𝐾,𝑞   𝑁,𝑞   𝑄,𝑞   𝑋,𝑞   𝜑,𝑞
Allowed substitution hints:   𝐻(𝑞)   𝐽(𝑞)   0 (𝑞)

Proof of Theorem ghmqusnsglem1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmqusnsg.j . . 3 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
2 imaeq2 6074 . . . 4 (𝑞 = [𝑋](𝐺 ~QG 𝑁) → (𝐹𝑞) = (𝐹 “ [𝑋](𝐺 ~QG 𝑁)))
32unieqd 4920 . . 3 (𝑞 = [𝑋](𝐺 ~QG 𝑁) → (𝐹𝑞) = (𝐹 “ [𝑋](𝐺 ~QG 𝑁)))
4 ghmqusnsglem1.x . . . . 5 (𝜑𝑋 ∈ (Base‘𝐺))
5 ovex 7464 . . . . . 6 (𝐺 ~QG 𝑁) ∈ V
65ecelqsi 8813 . . . . 5 (𝑋 ∈ (Base‘𝐺) → [𝑋](𝐺 ~QG 𝑁) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁)))
74, 6syl 17 . . . 4 (𝜑 → [𝑋](𝐺 ~QG 𝑁) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑁)))
8 ghmqusnsg.q . . . . . 6 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
98a1i 11 . . . . 5 (𝜑𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)))
10 eqidd 2738 . . . . 5 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
11 ovexd 7466 . . . . 5 (𝜑 → (𝐺 ~QG 𝑁) ∈ V)
12 ghmqusnsg.f . . . . . 6 (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
13 ghmgrp1 19236 . . . . . 6 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp)
1412, 13syl 17 . . . . 5 (𝜑𝐺 ∈ Grp)
159, 10, 11, 14qusbas 17590 . . . 4 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝑁)) = (Base‘𝑄))
167, 15eleqtrd 2843 . . 3 (𝜑 → [𝑋](𝐺 ~QG 𝑁) ∈ (Base‘𝑄))
1712imaexd 7938 . . . 4 (𝜑 → (𝐹 “ [𝑋](𝐺 ~QG 𝑁)) ∈ V)
1817uniexd 7762 . . 3 (𝜑 (𝐹 “ [𝑋](𝐺 ~QG 𝑁)) ∈ V)
191, 3, 16, 18fvmptd3 7039 . 2 (𝜑 → (𝐽‘[𝑋](𝐺 ~QG 𝑁)) = (𝐹 “ [𝑋](𝐺 ~QG 𝑁)))
20 eqid 2737 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
21 eqid 2737 . . . . . . . . . 10 (Base‘𝐻) = (Base‘𝐻)
2220, 21ghmf 19238 . . . . . . . . 9 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻))
2312, 22syl 17 . . . . . . . 8 (𝜑𝐹:(Base‘𝐺)⟶(Base‘𝐻))
2423ffnd 6737 . . . . . . 7 (𝜑𝐹 Fn (Base‘𝐺))
25 ghmqusnsg.1 . . . . . . . . 9 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
26 nsgsubg 19176 . . . . . . . . 9 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
27 eqid 2737 . . . . . . . . . 10 (𝐺 ~QG 𝑁) = (𝐺 ~QG 𝑁)
2820, 27eqger 19196 . . . . . . . . 9 (𝑁 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑁) Er (Base‘𝐺))
2925, 26, 283syl 18 . . . . . . . 8 (𝜑 → (𝐺 ~QG 𝑁) Er (Base‘𝐺))
3029ecss 8793 . . . . . . 7 (𝜑 → [𝑋](𝐺 ~QG 𝑁) ⊆ (Base‘𝐺))
3124, 30fvelimabd 6982 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐹 “ [𝑋](𝐺 ~QG 𝑁)) ↔ ∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝑁)(𝐹𝑧) = 𝑦))
32 simpr 484 . . . . . . . . . 10 (((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) ∧ (𝐹𝑧) = 𝑦) → (𝐹𝑧) = 𝑦)
3312adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
34 eqid 2737 . . . . . . . . . . . . . . . 16 (invg𝐺) = (invg𝐺)
3533, 13syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → 𝐺 ∈ Grp)
364adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → 𝑋 ∈ (Base‘𝐺))
3720, 34, 35, 36grpinvcld 19006 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → ((invg𝐺)‘𝑋) ∈ (Base‘𝐺))
3830sselda 3983 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → 𝑧 ∈ (Base‘𝐺))
39 eqid 2737 . . . . . . . . . . . . . . . 16 (+g𝐺) = (+g𝐺)
40 eqid 2737 . . . . . . . . . . . . . . . 16 (+g𝐻) = (+g𝐻)
4120, 39, 40ghmlin 19239 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ ((invg𝐺)‘𝑋) ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝐹‘(((invg𝐺)‘𝑋)(+g𝐺)𝑧)) = ((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧)))
4233, 37, 38, 41syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → (𝐹‘(((invg𝐺)‘𝑋)(+g𝐺)𝑧)) = ((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧)))
4324adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → 𝐹 Fn (Base‘𝐺))
44 ghmqusnsg.n . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁𝐾)
45 ghmqusnsg.k . . . . . . . . . . . . . . . . . . 19 𝐾 = (𝐹 “ { 0 })
4644, 45sseqtrdi 4024 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ⊆ (𝐹 “ { 0 }))
4746adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → 𝑁 ⊆ (𝐹 “ { 0 }))
4820subgss 19145 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (SubGrp‘𝐺) → 𝑁 ⊆ (Base‘𝐺))
4925, 26, 483syl 18 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ⊆ (Base‘𝐺))
5049adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → 𝑁 ⊆ (Base‘𝐺))
51 vex 3484 . . . . . . . . . . . . . . . . . . . . 21 𝑧 ∈ V
52 elecg 8789 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ V ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑧 ∈ [𝑋](𝐺 ~QG 𝑁) ↔ 𝑋(𝐺 ~QG 𝑁)𝑧))
5351, 52mpan 690 . . . . . . . . . . . . . . . . . . . 20 (𝑋 ∈ (Base‘𝐺) → (𝑧 ∈ [𝑋](𝐺 ~QG 𝑁) ↔ 𝑋(𝐺 ~QG 𝑁)𝑧))
5453biimpa 476 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ (Base‘𝐺) ∧ 𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → 𝑋(𝐺 ~QG 𝑁)𝑧)
554, 54sylan 580 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → 𝑋(𝐺 ~QG 𝑁)𝑧)
5620, 34, 39, 27eqgval 19195 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ Grp ∧ 𝑁 ⊆ (Base‘𝐺)) → (𝑋(𝐺 ~QG 𝑁)𝑧 ↔ (𝑋 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺) ∧ (((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ 𝑁)))
5756biimpa 476 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ Grp ∧ 𝑁 ⊆ (Base‘𝐺)) ∧ 𝑋(𝐺 ~QG 𝑁)𝑧) → (𝑋 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺) ∧ (((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ 𝑁))
5857simp3d 1145 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ Grp ∧ 𝑁 ⊆ (Base‘𝐺)) ∧ 𝑋(𝐺 ~QG 𝑁)𝑧) → (((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ 𝑁)
5935, 50, 55, 58syl21anc 838 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → (((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ 𝑁)
6047, 59sseldd 3984 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → (((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ (𝐹 “ { 0 }))
61 fniniseg 7080 . . . . . . . . . . . . . . . . 17 (𝐹 Fn (Base‘𝐺) → ((((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ (𝐹 “ { 0 }) ↔ ((((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ (Base‘𝐺) ∧ (𝐹‘(((invg𝐺)‘𝑋)(+g𝐺)𝑧)) = 0 )))
6261biimpa 476 . . . . . . . . . . . . . . . 16 ((𝐹 Fn (Base‘𝐺) ∧ (((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ (𝐹 “ { 0 })) → ((((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ (Base‘𝐺) ∧ (𝐹‘(((invg𝐺)‘𝑋)(+g𝐺)𝑧)) = 0 ))
6343, 60, 62syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → ((((invg𝐺)‘𝑋)(+g𝐺)𝑧) ∈ (Base‘𝐺) ∧ (𝐹‘(((invg𝐺)‘𝑋)(+g𝐺)𝑧)) = 0 ))
6463simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → (𝐹‘(((invg𝐺)‘𝑋)(+g𝐺)𝑧)) = 0 )
6542, 64eqtr3d 2779 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → ((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧)) = 0 )
6665oveq2d 7447 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → ((𝐹𝑋)(+g𝐻)((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧))) = ((𝐹𝑋)(+g𝐻) 0 ))
67 eqid 2737 . . . . . . . . . . . . . . . . 17 (invg𝐻) = (invg𝐻)
6820, 34, 67ghminv 19241 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑋 ∈ (Base‘𝐺)) → (𝐹‘((invg𝐺)‘𝑋)) = ((invg𝐻)‘(𝐹𝑋)))
6933, 36, 68syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → (𝐹‘((invg𝐺)‘𝑋)) = ((invg𝐻)‘(𝐹𝑋)))
7069oveq1d 7446 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → ((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧)) = (((invg𝐻)‘(𝐹𝑋))(+g𝐻)(𝐹𝑧)))
7170oveq2d 7447 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → ((𝐹𝑋)(+g𝐻)((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧))) = ((𝐹𝑋)(+g𝐻)(((invg𝐻)‘(𝐹𝑋))(+g𝐻)(𝐹𝑧))))
72 ghmgrp2 19237 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐻 ∈ Grp)
7333, 72syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → 𝐻 ∈ Grp)
7433, 22syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻))
7574, 36ffvelcdmd 7105 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → (𝐹𝑋) ∈ (Base‘𝐻))
7674, 38ffvelcdmd 7105 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → (𝐹𝑧) ∈ (Base‘𝐻))
7721, 40, 67grpasscan1 19019 . . . . . . . . . . . . . 14 ((𝐻 ∈ Grp ∧ (𝐹𝑋) ∈ (Base‘𝐻) ∧ (𝐹𝑧) ∈ (Base‘𝐻)) → ((𝐹𝑋)(+g𝐻)(((invg𝐻)‘(𝐹𝑋))(+g𝐻)(𝐹𝑧))) = (𝐹𝑧))
7873, 75, 76, 77syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → ((𝐹𝑋)(+g𝐻)(((invg𝐻)‘(𝐹𝑋))(+g𝐻)(𝐹𝑧))) = (𝐹𝑧))
7971, 78eqtrd 2777 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → ((𝐹𝑋)(+g𝐻)((𝐹‘((invg𝐺)‘𝑋))(+g𝐻)(𝐹𝑧))) = (𝐹𝑧))
80 ghmqusnsg.0 . . . . . . . . . . . . 13 0 = (0g𝐻)
8121, 40, 80, 73, 75grpridd 18988 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → ((𝐹𝑋)(+g𝐻) 0 ) = (𝐹𝑋))
8266, 79, 813eqtr3d 2785 . . . . . . . . . . 11 ((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) → (𝐹𝑧) = (𝐹𝑋))
8382adantr 480 . . . . . . . . . 10 (((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) ∧ (𝐹𝑧) = 𝑦) → (𝐹𝑧) = (𝐹𝑋))
8432, 83eqtr3d 2779 . . . . . . . . 9 (((𝜑𝑧 ∈ [𝑋](𝐺 ~QG 𝑁)) ∧ (𝐹𝑧) = 𝑦) → 𝑦 = (𝐹𝑋))
8584r19.29an 3158 . . . . . . . 8 ((𝜑 ∧ ∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝑁)(𝐹𝑧) = 𝑦) → 𝑦 = (𝐹𝑋))
86 fveqeq2 6915 . . . . . . . . 9 (𝑧 = 𝑋 → ((𝐹𝑧) = 𝑦 ↔ (𝐹𝑋) = 𝑦))
87 ecref 8790 . . . . . . . . . . 11 (((𝐺 ~QG 𝑁) Er (Base‘𝐺) ∧ 𝑋 ∈ (Base‘𝐺)) → 𝑋 ∈ [𝑋](𝐺 ~QG 𝑁))
8829, 4, 87syl2anc 584 . . . . . . . . . 10 (𝜑𝑋 ∈ [𝑋](𝐺 ~QG 𝑁))
8988adantr 480 . . . . . . . . 9 ((𝜑𝑦 = (𝐹𝑋)) → 𝑋 ∈ [𝑋](𝐺 ~QG 𝑁))
90 simpr 484 . . . . . . . . . 10 ((𝜑𝑦 = (𝐹𝑋)) → 𝑦 = (𝐹𝑋))
9190eqcomd 2743 . . . . . . . . 9 ((𝜑𝑦 = (𝐹𝑋)) → (𝐹𝑋) = 𝑦)
9286, 89, 91rspcedvdw 3625 . . . . . . . 8 ((𝜑𝑦 = (𝐹𝑋)) → ∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝑁)(𝐹𝑧) = 𝑦)
9385, 92impbida 801 . . . . . . 7 (𝜑 → (∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝑁)(𝐹𝑧) = 𝑦𝑦 = (𝐹𝑋)))
94 velsn 4642 . . . . . . 7 (𝑦 ∈ {(𝐹𝑋)} ↔ 𝑦 = (𝐹𝑋))
9593, 94bitr4di 289 . . . . . 6 (𝜑 → (∃𝑧 ∈ [ 𝑋](𝐺 ~QG 𝑁)(𝐹𝑧) = 𝑦𝑦 ∈ {(𝐹𝑋)}))
9631, 95bitrd 279 . . . . 5 (𝜑 → (𝑦 ∈ (𝐹 “ [𝑋](𝐺 ~QG 𝑁)) ↔ 𝑦 ∈ {(𝐹𝑋)}))
9796eqrdv 2735 . . . 4 (𝜑 → (𝐹 “ [𝑋](𝐺 ~QG 𝑁)) = {(𝐹𝑋)})
9897unieqd 4920 . . 3 (𝜑 (𝐹 “ [𝑋](𝐺 ~QG 𝑁)) = {(𝐹𝑋)})
99 fvex 6919 . . . 4 (𝐹𝑋) ∈ V
10099unisn 4926 . . 3 {(𝐹𝑋)} = (𝐹𝑋)
10198, 100eqtrdi 2793 . 2 (𝜑 (𝐹 “ [𝑋](𝐺 ~QG 𝑁)) = (𝐹𝑋))
10219, 101eqtrd 2777 1 (𝜑 → (𝐽‘[𝑋](𝐺 ~QG 𝑁)) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wrex 3070  Vcvv 3480  wss 3951  {csn 4626   cuni 4907   class class class wbr 5143  cmpt 5225  ccnv 5684  cima 5688   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431   Er wer 8742  [cec 8743   / cqs 8744  Basecbs 17247  +gcplusg 17297  0gc0g 17484   /s cqus 17550  Grpcgrp 18951  invgcminusg 18952  SubGrpcsubg 19138  NrmSGrpcnsg 19139   ~QG cqg 19140   GrpHom cghm 19230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-ec 8747  df-qs 8751  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-0g 17486  df-imas 17553  df-qus 17554  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-subg 19141  df-nsg 19142  df-eqg 19143  df-ghm 19231
This theorem is referenced by:  ghmqusnsglem2  19299  ghmqusnsg  19300  rhmqusnsg  21295  rhmqusspan  42186
  Copyright terms: Public domain W3C validator