MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  remulscllem2 Structured version   Visualization version   GIF version

Theorem remulscllem2 28433
Description: Lemma for remulscl 28434. Bound 𝐴 and 𝐵 above and below. (Contributed by Scott Fenton, 16-Apr-2025.)
Assertion
Ref Expression
remulscllem2 (((𝐴 No 𝐵 No ) ∧ ((𝑁 ∈ ℕs𝑀 ∈ ℕs) ∧ ((( -us𝑁) <s 𝐴𝐴 <s 𝑁) ∧ (( -us𝑀) <s 𝐵𝐵 <s 𝑀)))) → ∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝑁,𝑝   𝑀,𝑝

Proof of Theorem remulscllem2
StepHypRef Expression
1 breq2 5147 . . . . 5 (𝑝 = (𝑁 ·s 𝑀) → ((abss‘(𝐴 ·s 𝐵)) <s 𝑝 ↔ (abss‘(𝐴 ·s 𝐵)) <s (𝑁 ·s 𝑀)))
2 nnmulscl 28350 . . . . . 6 ((𝑁 ∈ ℕs𝑀 ∈ ℕs) → (𝑁 ·s 𝑀) ∈ ℕs)
32ad2antlr 727 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (𝑁 ·s 𝑀) ∈ ℕs)
4 absmuls 28268 . . . . . . 7 ((𝐴 No 𝐵 No ) → (abss‘(𝐴 ·s 𝐵)) = ((abss𝐴) ·s (abss𝐵)))
54ad2antrr 726 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (abss‘(𝐴 ·s 𝐵)) = ((abss𝐴) ·s (abss𝐵)))
6 absscl 28264 . . . . . . . 8 (𝐴 No → (abss𝐴) ∈ No )
76ad3antrrr 730 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (abss𝐴) ∈ No )
8 simplrl 777 . . . . . . . 8 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → 𝑁 ∈ ℕs)
98nnsnod 28331 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → 𝑁 No )
10 absscl 28264 . . . . . . . 8 (𝐵 No → (abss𝐵) ∈ No )
1110ad3antlr 731 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (abss𝐵) ∈ No )
12 simplrr 778 . . . . . . . 8 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → 𝑀 ∈ ℕs)
1312nnsnod 28331 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → 𝑀 No )
14 abssge0 28269 . . . . . . . 8 (𝐴 No → 0s ≤s (abss𝐴))
1514ad3antrrr 730 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → 0s ≤s (abss𝐴))
16 simprl 771 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (abss𝐴) <s 𝑁)
17 abssge0 28269 . . . . . . . 8 (𝐵 No → 0s ≤s (abss𝐵))
1817ad3antlr 731 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → 0s ≤s (abss𝐵))
19 simprr 773 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (abss𝐵) <s 𝑀)
207, 9, 11, 13, 15, 16, 18, 19sltmul12ad 28209 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → ((abss𝐴) ·s (abss𝐵)) <s (𝑁 ·s 𝑀))
215, 20eqbrtrd 5165 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (abss‘(𝐴 ·s 𝐵)) <s (𝑁 ·s 𝑀))
221, 3, 21rspcedvdw 3625 . . . 4 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → ∃𝑝 ∈ ℕs (abss‘(𝐴 ·s 𝐵)) <s 𝑝)
2322ex 412 . . 3 (((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) → (((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀) → ∃𝑝 ∈ ℕs (abss‘(𝐴 ·s 𝐵)) <s 𝑝))
24 nnsno 28329 . . . . . 6 (𝑁 ∈ ℕs𝑁 No )
25 absslt 28273 . . . . . 6 ((𝐴 No 𝑁 No ) → ((abss𝐴) <s 𝑁 ↔ (( -us𝑁) <s 𝐴𝐴 <s 𝑁)))
2624, 25sylan2 593 . . . . 5 ((𝐴 No 𝑁 ∈ ℕs) → ((abss𝐴) <s 𝑁 ↔ (( -us𝑁) <s 𝐴𝐴 <s 𝑁)))
27 nnsno 28329 . . . . . 6 (𝑀 ∈ ℕs𝑀 No )
28 absslt 28273 . . . . . 6 ((𝐵 No 𝑀 No ) → ((abss𝐵) <s 𝑀 ↔ (( -us𝑀) <s 𝐵𝐵 <s 𝑀)))
2927, 28sylan2 593 . . . . 5 ((𝐵 No 𝑀 ∈ ℕs) → ((abss𝐵) <s 𝑀 ↔ (( -us𝑀) <s 𝐵𝐵 <s 𝑀)))
3026, 29bi2anan9 638 . . . 4 (((𝐴 No 𝑁 ∈ ℕs) ∧ (𝐵 No 𝑀 ∈ ℕs)) → (((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀) ↔ ((( -us𝑁) <s 𝐴𝐴 <s 𝑁) ∧ (( -us𝑀) <s 𝐵𝐵 <s 𝑀))))
3130an4s 660 . . 3 (((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) → (((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀) ↔ ((( -us𝑁) <s 𝐴𝐴 <s 𝑁) ∧ (( -us𝑀) <s 𝐵𝐵 <s 𝑀))))
32 mulscl 28160 . . . . . 6 ((𝐴 No 𝐵 No ) → (𝐴 ·s 𝐵) ∈ No )
3332adantr 480 . . . . 5 (((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) → (𝐴 ·s 𝐵) ∈ No )
34 nnsno 28329 . . . . 5 (𝑝 ∈ ℕs𝑝 No )
35 absslt 28273 . . . . 5 (((𝐴 ·s 𝐵) ∈ No 𝑝 No ) → ((abss‘(𝐴 ·s 𝐵)) <s 𝑝 ↔ (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝)))
3633, 34, 35syl2an 596 . . . 4 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ 𝑝 ∈ ℕs) → ((abss‘(𝐴 ·s 𝐵)) <s 𝑝 ↔ (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝)))
3736rexbidva 3177 . . 3 (((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) → (∃𝑝 ∈ ℕs (abss‘(𝐴 ·s 𝐵)) <s 𝑝 ↔ ∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝)))
3823, 31, 373imtr3d 293 . 2 (((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) → (((( -us𝑁) <s 𝐴𝐴 <s 𝑁) ∧ (( -us𝑀) <s 𝐵𝐵 <s 𝑀)) → ∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝)))
3938impr 454 1 (((𝐴 No 𝐵 No ) ∧ ((𝑁 ∈ ℕs𝑀 ∈ ℕs) ∧ ((( -us𝑁) <s 𝐴𝐴 <s 𝑁) ∧ (( -us𝑀) <s 𝐵𝐵 <s 𝑀)))) → ∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3070   class class class wbr 5143  cfv 6561  (class class class)co 7431   No csur 27684   <s cslt 27685   ≤s csle 27789   0s c0s 27867   -us cnegs 28051   ·s cmuls 28132  absscabss 28261  scnns 28319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-ot 4635  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-nadd 8704  df-no 27687  df-slt 27688  df-bday 27689  df-sle 27790  df-sslt 27826  df-scut 27828  df-0s 27869  df-1s 27870  df-made 27886  df-old 27887  df-left 27889  df-right 27890  df-norec 27971  df-norec2 27982  df-adds 27993  df-negs 28053  df-subs 28054  df-muls 28133  df-abss 28262  df-n0s 28320  df-nns 28321
This theorem is referenced by:  remulscl  28434
  Copyright terms: Public domain W3C validator