![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pzriprngALT | Structured version Visualization version GIF version |
Description: The non-unital ring (ℤring ×s ℤring) is unital because it has the two-sided ideal (ℤ × {0}), which is unital, and the quotient of the ring and the ideal is also unital (using ring2idlqusb 21343). (Contributed by AV, 23-Mar-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pzriprngALT | ⊢ (ℤring ×s ℤring) ∈ Ring |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7456 | . . . . . 6 ⊢ (𝑖 = (ℤ × {0}) → ((ℤring ×s ℤring) ↾s 𝑖) = ((ℤring ×s ℤring) ↾s (ℤ × {0}))) | |
2 | 1 | eleq1d 2829 | . . . . 5 ⊢ (𝑖 = (ℤ × {0}) → (((ℤring ×s ℤring) ↾s 𝑖) ∈ Ring ↔ ((ℤring ×s ℤring) ↾s (ℤ × {0})) ∈ Ring)) |
3 | oveq2 7456 | . . . . . . 7 ⊢ (𝑖 = (ℤ × {0}) → ((ℤring ×s ℤring) ~QG 𝑖) = ((ℤring ×s ℤring) ~QG (ℤ × {0}))) | |
4 | 3 | oveq2d 7464 | . . . . . 6 ⊢ (𝑖 = (ℤ × {0}) → ((ℤring ×s ℤring) /s ((ℤring ×s ℤring) ~QG 𝑖)) = ((ℤring ×s ℤring) /s ((ℤring ×s ℤring) ~QG (ℤ × {0})))) |
5 | 4 | eleq1d 2829 | . . . . 5 ⊢ (𝑖 = (ℤ × {0}) → (((ℤring ×s ℤring) /s ((ℤring ×s ℤring) ~QG 𝑖)) ∈ Ring ↔ ((ℤring ×s ℤring) /s ((ℤring ×s ℤring) ~QG (ℤ × {0}))) ∈ Ring)) |
6 | 2, 5 | anbi12d 631 | . . . 4 ⊢ (𝑖 = (ℤ × {0}) → ((((ℤring ×s ℤring) ↾s 𝑖) ∈ Ring ∧ ((ℤring ×s ℤring) /s ((ℤring ×s ℤring) ~QG 𝑖)) ∈ Ring) ↔ (((ℤring ×s ℤring) ↾s (ℤ × {0})) ∈ Ring ∧ ((ℤring ×s ℤring) /s ((ℤring ×s ℤring) ~QG (ℤ × {0}))) ∈ Ring))) |
7 | eqid 2740 | . . . . . 6 ⊢ (ℤring ×s ℤring) = (ℤring ×s ℤring) | |
8 | eqid 2740 | . . . . . 6 ⊢ (ℤ × {0}) = (ℤ × {0}) | |
9 | eqid 2740 | . . . . . 6 ⊢ ((ℤring ×s ℤring) ↾s (ℤ × {0})) = ((ℤring ×s ℤring) ↾s (ℤ × {0})) | |
10 | 7, 8, 9 | pzriprnglem8 21522 | . . . . 5 ⊢ (ℤ × {0}) ∈ (2Ideal‘(ℤring ×s ℤring)) |
11 | 10 | a1i 11 | . . . 4 ⊢ (⊤ → (ℤ × {0}) ∈ (2Ideal‘(ℤring ×s ℤring))) |
12 | 7, 8, 9 | pzriprnglem7 21521 | . . . . . 6 ⊢ ((ℤring ×s ℤring) ↾s (ℤ × {0})) ∈ Ring |
13 | 12 | a1i 11 | . . . . 5 ⊢ (⊤ → ((ℤring ×s ℤring) ↾s (ℤ × {0})) ∈ Ring) |
14 | eqid 2740 | . . . . . 6 ⊢ (1r‘((ℤring ×s ℤring) ↾s (ℤ × {0}))) = (1r‘((ℤring ×s ℤring) ↾s (ℤ × {0}))) | |
15 | eqid 2740 | . . . . . 6 ⊢ ((ℤring ×s ℤring) ~QG (ℤ × {0})) = ((ℤring ×s ℤring) ~QG (ℤ × {0})) | |
16 | eqid 2740 | . . . . . 6 ⊢ ((ℤring ×s ℤring) /s ((ℤring ×s ℤring) ~QG (ℤ × {0}))) = ((ℤring ×s ℤring) /s ((ℤring ×s ℤring) ~QG (ℤ × {0}))) | |
17 | 7, 8, 9, 14, 15, 16 | pzriprnglem13 21527 | . . . . 5 ⊢ ((ℤring ×s ℤring) /s ((ℤring ×s ℤring) ~QG (ℤ × {0}))) ∈ Ring |
18 | 13, 17 | jctir 520 | . . . 4 ⊢ (⊤ → (((ℤring ×s ℤring) ↾s (ℤ × {0})) ∈ Ring ∧ ((ℤring ×s ℤring) /s ((ℤring ×s ℤring) ~QG (ℤ × {0}))) ∈ Ring)) |
19 | 6, 11, 18 | rspcedvdw 3638 | . . 3 ⊢ (⊤ → ∃𝑖 ∈ (2Ideal‘(ℤring ×s ℤring))(((ℤring ×s ℤring) ↾s 𝑖) ∈ Ring ∧ ((ℤring ×s ℤring) /s ((ℤring ×s ℤring) ~QG 𝑖)) ∈ Ring)) |
20 | 19 | mptru 1544 | . 2 ⊢ ∃𝑖 ∈ (2Ideal‘(ℤring ×s ℤring))(((ℤring ×s ℤring) ↾s 𝑖) ∈ Ring ∧ ((ℤring ×s ℤring) /s ((ℤring ×s ℤring) ~QG 𝑖)) ∈ Ring) |
21 | 7 | pzriprnglem1 21515 | . . 3 ⊢ (ℤring ×s ℤring) ∈ Rng |
22 | ring2idlqusb 21343 | . . 3 ⊢ ((ℤring ×s ℤring) ∈ Rng → ((ℤring ×s ℤring) ∈ Ring ↔ ∃𝑖 ∈ (2Ideal‘(ℤring ×s ℤring))(((ℤring ×s ℤring) ↾s 𝑖) ∈ Ring ∧ ((ℤring ×s ℤring) /s ((ℤring ×s ℤring) ~QG 𝑖)) ∈ Ring))) | |
23 | 21, 22 | ax-mp 5 | . 2 ⊢ ((ℤring ×s ℤring) ∈ Ring ↔ ∃𝑖 ∈ (2Ideal‘(ℤring ×s ℤring))(((ℤring ×s ℤring) ↾s 𝑖) ∈ Ring ∧ ((ℤring ×s ℤring) /s ((ℤring ×s ℤring) ~QG 𝑖)) ∈ Ring)) |
24 | 20, 23 | mpbir 231 | 1 ⊢ (ℤring ×s ℤring) ∈ Ring |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ⊤wtru 1538 ∈ wcel 2108 ∃wrex 3076 {csn 4648 × cxp 5698 ‘cfv 6573 (class class class)co 7448 0cc0 11184 ℤcz 12639 ↾s cress 17287 /s cqus 17565 ×s cxps 17566 ~QG cqg 19162 Rngcrng 20179 1rcur 20208 Ringcrg 20260 2Idealc2idl 21282 ℤringczring 21480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-ec 8765 df-qs 8769 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-0g 17501 df-prds 17507 df-imas 17568 df-qus 17569 df-xps 17570 df-mgm 18678 df-mgmhm 18730 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-nsg 19164 df-eqg 19165 df-ghm 19253 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-rnghm 20462 df-rngim 20463 df-subrng 20572 df-subrg 20597 df-lmod 20882 df-lss 20953 df-sra 21195 df-rgmod 21196 df-lidl 21241 df-2idl 21283 df-cnfld 21388 df-zring 21481 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |