MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  remulscllem2 Structured version   Visualization version   GIF version

Theorem remulscllem2 28451
Description: Lemma for remulscl 28452. Bound 𝐴 and 𝐵 above and below. (Contributed by Scott Fenton, 16-Apr-2025.)
Assertion
Ref Expression
remulscllem2 (((𝐴 No 𝐵 No ) ∧ ((𝑁 ∈ ℕs𝑀 ∈ ℕs) ∧ ((( -us𝑁) <s 𝐴𝐴 <s 𝑁) ∧ (( -us𝑀) <s 𝐵𝐵 <s 𝑀)))) → ∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝑁,𝑝   𝑀,𝑝

Proof of Theorem remulscllem2
StepHypRef Expression
1 breq2 5170 . . . . 5 (𝑝 = (𝑁 ·s 𝑀) → ((abss‘(𝐴 ·s 𝐵)) <s 𝑝 ↔ (abss‘(𝐴 ·s 𝐵)) <s (𝑁 ·s 𝑀)))
2 nnmulscl 28368 . . . . . 6 ((𝑁 ∈ ℕs𝑀 ∈ ℕs) → (𝑁 ·s 𝑀) ∈ ℕs)
32ad2antlr 726 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (𝑁 ·s 𝑀) ∈ ℕs)
4 absmuls 28286 . . . . . . 7 ((𝐴 No 𝐵 No ) → (abss‘(𝐴 ·s 𝐵)) = ((abss𝐴) ·s (abss𝐵)))
54ad2antrr 725 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (abss‘(𝐴 ·s 𝐵)) = ((abss𝐴) ·s (abss𝐵)))
6 absscl 28282 . . . . . . . 8 (𝐴 No → (abss𝐴) ∈ No )
76ad3antrrr 729 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (abss𝐴) ∈ No )
8 simplrl 776 . . . . . . . 8 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → 𝑁 ∈ ℕs)
98nnsnod 28349 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → 𝑁 No )
10 absscl 28282 . . . . . . . 8 (𝐵 No → (abss𝐵) ∈ No )
1110ad3antlr 730 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (abss𝐵) ∈ No )
12 simplrr 777 . . . . . . . 8 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → 𝑀 ∈ ℕs)
1312nnsnod 28349 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → 𝑀 No )
14 abssge0 28287 . . . . . . . 8 (𝐴 No → 0s ≤s (abss𝐴))
1514ad3antrrr 729 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → 0s ≤s (abss𝐴))
16 simprl 770 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (abss𝐴) <s 𝑁)
17 abssge0 28287 . . . . . . . 8 (𝐵 No → 0s ≤s (abss𝐵))
1817ad3antlr 730 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → 0s ≤s (abss𝐵))
19 simprr 772 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (abss𝐵) <s 𝑀)
207, 9, 11, 13, 15, 16, 18, 19sltmul12ad 28227 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → ((abss𝐴) ·s (abss𝐵)) <s (𝑁 ·s 𝑀))
215, 20eqbrtrd 5188 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (abss‘(𝐴 ·s 𝐵)) <s (𝑁 ·s 𝑀))
221, 3, 21rspcedvdw 3638 . . . 4 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → ∃𝑝 ∈ ℕs (abss‘(𝐴 ·s 𝐵)) <s 𝑝)
2322ex 412 . . 3 (((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) → (((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀) → ∃𝑝 ∈ ℕs (abss‘(𝐴 ·s 𝐵)) <s 𝑝))
24 nnsno 28347 . . . . . 6 (𝑁 ∈ ℕs𝑁 No )
25 absslt 28291 . . . . . 6 ((𝐴 No 𝑁 No ) → ((abss𝐴) <s 𝑁 ↔ (( -us𝑁) <s 𝐴𝐴 <s 𝑁)))
2624, 25sylan2 592 . . . . 5 ((𝐴 No 𝑁 ∈ ℕs) → ((abss𝐴) <s 𝑁 ↔ (( -us𝑁) <s 𝐴𝐴 <s 𝑁)))
27 nnsno 28347 . . . . . 6 (𝑀 ∈ ℕs𝑀 No )
28 absslt 28291 . . . . . 6 ((𝐵 No 𝑀 No ) → ((abss𝐵) <s 𝑀 ↔ (( -us𝑀) <s 𝐵𝐵 <s 𝑀)))
2927, 28sylan2 592 . . . . 5 ((𝐵 No 𝑀 ∈ ℕs) → ((abss𝐵) <s 𝑀 ↔ (( -us𝑀) <s 𝐵𝐵 <s 𝑀)))
3026, 29bi2anan9 637 . . . 4 (((𝐴 No 𝑁 ∈ ℕs) ∧ (𝐵 No 𝑀 ∈ ℕs)) → (((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀) ↔ ((( -us𝑁) <s 𝐴𝐴 <s 𝑁) ∧ (( -us𝑀) <s 𝐵𝐵 <s 𝑀))))
3130an4s 659 . . 3 (((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) → (((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀) ↔ ((( -us𝑁) <s 𝐴𝐴 <s 𝑁) ∧ (( -us𝑀) <s 𝐵𝐵 <s 𝑀))))
32 mulscl 28178 . . . . . 6 ((𝐴 No 𝐵 No ) → (𝐴 ·s 𝐵) ∈ No )
3332adantr 480 . . . . 5 (((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) → (𝐴 ·s 𝐵) ∈ No )
34 nnsno 28347 . . . . 5 (𝑝 ∈ ℕs𝑝 No )
35 absslt 28291 . . . . 5 (((𝐴 ·s 𝐵) ∈ No 𝑝 No ) → ((abss‘(𝐴 ·s 𝐵)) <s 𝑝 ↔ (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝)))
3633, 34, 35syl2an 595 . . . 4 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ 𝑝 ∈ ℕs) → ((abss‘(𝐴 ·s 𝐵)) <s 𝑝 ↔ (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝)))
3736rexbidva 3183 . . 3 (((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) → (∃𝑝 ∈ ℕs (abss‘(𝐴 ·s 𝐵)) <s 𝑝 ↔ ∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝)))
3823, 31, 373imtr3d 293 . 2 (((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) → (((( -us𝑁) <s 𝐴𝐴 <s 𝑁) ∧ (( -us𝑀) <s 𝐵𝐵 <s 𝑀)) → ∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝)))
3938impr 454 1 (((𝐴 No 𝐵 No ) ∧ ((𝑁 ∈ ℕs𝑀 ∈ ℕs) ∧ ((( -us𝑁) <s 𝐴𝐴 <s 𝑁) ∧ (( -us𝑀) <s 𝐵𝐵 <s 𝑀)))) → ∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448   No csur 27702   <s cslt 27703   ≤s csle 27807   0s c0s 27885   -us cnegs 28069   ·s cmuls 28150  absscabss 28279  scnns 28337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-1s 27888  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec 27989  df-norec2 28000  df-adds 28011  df-negs 28071  df-subs 28072  df-muls 28151  df-abss 28280  df-n0s 28338  df-nns 28339
This theorem is referenced by:  remulscl  28452
  Copyright terms: Public domain W3C validator