MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  remulscllem2 Structured version   Visualization version   GIF version

Theorem remulscllem2 28406
Description: Lemma for remulscl 28407. Bound 𝐴 and 𝐵 above and below. (Contributed by Scott Fenton, 16-Apr-2025.)
Assertion
Ref Expression
remulscllem2 (((𝐴 No 𝐵 No ) ∧ ((𝑁 ∈ ℕs𝑀 ∈ ℕs) ∧ ((( -us𝑁) <s 𝐴𝐴 <s 𝑁) ∧ (( -us𝑀) <s 𝐵𝐵 <s 𝑀)))) → ∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝑁,𝑝   𝑀,𝑝

Proof of Theorem remulscllem2
StepHypRef Expression
1 breq2 5099 . . . . 5 (𝑝 = (𝑁 ·s 𝑀) → ((abss‘(𝐴 ·s 𝐵)) <s 𝑝 ↔ (abss‘(𝐴 ·s 𝐵)) <s (𝑁 ·s 𝑀)))
2 nnmulscl 28278 . . . . . 6 ((𝑁 ∈ ℕs𝑀 ∈ ℕs) → (𝑁 ·s 𝑀) ∈ ℕs)
32ad2antlr 727 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (𝑁 ·s 𝑀) ∈ ℕs)
4 absmuls 28185 . . . . . . 7 ((𝐴 No 𝐵 No ) → (abss‘(𝐴 ·s 𝐵)) = ((abss𝐴) ·s (abss𝐵)))
54ad2antrr 726 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (abss‘(𝐴 ·s 𝐵)) = ((abss𝐴) ·s (abss𝐵)))
6 absscl 28181 . . . . . . . 8 (𝐴 No → (abss𝐴) ∈ No )
76ad3antrrr 730 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (abss𝐴) ∈ No )
8 simplrl 776 . . . . . . . 8 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → 𝑁 ∈ ℕs)
98nnsnod 28258 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → 𝑁 No )
10 absscl 28181 . . . . . . . 8 (𝐵 No → (abss𝐵) ∈ No )
1110ad3antlr 731 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (abss𝐵) ∈ No )
12 simplrr 777 . . . . . . . 8 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → 𝑀 ∈ ℕs)
1312nnsnod 28258 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → 𝑀 No )
14 abssge0 28186 . . . . . . . 8 (𝐴 No → 0s ≤s (abss𝐴))
1514ad3antrrr 730 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → 0s ≤s (abss𝐴))
16 simprl 770 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (abss𝐴) <s 𝑁)
17 abssge0 28186 . . . . . . . 8 (𝐵 No → 0s ≤s (abss𝐵))
1817ad3antlr 731 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → 0s ≤s (abss𝐵))
19 simprr 772 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (abss𝐵) <s 𝑀)
207, 9, 11, 13, 15, 16, 18, 19sltmul12ad 28125 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → ((abss𝐴) ·s (abss𝐵)) <s (𝑁 ·s 𝑀))
215, 20eqbrtrd 5117 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → (abss‘(𝐴 ·s 𝐵)) <s (𝑁 ·s 𝑀))
221, 3, 21rspcedvdw 3576 . . . 4 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ ((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀)) → ∃𝑝 ∈ ℕs (abss‘(𝐴 ·s 𝐵)) <s 𝑝)
2322ex 412 . . 3 (((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) → (((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀) → ∃𝑝 ∈ ℕs (abss‘(𝐴 ·s 𝐵)) <s 𝑝))
24 nnsno 28256 . . . . . 6 (𝑁 ∈ ℕs𝑁 No )
25 absslt 28190 . . . . . 6 ((𝐴 No 𝑁 No ) → ((abss𝐴) <s 𝑁 ↔ (( -us𝑁) <s 𝐴𝐴 <s 𝑁)))
2624, 25sylan2 593 . . . . 5 ((𝐴 No 𝑁 ∈ ℕs) → ((abss𝐴) <s 𝑁 ↔ (( -us𝑁) <s 𝐴𝐴 <s 𝑁)))
27 nnsno 28256 . . . . . 6 (𝑀 ∈ ℕs𝑀 No )
28 absslt 28190 . . . . . 6 ((𝐵 No 𝑀 No ) → ((abss𝐵) <s 𝑀 ↔ (( -us𝑀) <s 𝐵𝐵 <s 𝑀)))
2927, 28sylan2 593 . . . . 5 ((𝐵 No 𝑀 ∈ ℕs) → ((abss𝐵) <s 𝑀 ↔ (( -us𝑀) <s 𝐵𝐵 <s 𝑀)))
3026, 29bi2anan9 638 . . . 4 (((𝐴 No 𝑁 ∈ ℕs) ∧ (𝐵 No 𝑀 ∈ ℕs)) → (((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀) ↔ ((( -us𝑁) <s 𝐴𝐴 <s 𝑁) ∧ (( -us𝑀) <s 𝐵𝐵 <s 𝑀))))
3130an4s 660 . . 3 (((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) → (((abss𝐴) <s 𝑁 ∧ (abss𝐵) <s 𝑀) ↔ ((( -us𝑁) <s 𝐴𝐴 <s 𝑁) ∧ (( -us𝑀) <s 𝐵𝐵 <s 𝑀))))
32 mulscl 28076 . . . . . 6 ((𝐴 No 𝐵 No ) → (𝐴 ·s 𝐵) ∈ No )
3332adantr 480 . . . . 5 (((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) → (𝐴 ·s 𝐵) ∈ No )
34 nnsno 28256 . . . . 5 (𝑝 ∈ ℕs𝑝 No )
35 absslt 28190 . . . . 5 (((𝐴 ·s 𝐵) ∈ No 𝑝 No ) → ((abss‘(𝐴 ·s 𝐵)) <s 𝑝 ↔ (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝)))
3633, 34, 35syl2an 596 . . . 4 ((((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) ∧ 𝑝 ∈ ℕs) → ((abss‘(𝐴 ·s 𝐵)) <s 𝑝 ↔ (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝)))
3736rexbidva 3155 . . 3 (((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) → (∃𝑝 ∈ ℕs (abss‘(𝐴 ·s 𝐵)) <s 𝑝 ↔ ∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝)))
3823, 31, 373imtr3d 293 . 2 (((𝐴 No 𝐵 No ) ∧ (𝑁 ∈ ℕs𝑀 ∈ ℕs)) → (((( -us𝑁) <s 𝐴𝐴 <s 𝑁) ∧ (( -us𝑀) <s 𝐵𝐵 <s 𝑀)) → ∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝)))
3938impr 454 1 (((𝐴 No 𝐵 No ) ∧ ((𝑁 ∈ ℕs𝑀 ∈ ℕs) ∧ ((( -us𝑁) <s 𝐴𝐴 <s 𝑁) ∧ (( -us𝑀) <s 𝐵𝐵 <s 𝑀)))) → ∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wrex 3057   class class class wbr 5095  cfv 6488  (class class class)co 7354   No csur 27581   <s cslt 27582   ≤s csle 27686   0s c0s 27769   -us cnegs 27964   ·s cmuls 28048  absscabss 28178  scnns 28246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-nadd 8589  df-no 27584  df-slt 27585  df-bday 27586  df-sle 27687  df-sslt 27724  df-scut 27726  df-0s 27771  df-1s 27772  df-made 27791  df-old 27792  df-left 27794  df-right 27795  df-norec 27884  df-norec2 27895  df-adds 27906  df-negs 27966  df-subs 27967  df-muls 28049  df-abss 28179  df-n0s 28247  df-nns 28248
This theorem is referenced by:  remulscl  28407
  Copyright terms: Public domain W3C validator