MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprngALT Structured version   Visualization version   GIF version

Theorem pzriprngALT 21402
Description: The non-unital ring (ℤring ×sring) is unital because it has the two-sided ideal (ℤ × {0}), which is unital, and the quotient of the ring and the ideal is also unital (using ring2idlqusb 21217). (Contributed by AV, 23-Mar-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
pzriprngALT (ℤring ×sring) ∈ Ring

Proof of Theorem pzriprngALT
StepHypRef Expression
1 oveq2 7357 . . . . . 6 (𝑖 = (ℤ × {0}) → ((ℤring ×sring) ↾s 𝑖) = ((ℤring ×sring) ↾s (ℤ × {0})))
21eleq1d 2813 . . . . 5 (𝑖 = (ℤ × {0}) → (((ℤring ×sring) ↾s 𝑖) ∈ Ring ↔ ((ℤring ×sring) ↾s (ℤ × {0})) ∈ Ring))
3 oveq2 7357 . . . . . . 7 (𝑖 = (ℤ × {0}) → ((ℤring ×sring) ~QG 𝑖) = ((ℤring ×sring) ~QG (ℤ × {0})))
43oveq2d 7365 . . . . . 6 (𝑖 = (ℤ × {0}) → ((ℤring ×sring) /s ((ℤring ×sring) ~QG 𝑖)) = ((ℤring ×sring) /s ((ℤring ×sring) ~QG (ℤ × {0}))))
54eleq1d 2813 . . . . 5 (𝑖 = (ℤ × {0}) → (((ℤring ×sring) /s ((ℤring ×sring) ~QG 𝑖)) ∈ Ring ↔ ((ℤring ×sring) /s ((ℤring ×sring) ~QG (ℤ × {0}))) ∈ Ring))
62, 5anbi12d 632 . . . 4 (𝑖 = (ℤ × {0}) → ((((ℤring ×sring) ↾s 𝑖) ∈ Ring ∧ ((ℤring ×sring) /s ((ℤring ×sring) ~QG 𝑖)) ∈ Ring) ↔ (((ℤring ×sring) ↾s (ℤ × {0})) ∈ Ring ∧ ((ℤring ×sring) /s ((ℤring ×sring) ~QG (ℤ × {0}))) ∈ Ring)))
7 eqid 2729 . . . . . 6 (ℤring ×sring) = (ℤring ×sring)
8 eqid 2729 . . . . . 6 (ℤ × {0}) = (ℤ × {0})
9 eqid 2729 . . . . . 6 ((ℤring ×sring) ↾s (ℤ × {0})) = ((ℤring ×sring) ↾s (ℤ × {0}))
107, 8, 9pzriprnglem8 21395 . . . . 5 (ℤ × {0}) ∈ (2Ideal‘(ℤring ×sring))
1110a1i 11 . . . 4 (⊤ → (ℤ × {0}) ∈ (2Ideal‘(ℤring ×sring)))
127, 8, 9pzriprnglem7 21394 . . . . . 6 ((ℤring ×sring) ↾s (ℤ × {0})) ∈ Ring
1312a1i 11 . . . . 5 (⊤ → ((ℤring ×sring) ↾s (ℤ × {0})) ∈ Ring)
14 eqid 2729 . . . . . 6 (1r‘((ℤring ×sring) ↾s (ℤ × {0}))) = (1r‘((ℤring ×sring) ↾s (ℤ × {0})))
15 eqid 2729 . . . . . 6 ((ℤring ×sring) ~QG (ℤ × {0})) = ((ℤring ×sring) ~QG (ℤ × {0}))
16 eqid 2729 . . . . . 6 ((ℤring ×sring) /s ((ℤring ×sring) ~QG (ℤ × {0}))) = ((ℤring ×sring) /s ((ℤring ×sring) ~QG (ℤ × {0})))
177, 8, 9, 14, 15, 16pzriprnglem13 21400 . . . . 5 ((ℤring ×sring) /s ((ℤring ×sring) ~QG (ℤ × {0}))) ∈ Ring
1813, 17jctir 520 . . . 4 (⊤ → (((ℤring ×sring) ↾s (ℤ × {0})) ∈ Ring ∧ ((ℤring ×sring) /s ((ℤring ×sring) ~QG (ℤ × {0}))) ∈ Ring))
196, 11, 18rspcedvdw 3580 . . 3 (⊤ → ∃𝑖 ∈ (2Ideal‘(ℤring ×sring))(((ℤring ×sring) ↾s 𝑖) ∈ Ring ∧ ((ℤring ×sring) /s ((ℤring ×sring) ~QG 𝑖)) ∈ Ring))
2019mptru 1547 . 2 𝑖 ∈ (2Ideal‘(ℤring ×sring))(((ℤring ×sring) ↾s 𝑖) ∈ Ring ∧ ((ℤring ×sring) /s ((ℤring ×sring) ~QG 𝑖)) ∈ Ring)
217pzriprnglem1 21388 . . 3 (ℤring ×sring) ∈ Rng
22 ring2idlqusb 21217 . . 3 ((ℤring ×sring) ∈ Rng → ((ℤring ×sring) ∈ Ring ↔ ∃𝑖 ∈ (2Ideal‘(ℤring ×sring))(((ℤring ×sring) ↾s 𝑖) ∈ Ring ∧ ((ℤring ×sring) /s ((ℤring ×sring) ~QG 𝑖)) ∈ Ring)))
2321, 22ax-mp 5 . 2 ((ℤring ×sring) ∈ Ring ↔ ∃𝑖 ∈ (2Ideal‘(ℤring ×sring))(((ℤring ×sring) ↾s 𝑖) ∈ Ring ∧ ((ℤring ×sring) /s ((ℤring ×sring) ~QG 𝑖)) ∈ Ring))
2420, 23mpbir 231 1 (ℤring ×sring) ∈ Ring
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  wrex 3053  {csn 4577   × cxp 5617  cfv 6482  (class class class)co 7349  0cc0 11009  cz 12471  s cress 17141   /s cqus 17409   ×s cxps 17410   ~QG cqg 19001  Rngcrng 20037  1rcur 20066  Ringcrg 20118  2Idealc2idl 21156  ringczring 21353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-ec 8627  df-qs 8631  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-imas 17412  df-qus 17413  df-xps 17414  df-mgm 18514  df-mgmhm 18566  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-nsg 19003  df-eqg 19004  df-ghm 19092  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-rnghm 20321  df-rngim 20322  df-subrng 20431  df-subrg 20455  df-lmod 20765  df-lss 20835  df-sra 21077  df-rgmod 21078  df-lidl 21115  df-2idl 21157  df-cnfld 21262  df-zring 21354
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator