MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  remulscllem2 Structured version   Visualization version   GIF version

Theorem remulscllem2 28301
Description: Lemma for remulscl 28302. Bound 𝐴 and 𝐵 above and below. (Contributed by Scott Fenton, 16-Apr-2025.)
Assertion
Ref Expression
remulscllem2 (((𝐴 No 𝐵 No ) ∧ ((𝑁 ∈ ℕs𝑀 ∈ ℕs) ∧ ((( -us𝑁) <s 𝐴𝐴 <s 𝑁) ∧ (( -us𝑀) <s 𝐵𝐵 <s 𝑀)))) → ∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝑁,𝑝   𝑀,𝑝

Proof of Theorem remulscllem2
StepHypRef Expression
1 breq2 5153 . . . . 5 (𝑝 = (𝑁 ·s 𝑀) → ((abss‘(𝐴 ·s 𝐵)) <s 𝑝 ↔ (abss‘(𝐴 ·s 𝐵)) <s (𝑁 ·s 𝑀)))
2 nnmulscl 28265 . . . . . 6 ((𝑁 ∈ ℕs𝑀 ∈ ℕs) → (𝑁 ·s 𝑀) ∈ ℕs)
32ad2antlr 725 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (𝑁 ·s 𝑀) ∈ ℕs)
4 absmuls 28188 . . . . . . 7 ((𝐴 No 𝐵 No ) → (abss‘(𝐴 ·s 𝐵)) = ((abss𝐴) ·s (abss𝐵)))
54ad2antrr 724 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (abss‘(𝐴 ·s 𝐵)) = ((abss𝐴) ·s (abss𝐵)))
6 absscl 28184 . . . . . . . 8 (𝐴 No → (abss𝐴) ∈ No )
76ad3antrrr 728 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (abss𝐴) ∈ No )
8 simplrl 775 . . . . . . . 8 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → 𝑁 ∈ ℕs)
98nnsnod 28248 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → 𝑁 No )
10 absscl 28184 . . . . . . . 8 (𝐵 No → (abss𝐵) ∈ No )
1110ad3antlr 729 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (abss𝐵) ∈ No )
12 simplrr 776 . . . . . . . 8 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → 𝑀 ∈ ℕs)
1312nnsnod 28248 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → 𝑀 No )
14 abssge0 28189 . . . . . . . 8 (𝐴 No → 0s ≤s (abss𝐴))
1514ad3antrrr 728 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → 0s ≤s (abss𝐴))
16 simprl 769 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (abss𝐴) <s 𝑁)
17 abssge0 28189 . . . . . . . 8 (𝐵 No → 0s ≤s (abss𝐵))
1817ad3antlr 729 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → 0s ≤s (abss𝐵))
19 simprr 771 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (abss𝐵) <s 𝑀)
207, 9, 11, 13, 15, 16, 18, 19sltmul12ad 28133 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → ((abss𝐴) ·s (abss𝐵)) <s (𝑁 ·s 𝑀))
215, 20eqbrtrd 5171 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (abss‘(𝐴 ·s 𝐵)) <s (𝑁 ·s 𝑀))
221, 3, 21rspcedvdw 3609 . . . 4 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → ∃𝑝 ∈ ℕs (abss‘(𝐴 ·s 𝐵)) <s 𝑝)
2322ex 411 . . 3 (((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) → (((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀) → ∃𝑝 ∈ ℕs (abss‘(𝐴 ·s 𝐵)) <s 𝑝))
24 nnsno 28246 . . . . . 6 (𝑁 ∈ ℕs𝑁 No )
25 absslt 28193 . . . . . 6 ((𝐴 No 𝑁 No ) → ((abss𝐴) <s 𝑁 ↔ (( -us𝑁) <s 𝐴𝐴 <s 𝑁)))
2624, 25sylan2 591 . . . . 5 ((𝐴 No 𝑁 ∈ ℕs) → ((abss𝐴) <s 𝑁 ↔ (( -us𝑁) <s 𝐴𝐴 <s 𝑁)))
27 nnsno 28246 . . . . . 6 (𝑀 ∈ ℕs𝑀 No )
28 absslt 28193 . . . . . 6 ((𝐵 No 𝑀 No ) → ((abss𝐵) <s 𝑀 ↔ (( -us𝑀) <s 𝐵𝐵 <s 𝑀)))
2927, 28sylan2 591 . . . . 5 ((𝐵 No 𝑀 ∈ ℕs) → ((abss𝐵) <s 𝑀 ↔ (( -us𝑀) <s 𝐵𝐵 <s 𝑀)))
3026, 29bi2anan9 636 . . . 4 (((𝐴 No 𝑁 ∈ ℕs) ∧ (𝐵 No 𝑀 ∈ ℕs)) → (((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀) ↔ ((( -us𝑁) <s 𝐴𝐴 <s 𝑁) ∧ (( -us𝑀) <s 𝐵𝐵 <s 𝑀))))
3130an4s 658 . . 3 (((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) → (((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀) ↔ ((( -us𝑁) <s 𝐴𝐴 <s 𝑁) ∧ (( -us𝑀) <s 𝐵𝐵 <s 𝑀))))
32 mulscl 28084 . . . . . 6 ((𝐴 No 𝐵 No ) → (𝐴 ·s 𝐵) ∈ No )
3332adantr 479 . . . . 5 (((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) → (𝐴 ·s 𝐵) ∈ No )
34 nnsno 28246 . . . . 5 (𝑝 ∈ ℕs𝑝 No )
35 absslt 28193 . . . . 5 (((𝐴 ·s 𝐵) ∈ No 𝑝 No ) → ((abss‘(𝐴 ·s 𝐵)) <s 𝑝 ↔ (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝)))
3633, 34, 35syl2an 594 . . . 4 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ 𝑝 ∈ ℕs) → ((abss‘(𝐴 ·s 𝐵)) <s 𝑝 ↔ (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝)))
3736rexbidva 3166 . . 3 (((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) → (∃𝑝 ∈ ℕs (abss‘(𝐴 ·s 𝐵)) <s 𝑝 ↔ ∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝)))
3823, 31, 373imtr3d 292 . 2 (((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) → (((( -us𝑁) <s 𝐴𝐴 <s 𝑁) ∧ (( -us𝑀) <s 𝐵𝐵 <s 𝑀)) → ∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝)))
3938impr 453 1 (((𝐴 No 𝐵 No ) ∧ ((𝑁 ∈ ℕs𝑀 ∈ ℕs) ∧ ((( -us𝑁) <s 𝐴𝐴 <s 𝑁) ∧ (( -us𝑀) <s 𝐵𝐵 <s 𝑀)))) → ∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wrex 3059   class class class wbr 5149  cfv 6549  (class class class)co 7419   No csur 27618   <s cslt 27619   ≤s csle 27723   0s c0s 27801   -us cnegs 27978   ·s cmuls 28056  absscabss 28181  scnns 28236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-ot 4639  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-nadd 8687  df-no 27621  df-slt 27622  df-bday 27623  df-sle 27724  df-sslt 27760  df-scut 27762  df-0s 27803  df-1s 27804  df-made 27820  df-old 27821  df-left 27823  df-right 27824  df-norec 27901  df-norec2 27912  df-adds 27923  df-negs 27980  df-subs 27981  df-muls 28057  df-abss 28182  df-n0s 28237  df-nns 28238
This theorem is referenced by:  remulscl  28302
  Copyright terms: Public domain W3C validator