MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  remulscllem2 Structured version   Visualization version   GIF version

Theorem remulscllem2 28359
Description: Lemma for remulscl 28360. Bound 𝐴 and 𝐵 above and below. (Contributed by Scott Fenton, 16-Apr-2025.)
Assertion
Ref Expression
remulscllem2 (((𝐴 No 𝐵 No ) ∧ ((𝑁 ∈ ℕs𝑀 ∈ ℕs) ∧ ((( -us𝑁) <s 𝐴𝐴 <s 𝑁) ∧ (( -us𝑀) <s 𝐵𝐵 <s 𝑀)))) → ∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝑁,𝑝   𝑀,𝑝

Proof of Theorem remulscllem2
StepHypRef Expression
1 breq2 5114 . . . . 5 (𝑝 = (𝑁 ·s 𝑀) → ((abss‘(𝐴 ·s 𝐵)) <s 𝑝 ↔ (abss‘(𝐴 ·s 𝐵)) <s (𝑁 ·s 𝑀)))
2 nnmulscl 28246 . . . . . 6 ((𝑁 ∈ ℕs𝑀 ∈ ℕs) → (𝑁 ·s 𝑀) ∈ ℕs)
32ad2antlr 727 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (𝑁 ·s 𝑀) ∈ ℕs)
4 absmuls 28153 . . . . . . 7 ((𝐴 No 𝐵 No ) → (abss‘(𝐴 ·s 𝐵)) = ((abss𝐴) ·s (abss𝐵)))
54ad2antrr 726 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (abss‘(𝐴 ·s 𝐵)) = ((abss𝐴) ·s (abss𝐵)))
6 absscl 28149 . . . . . . . 8 (𝐴 No → (abss𝐴) ∈ No )
76ad3antrrr 730 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (abss𝐴) ∈ No )
8 simplrl 776 . . . . . . . 8 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → 𝑁 ∈ ℕs)
98nnsnod 28226 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → 𝑁 No )
10 absscl 28149 . . . . . . . 8 (𝐵 No → (abss𝐵) ∈ No )
1110ad3antlr 731 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (abss𝐵) ∈ No )
12 simplrr 777 . . . . . . . 8 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → 𝑀 ∈ ℕs)
1312nnsnod 28226 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → 𝑀 No )
14 abssge0 28154 . . . . . . . 8 (𝐴 No → 0s ≤s (abss𝐴))
1514ad3antrrr 730 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → 0s ≤s (abss𝐴))
16 simprl 770 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (abss𝐴) <s 𝑁)
17 abssge0 28154 . . . . . . . 8 (𝐵 No → 0s ≤s (abss𝐵))
1817ad3antlr 731 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → 0s ≤s (abss𝐵))
19 simprr 772 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (abss𝐵) <s 𝑀)
207, 9, 11, 13, 15, 16, 18, 19sltmul12ad 28093 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → ((abss𝐴) ·s (abss𝐵)) <s (𝑁 ·s 𝑀))
215, 20eqbrtrd 5132 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (abss‘(𝐴 ·s 𝐵)) <s (𝑁 ·s 𝑀))
221, 3, 21rspcedvdw 3594 . . . 4 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → ∃𝑝 ∈ ℕs (abss‘(𝐴 ·s 𝐵)) <s 𝑝)
2322ex 412 . . 3 (((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) → (((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀) → ∃𝑝 ∈ ℕs (abss‘(𝐴 ·s 𝐵)) <s 𝑝))
24 nnsno 28224 . . . . . 6 (𝑁 ∈ ℕs𝑁 No )
25 absslt 28158 . . . . . 6 ((𝐴 No 𝑁 No ) → ((abss𝐴) <s 𝑁 ↔ (( -us𝑁) <s 𝐴𝐴 <s 𝑁)))
2624, 25sylan2 593 . . . . 5 ((𝐴 No 𝑁 ∈ ℕs) → ((abss𝐴) <s 𝑁 ↔ (( -us𝑁) <s 𝐴𝐴 <s 𝑁)))
27 nnsno 28224 . . . . . 6 (𝑀 ∈ ℕs𝑀 No )
28 absslt 28158 . . . . . 6 ((𝐵 No 𝑀 No ) → ((abss𝐵) <s 𝑀 ↔ (( -us𝑀) <s 𝐵𝐵 <s 𝑀)))
2927, 28sylan2 593 . . . . 5 ((𝐵 No 𝑀 ∈ ℕs) → ((abss𝐵) <s 𝑀 ↔ (( -us𝑀) <s 𝐵𝐵 <s 𝑀)))
3026, 29bi2anan9 638 . . . 4 (((𝐴 No 𝑁 ∈ ℕs) ∧ (𝐵 No 𝑀 ∈ ℕs)) → (((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀) ↔ ((( -us𝑁) <s 𝐴𝐴 <s 𝑁) ∧ (( -us𝑀) <s 𝐵𝐵 <s 𝑀))))
3130an4s 660 . . 3 (((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) → (((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀) ↔ ((( -us𝑁) <s 𝐴𝐴 <s 𝑁) ∧ (( -us𝑀) <s 𝐵𝐵 <s 𝑀))))
32 mulscl 28044 . . . . . 6 ((𝐴 No 𝐵 No ) → (𝐴 ·s 𝐵) ∈ No )
3332adantr 480 . . . . 5 (((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) → (𝐴 ·s 𝐵) ∈ No )
34 nnsno 28224 . . . . 5 (𝑝 ∈ ℕs𝑝 No )
35 absslt 28158 . . . . 5 (((𝐴 ·s 𝐵) ∈ No 𝑝 No ) → ((abss‘(𝐴 ·s 𝐵)) <s 𝑝 ↔ (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝)))
3633, 34, 35syl2an 596 . . . 4 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ 𝑝 ∈ ℕs) → ((abss‘(𝐴 ·s 𝐵)) <s 𝑝 ↔ (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝)))
3736rexbidva 3156 . . 3 (((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) → (∃𝑝 ∈ ℕs (abss‘(𝐴 ·s 𝐵)) <s 𝑝 ↔ ∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝)))
3823, 31, 373imtr3d 293 . 2 (((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) → (((( -us𝑁) <s 𝐴𝐴 <s 𝑁) ∧ (( -us𝑀) <s 𝐵𝐵 <s 𝑀)) → ∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝)))
3938impr 454 1 (((𝐴 No 𝐵 No ) ∧ ((𝑁 ∈ ℕs𝑀 ∈ ℕs) ∧ ((( -us𝑁) <s 𝐴𝐴 <s 𝑁) ∧ (( -us𝑀) <s 𝐵𝐵 <s 𝑀)))) → ∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054   class class class wbr 5110  cfv 6514  (class class class)co 7390   No csur 27558   <s cslt 27559   ≤s csle 27663   0s c0s 27741   -us cnegs 27932   ·s cmuls 28016  absscabss 28146  scnns 28214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-nadd 8633  df-no 27561  df-slt 27562  df-bday 27563  df-sle 27664  df-sslt 27700  df-scut 27702  df-0s 27743  df-1s 27744  df-made 27762  df-old 27763  df-left 27765  df-right 27766  df-norec 27852  df-norec2 27863  df-adds 27874  df-negs 27934  df-subs 27935  df-muls 28017  df-abss 28147  df-n0s 28215  df-nns 28216
This theorem is referenced by:  remulscl  28360
  Copyright terms: Public domain W3C validator